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Figure 19-6 Sketch of the s-wave solution u(r) near threshold. Outside the range radius r = a, the
wave function has the form C(r — A). [This is not in conflict with (19-73), which is an expansion of
sin(kr + 8). We could equally well have taken the form of u(r) to be (C/k) sin(kr + §), since the
normalization is arbitrary. It is, in fact, the interior wave function and the position of A that
determine the slope of the line.] The sign of A depends on whether the interior wave function has or
has not turned over cases (b) and (a), respectively. Since the wave function must turn over if there
is a weakly bound state (so that it can match a slowly falling exponential) and since one does not
expect the wave function inside the potential to be very sensitive to variations in E about zero,.one
expects that for a potential that has a bound state with Ez small, A > 0.

account, for example, that the effective mass of the proton in a molecule is different from
that of a free proton, and that the molecules are not really at rest, but are moving with a
distribution appropriate to the (low ~ 20 K) temperature. The large discrepancy between

. the two cross sections is not changed much by these corrections, and it can only be ex-
plained if A; is indeed negative.

19-3 THE BORN APPROXIMATION

At higher energies many partial waves contribute to the scattering, and- it is therefore
preferable to avoid the angular momentum decomposition. A procedure that leads to a very
useful approximation both when the potential is weak and when the energy is high is the
Born approximation, in which we consider the scattering process as a transition, just like
the transitions studied in Chapter 15. The difference is that here we consider the transitions

continnum — continuum

If we work in the center-of-mass system, we have effectively a one-particle problem,
and this particle makes a transition from an initial state, described by the eigenfunction

gi(r) = %V e (19-74)

to the final state, described by

1 ipor
i) = e (19-75)
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where p; and p; are the initial and final momenta, respectively. The transition rate, follow-
ing the Golden Rule (15-20) is given by
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The delta function expresses energy conservation. If the particles that emerge have a dif-
ferent mass from those that enter, or if the target is excited, that delta function takes a
somewhat different form. It will, however, always be of the form 8{( p}/Zm) — E] where E
is the energy available for kinetic energy of the final particle. The matrix element M; is
given by

e —ippr/h ezp,-r/h
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Vv Vv (19-77)
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where A = —;; (p; — Py). We write the matrix element as

My =3 V(8) (19-78)

The integral in (19-76) can be rewritten in the form
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To get the last line, we noted that p;dp;/m = d(p}/2m) and carried out the delta function
integration. Thus, p, must be evaluated at p; = (2mE)"?, and we must not forget that m
here is the reduced mass in the final state.

This expression has an undesirable dependence on the volume of the quantization
box, but this is not really surprising. Our wave functions were normalized to one particle
in the box V, so that the number of transitions should certainly go down as V increases.
This difficulty arises because we are asking a question that does not correspond to an ex-
periment. What one does is send a flux of incident particles at each other (in the center-of-
mass frame; in the laboratory, one particle is stationary, of course). If we want a flux of
one particle per m? per second, we must multiply the preceding by V divided by the vol-
ume of a cylinder with 1-m? base, and the relative velocity of the particles in the center-
of-mass frame in the initial state. The number of transitions for unit flux is just the cross
section. We therefore have

1
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Since in the center-of-mass frame the two incident particles are moving toward each other
with equal and opposite momenta of magnitude p,, their relative velocity is

o (1, 1\ i
|”rel|‘m1+m2 pi<m1+m2> ) (19-81)

if m, and m, are their masses. Thus, if the initial and final reduced masses and momenta
are not the same, we have
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When the initial and final particles are the same,
do Mgl A ?
— I —— [— 1 -
dQ) 47t | A2 @) (19-83)

When one particle is a great deal more massive than the other, m,,y — m, the mass of the
lighter particle. When we compare the above with (19-15) we see that

Meeg =~ 4
16, é) =Y V(d) (19-84)
Actually, to determine the sign, one must go through a more detailed comparison with the
partial wave expansion. We will not bother to do this here.

As an illustration of the application of the Born approximation, we will calculate the
cross section for the scattering of a particle of mass m and charge Z, by a Coulomb poten-
tial of charge Z,. The source of the Coulomb field is taken to be infinitely massive, so that
the mass in (19-83) is the mass of the incident particle. For generality (and, as we will see,
for technical reasons) we take the Coulomb field to be screened, so that

_ ZIZZeZ e—r/a

= e, T (19-85)

V(r)

where a is the screening radius. We thus need to evaluate
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We choose the direction of A as z-axis, and then get
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so that the cross section becomes
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In the last line we replaced p*/2m by E, and we used %(1 — cos 0) = sin® (6/2). The angle
6 defined in (19-88) is the center-of-mass scattering angle. In the absence of screening
(a — ) this reduces to the well-known Rutherford formula. There is no £ in it, and it is
the same as the classical formula. Had we left out the screening factor in (19-86) we
would have had an ill-defined integral. One often evaluates ambiguous integrals with the
aid of such convergence factors. ~

The Born approximation has its limitations. For example, we found that V(A) was
purely real so that f{(f) is also real in this approximation. This implies, by the optical theo-
rem, that the cross section is zero. In fact, the Born approximation is only good when ei-
ther (a) the potential is weak, so that the cross section is of second order in a small
parameter; this would make the use of it consistent with the optical theorem, or (b) at high
energies for potentials such that the cross section goes to zero. This is true for most
smooth potentials. It is not true for real particles; there it seems that the cross sections stay
constant at very high energies, and one cannot expect the Born approximation to serve as
more than a guide of the behavior of the scattering amplitude.

As a final comment, we observe that if the potential V has a spin dependence, then
(19-77) is trivially modified by the requirement that the initial and final states be de-
scribed by their spin wave functions, in addition to the spatial wave functions. Thus, for
example, if the neutron—proton potential has the form

V(r) = Vi(r) + ap - oVy(1)

the Born approximation reads
— 1 —iAT
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where £; and £, represent the initial and final spin states of the neutron—proton system.

19-4 SCATTERING OF IDENTICAL PARTICLES

When two identical particles scatter, there is no way .of distinguishing a deflection of a_
particle through an angle 6 and a deflection of 7 — 6 in the center-of-mass frame, since
momentum conservation demands that if one of the particles scatters through 6, the other
goes in the direction 7 — 6 (Fig. 19-7). Classically, too, the cross section for scattering is
affected by the identity of the particles, since the number of counts at a certain counter
will be the sum of the counts due to the two particles. Thus

o) =0@) + o(m—6) (19-90)




