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The Passage of Radiations
through Matter

ALTHOUGH THIS SUBJECT is really a part of atomic physics
rather than of nuclear physics, the effects of the passage of radiations
through matter are of paramount importance to all nuclear experiments;
in fact, a thorough knowledge of these effects is absolutely indispensable
to the experimental nuclear physicist. Many arguments treated in this
chapter are primarily applications of electromagnetism; for these (Ja 62)
is an excellent reference.

2-1 Intreduction

There are three main types of radiation: charged heavy particles of
mass comparable with the nuclear mass, electrons, and electromagnetic
radiation. For all of them the interactions to be considered are electro-
magnetic. (Neutrons behave quite differently and will be treated in
Chap. 12.) The behavior of mesons and other particles is intermediate
between that of electrons and of nuclei, as will be seen from what follows.

A striking difference in the absorption of the three types of .adiation
is that only heavy charged particles have a range. That is, a mono-
energetic beam of heavy charged particles, in traversing a certain amount
of matter, will lose energy without changing the number of particles in°
the beam. Ultimately they will all be stopped after having crossed prac-
tically the same thickness of absorber. This minimum amount of
absorber that stops a particle is its range: e.g., the range of polonium
alpha particles, of energy 5.30 MeV, is 3.84 cm of air at STP (15°C and
760 mm pressure). For electromagnetic radiation, on the other hand, the
absorption is exponential. Energy is removed from the beam and
degraded; i.e., the intensity decreases in such a way that

_$=pa 2%

where 7is the intensity of the primary radiation, u is the ahsorption coeffi-
cient, and dx is the thickness traversed. Electrons exhibit a more compli-
cated behavior. They radiate electromagnetic energy easily because they
lave a large value of e/m and hence are subject to violent accelerations
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under the action of electric forces. Moreover, they undergo scattering to
such an extent that they follow irregular trajectories.

We shall now define a few terms which recur frequently in this
chapter. Consider a parallel beam of monoenergetic particles (c.g.,
protons) moving through an absorber. As they travel, they lose energy.
The energy lost per unit path length is the specific energy loss and its
average valuc is the stopping power of the absorbing substance. The
specific ionization is the number of ion pairs produced per unit path
length. The specific energy loss and the specific ionization are subject to
fluctuations; hence we define a mean specific energy loss, a mean specific
ionization, etc. The fluctuations in energy loss also produce fluctuations
in range (straggling). A plot of the number of particles in the beam
penetrating to a certain depth gives the curve of Fig. 2-1. The abscissa
Ry of the point passed by half the particles is called the mean range. The
abscissa Ry, the intersection of the x axis with the tangent at the point
of steepest descent, is called the extrapolated range. The difference be-
tween the extrapolated and mean range is sometimes called the straggling
parameter.

The curve showing the specific ionization as a function of the resi-
dual range is known as a Bragg curve. It is necessary to distinguish
between the Bragg curve of an individual particle (Fig. 2-2) and the
average Bragg curve for a beam of particles (Fig. 2-3).

Often the thickness is measured in g cm-2 of absorber. One then
speaks of a mass absorption coefficient, mass stopping power, etc. The
relation between the absorption coefficient u and the mass absorption
coefficient & is found by noting that the thickness x (in cm) is related
to the thickness 1 (in g cm %) by

px =t 2-12)
where p is the density of the medium. Consequently,
'
px = L w't (2-1.3)
P
and hence the mass absorption coeflicient is
w=t @-1.4)
»

Figure 2-1 Range curve show-
ing the number of particles in a

beam penetrating to a given
depth.

Figure 2-2 DBragg curve of an
individual alpha particle. loniza-
tion of an alpha particle, in jon
pairs per millimeter, as a function
of its residual range, according to
experiments by Holloway and
Livingston. (Phys. Rev., 54, 29
(1938).] In experiment py, =
1.184 mg cm=3 (15°C, 760 mm
Hg).
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. The atomic absorption coefficient &, is sometimes employed when
thicknesses are measured in atoms per square
by an argument similar to the previous one,

Ha = —

N

centimeter; we have then,

(2-1.5)

where N is the number of atoms per cubic centimeter.

2-2 Rutherford Scattering

Consider a particle of charge ze traversing matter of atomic number

Z, for instance, a proton traversing a piece of aluminum. Occasionally

the proton will collide elastically with an aluminum nucleus and will

undergo *‘Rutherford scattering”; i.c.

the nucleus will deflect it.

» the electrostatic repulsion from

Elfxslicf nuclear collisions give rise to large changes in the direction
of the impinging particle but not, on the average, to significant energy
losses. In a cloud-chamber picture (Fig. 2-4) a nuclear collision is easily

Figure 2-3 Bragg curve for a
beam of protons. In experiment
pair — 1166 myg vm . Ordinate
scale arbitrary. [R. R. Wilson,
Cornell University.]
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distinguishable. In addition there arc collisions with the extranuclear
electrons. These constitute the main cause of energy loss at energies
below several hundred MeV, although they produce only an extremely
small scattering of heavy particles. Inclastic nuclear collisions arc
treated in Chap. 11.

The effect of a nuclear collision can be calculated classically as
follows: Assume that the scattering center has an infinite mass (in other
words, is fixed) and that it exerts a repulsive electrostatic force on the
impinging proton, given by Ze?/r? This force, which has a potential

2

Vo = + 2 @2

produces a motion whose orbit lies in the plane of the fixed center and
the initial velocity vector. If r is the radius vector from the force center
(located at the origin) to the proton and p = mr, the proton’s momen-
tum, Newton’s second law of motion gives
Ze?r .
P=a @22)
Multiplying both sides vectorially by r, we have

@223)

rxp=0

Figure 2-4 Cloud-chamber tracks of alpha rays showing delta rays. The first picture is in air, the
last three in helium; the gas pressure in the chamber is such that the tracks cross about 1075 g cm?
of air equivalent. Note nuclear collisions in the section on the right. [T. Alper, Z. Physik, 67, 172

(1932).)

Thus angular momentum

L=rxp 2-24)
is a constant of the motion. since its time derivative is zero.
The total energy
p_‘ﬁ + ze =E 2.5
py- ; @23
is another constant of the motion.
‘The vector 7. T
€= -! L !
-z xp+- @-2.6)

which in the plane of the motion, is also constant in time, as can be
verified by calculating € according to Egs. (2-2.1), (2-2.2), and the
formula for the vector triple product.

Scalar multiplication of Eq. (2-2.6) on both sides by r, by using the
formula for the mixed triple product, gives

’ (-]
12 AL
me’Z+ r
This equation can be interpreted easily by using polar coordinates with
polar axis in the direction of €. Equation (2-2.7) then reads

+L2

€ =

@-2.7)

€ercosp = ——= +7r 2-2.!
¢ me?Z @28
or
+ L2[me?Z
r= —
1 —ecosg

which for € > 1 is the equation of a hyperbola of eccentricity e.

Figure 2-5 Orbit of a particle
undergoing Rutherford scatter-
ing. [Original from Rutherfued,
Phil. Mag., 21, 672 (1911).] The
notation used here is somewhat
diffcrent.
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ining the hyperbola
The angle between the asymptotes not containing 0
(Fig. 2-5) defines the defiection of the particle 8. It is fo.und by detem?m-
ing the difference between the values of g = t¢1 for Wh‘lCh !hc denomina-
tor is zero and taking the supplementary angle to this difference. One
finds

cos ¢ — ! = sin - (2-2.9)
€ 2
or
22 tans @2.10)
2Eb 2 .

where b = L/(2mE)V'2 is the impact parame{er. defu?ed as the dislal.nlce
between the center of force and the limiting line of flight of the particle,
f r.

for l:;/g:c‘:’l:lu::v: calculate the probability of a deflection 8 for prolo:s
crossing a foil of a substance of atomic number Z. W!': fxssume ‘lhe.n thc
deflection is the consequence of a single nuclear collision. This IS] t er
case for large deflections. Small deflections are generally the resu :, o“
the combined action of many collisions as w-_ll be seen later. We sha
thus evaluate the nuclear-scattering cross section do/dw amjl the pr.oba-
bility of scattering through an angle between 6 and 6 + do in crossing a
foil of thickness x of a material containing N nuclei per unit volume;
The probability P(8) dw for scattering through anglg 6 into an elemen
of solid angle dw is given by

P(8) dw = B Nk do (2-2.11)

dw
Consider one nucleus of the scatterer and an incidel.ll beam comammi
one proton per unit surface area. If a pl:OIOI.\ ha.s an impact parameter
with respect to the scatterer, the deflection is given by (2-2.10). .
The number of protons dn having an impact parameter between
and b + db is 2nb db = dn, where, from Eq. (2-2.10),

Zez  df

e g 22.12)
& = 4E sin? (8/2)
Hence
Ze\ 2 cos (0/2)
— S22 a8 (2-2.13)
Il (25) s @72

This is the number of particles deflected through an angle between 0rand
8 + db. They pass with uniform density between two cones n.;(' aperture
8 and 6 + d6. The solid angle included between these cones is

dw = 2m sin 6 df (2-2.14)
and
n 1 (Ef—z)z L (2-2.15)
de 4\2E/ sin?(Y/2)

The quantity dn/dw is dimensionally an area, and comparison with Eq.
(2-2.11) shows that the differential-scattering cross section is

”

da 1 7e2Z\2 1
( ) (2-2.16)

do "~ 3 sint (6/2)
This is the famous Rutherford scattering formula (Rutherford, 1912).
Put in convenient numerical form it is

do 2 sin 8 da 0813922 sin g 10-28 em2 I
o = 2nsin v = EZ(M;V)W(B./EI x cm? per nucl eus(zz.rn
The experimental verification was carried out in detail by Rutherford,
Geiger, Marsden, and others and led to the formulation of the planetary
model of the atom.

Formula (2-2.16) can be extended to other particles besides the
proton by replacing Z with Zz, where z is the atomic number of the
projectile. Equation (2-2.16) is not relativistic and refers (0 a fixed center.
Moreover, it considers only Coulomb forces, neglects both the finite size
of the nucleus and specific nuclear forces, and is calculated classically
without regard to quantum mechanics. In spite of all these approxima-
tions, the equation gives excellent results in many practical cases, notably
for the scattering of particles having a computed minimum distance of
approach to a target larger than approximately 1.2 x 10-1341/3 ¢m,
where 4 is the mass number of the target. The failure of Eq. (2-2.16)
for cases where this distance becomes smaller is evidence that specific
nuclear forces become operative. In fact, it was just such failure that
provided the first indication of the “nuclear radius.”

It is possible to generalize Eq. (2-2.16) to take into account the
finite mass of the target. One obtains

»(lo’ _ (e’.jZ)z | {cos® + [I - (m/M)?sin2 6)12)2
do  \me?) Sinio [t — (m/M)?sin® B)17%

where M is the mass of the target and m is the mass of the projectile.
For m < M the positive sign only should be used before the square
root. For m > M the expression should be calculated for positive and
negative signs and the results added to obtain do/dw. The angle 8 is the
laboratory angle. If the colliding particles are identical, important
quantum-mechanical corrections are necessary, and Eq. (2-2.18) is no
longer applicable (Mott, 1930) (see Chap. 10).

An important limiting case of Eq. (2-2.16), also valid relativistically,
is obtained when the deflection angle 0 is small compared with 1 rad,

(2-2.18)

do (ZZzez)z 1 ) v @219
do  \ppc) & P72 ’

For extremely small angles, which correspond to large impact param-
cters, the nuclear charge is screened by the atomic electrons, and
Eq. (2-2.19) is invalid. It is this screening effect that prevents the equa-
tion from diverging for 8 - 0. An important practical application of
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Eq. (2-2.19), to the problem of multiple scattering. will be discussed later.

The Rutherford scattering formula can be obtained also by means
of quantum mechanics; in this case Born’s approximation (see APpef\dix
B) happens to give the correct result. The simple derivation is given
here as an example of the application of Born’s approximation. The
fundamental formula (see Appendix B) is

do 1 p?
O e Y Upp)?
do " amo! ad

Use of Eq. (2-2.20) requires the calculation of the matrix element
Up_p- for the potential Ze?/r. We have

(2-2.20)

P/ — 8D - r
r

Up-o» = Zezj (2-2.21)
This integral is best calculated by transforming it to polar coordinates
with a polar axis in the direction p-p’. Designate by 8 the scattering angle
and by u the cosine of the angle between r and p-p’, and observe that
ipl = '] and |p-p’| = 2psin (§/2) = kh. In the integral (2-2.21) the
volume element becomes 2w dur? dr, and we have

1 po pliur
Up.o = Zezj- j —— 2w dp rt dr (2-2.22)
-1 0 r
Integrating with respect (o p gives
0 G k
Upy = Zetn | ol y2 g @-2.23)
o kr?

This last integral oscillates in value when the upper limit is considered,
but it is easy to prove, for instance, by replacing Ze2[r by (Ze?[r)e—r
and after integration going to the limit « — 0 that we must take 0 as
the value at the upper limit. We thus obtain
4nZe? ah?Ze? @220
Uro == = maim@p)
and by using Eq. (2-2.20) we find
do I pr nhZ% 2% 1
oo 4nPht 2 phsind (02)  4pn? sind (6/2)
which is identical to Eq. (2-2.16).

(2-2.25)

2-3 Energy Loss Due to Tonization

In addition to the nuclear collisions mentioned above, a heavy
charged particle moving through matter collides also with atomic elec-
trons. The greatest part of the energy loss aceurs in these collisions.
Sometimes the atomic electrons receive so much energy that they become
free and are clearly visible in cloud-chamber pictures (Fig. 2-4, delta
rays). Somctimes the atom is excited but not ionized. In any case, the

energy for these processes comes from the kinetic energy of the incident
particle, which is thereby slowed down. Figure 2-5 gives a plot of specific
ionization versus range. Since the energy spent in forming an ion pair in
a gas happens to bc approximately independent of the encegy of the
particle forming the ions, this curve approximates the curve of specific
energy loss.

To calculate the rate of energy loss by a particle of charge ze as it
progresses through a medium containing 4" electrons cm~3, we first
consider the electrons as free and at rest. The force between the heavy
particle and the electron is ze?/r?, where r is the distance between them.
The trajectory of the heavy particle is not appreciably affected by the
light electron, and we can consider the collision as lasting such a short
time that the electron acquires an impulse without changing its position
during the collision. By this hypothesis the impulse acquired by the
electron must be perpendicular to the trajectory of the heavy particle
and can be calculated by

o d; ° | d
Ap, = f ef, dt = J.mn o e f —cos8Z @23
© v - r? v

where &, is the component of the electric field at the position of the
electron normal to the trajectory of the particle (Fig. 2-6) and v is the
velocity of the heavy particle, which is taken to be constant during the
collision. The integral is easily evaluated by applying Gauss's theorem
to a cylinder of radius b having the trajectory as its axis. Note that the
flux of & through this cylinder is given by )
$= J &, 2nbdx = dnze @32)
Replacing the second integral of Eq. (2-3.1) by its value obtained
from Eq. (2-3.2),

2ze?
ap = —/— (23.3)

The energy transferred to the electron is then
(Ap)? 2 [ze?\2
Tm T m (bv)
and since there are 2=4"b db dx electrons per length dx that have a

234)

Figure 2-6 Transfer of momen-
tum to an electron by a moving
heavy charge.
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e e~ . c— -

distance between b and b + db from the heavy ion, the energy loss per
path length dx is

dE ) (Ap)? 226t fnm., db
—~— =204 | bdb = 4n A"
dx 2m mv? ) pmie b
204
AL @5
bml

This is the stopping power of the absorbing medium. At first, one might
be tempted to extend the integral from zero to infinity, obtaining a
divergent result. To do so, however, would be incompatible with the
hypotheses under which Eq. (2-3.4) was derived; for instance, distant
collisions last a long time, and the corresponding energy transfer is not
given by this equation.

Equation (2-3.5) also shows that the energy loss due to collisions
with nuclei is negligible compared with the energy loss to electrons. In
considering nuclear collisions we would find a factor Z2 in the numerator
and also the nuclear mass instead of the electron mass in the denomina-
tor. The increase in the denominator is the dominating factor.

We shall now discuss the values of bmax and by, which are suit-
able to the problem. For bmax we consider that the electrons are not free
but are bound in atomic orbits. The adiabatic principle of quantum
mechanics states that one cannot induce transitions from one quantum
state to another by a time-dependent perturbation if the variation of the
perturbation is small during the periods = of the system. In our case it
can be assumed that the duration of the perturbation is the time b/
during which the heavy particle is near the electron and that in order to
produce transitions the condition /v < 7 = |/v must be fulfilled. This
determines bmax as < v/{v), where (v) is an appropriate average of the
frequencies of the atom. Taking relativistic corrections into account, the
duration of the perturbation is shortened by a factor (1 — g2)-12,
The limit for bmax given by the adiabatic condition then becomes

v
IRy
The limits for by, are several: first, in an electric collision it is
impossible to change the momentum of an electron by an amount
greater than 2mv as can be easily seen if we consider the heavy particle
at rest and the electron impinging on it. This implies, according to
Eq. (2-3.3), a minimum classical impact parameter
ze?  Ze?
bminar = g Zro 2-3.7)
where ro is the classical radius of the electron, 2.8 x 10-13cm.

Quantum mechanics gives another limit to by inasmuch as the
electron can be localized with rcspect to the hcavy ion only to the

(2-3.6)

bmin

10 P, McVjc
10,000, ' ; . : 100 . . 1,000 . : 10,000 - 100,00
]
2t
1,000 \'
dp,
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2k
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3 g
0 2f T
o 4 =
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;' :
= st 3
& 1&
2ot g
1
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2}
e
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2
2
/| /
ooil—4 1 t L N
M2 s o T :

i 1 1 i
100 2 s 1,000 2 5 10,000 2 5 100,000
kinetic energy, MeV
Figure 2.7 Gltaph f»f stopping power vs. cncrgy and of specific momentunt loss versus momentum
for heavy particles in copper. In the same figure range-energy and range-momentum relations for

protons in copper. All scales are logarithmic. The figure may be used for othe i
L r particles. Re-
memher —dF/dx = z2)(v) and the scaling laws of Scc. 2-3. P Re
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accuracy of its de Broglic wavclength; that is,
EoOR(1 - g2

b lnqm > — =
m| ?

(2-38)
moy ,
We must now introduce in Eq. (2-3.5) the smallest valu_e ol'. baax and the
largest value of byn. Over a large velocity interval this gives
dE  AnzZet | mo?
- — = — “log — T
dx mh v (I — B?)
The quantity 2=i(v) is a special average of the excitation and ioniza-
tion potentials in the atom of the stopping material. It can be calculated
by using the Thomas-Fermi model of the atom. Bloch (1933) found that
it is approximately proportional to Z,
. 2nhi vy = I = BZ (2-3.10)
A better semiempirical formula is /Z = 9.1(1 + 1.9zZ-23)eV for
B = 4. A more precise calculation of the stopping power, performed by
Bethe, gives

(2-3.9)

dany
mv?

dE  4nz2et 2mv?
— = A llog
dx mo? (1 - g%
A sample of the stopping-power curve is given in Fig. 2~’_l. )

At very low velocities, i.e., when v is comparable with the velocity
of the atomic electrons around the heavy particle (in the case of hydro-
gen, v = ¢/137), the heavy ion neutralizes itself by capturing electrons
for part of the time. This result is a rapid falloff of ionization a(‘ihe very
end of the range. On the other hand, at extremely high energies, with
v ~ ¢, ionization increases, for several reasons. The relativistic contrac-
tion of the Coulomb field of the ion increases bmax according to
Eq. (2-3.6) and decreases bmn according to Eq. (2-3.‘8). Part of l!\c
encrgy is carried away as light (Cerenkov radiation). This last effect will
be discussed in Sec. 2-5.

The general form of Eq. (2-3.11) allows us to draw some conclu-
sions of considerable practical importance. We can write Eq. (2-3.11) as

- %f— = z22X\v)

iy @3.11)

or remembering that the kinetic energy of a particle of mass _M is
E = Me(v), where ¢ is a function of the velocity only, we have, using E
as a variable,

- ® = 2 EM) @.1)
X
or, using v as a variable,
dv 22
- = —AX 2-3.13
2.0 = 1M @3.13)

Relations (2-3.12) and (2-3.13) allow us to write the energy loss as a

function of energy for any particle, once the energy loss as a function
of energy is known for protons. In particular, protons, deuterons, and
tritons of the same velocity have the same specific energy loss.

Similar scaling relations obtain for the range. Using the velouity as
a variable, one has

v tdy\ -1 M _ M )
Ry(v) = fﬂ (d;r) dv = = .[o Plo)? do = ;‘Z‘Pv(v) 3-3.14)

or, using energy as a variable,

Re (EIM) = g o (E/M) (2-3.15)
For clarity we have indicated explicitly the independent variable to be
used in the functions.

Equation (2-3.14) is not exact, for the ncutralization phenomena
occurring at the end of the range and other corrections are neglected;
but it is sufficiently accurate for most cases, excluding very low energies.
As an example of the application of Eq. (2-3.15) we can verify that a
deuteron of energy E has twice the range of a proton of energy E/2.

A semiempirical power law valid from a few MeV to 200 M¢V for
the proton range-energy relations is

RE) (%)1.3

where E is in MeV and R is in meters of air.

Sample numerical data on range-energy relations are provided in
Fig. 2-7 and in Fig. 2-8, which presents a nomogram useful for approxi-
mate estimates.

The mass stopping power is more often used than —dE/dx, the
(linear) stopping power. The mass stopping power depends on the
factors.#'fp and I of the stopping substances. The number of electrons
per cubic centimeter, .4", is roughly proportional to the density p. If
this proportionality were exact, only the dependence of 7 on Z would
influence the mass stopping power. Actually, .#"/p, and hence the mass
stopping power, decreases with Z.

Heavier ions, such as C!%, O'$, and A%, are slowed down by ioniza-
tion loss in much the same way as alpha particles. The part of the range
where the effective charge on the jon changes is emphasized, and the
maximum stopping power is reached at velocities increasing with Z,
For example, for C'* and A% the maximum specific ionization occurs at
approximatcly v/c — 0.037 and 0.059, which corrcspond to cncrgics of
8 and 65 MeV, respectively. At lower energies the decrease of the
effective lear charge overcomp the effect of the diminishing
velocity and the stopping-power decrease with cnergy. In other words,
the behavior is the same, on an exaggerated scale, as that observed at
the end of the Bragg curve for protons and alpha particles (Fig. 2-2).

‘I'he extreme case is furnished by fission fragments. Their effective
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charge is large, reaching about 20¢ at the beginning of the range; and
nuclear collisions are an important source of energy loss. If a fragment
of atomic number Z; crosses a medium of atomic number Z; and
nuclear mass My, the specific energy loss to nuclci is proportional to

Z2
Z2—— 2-3.16
v @-3.16)
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Figure -8 Nomogram by R. R. Wilson for range-energy relation. Left scales range in grams per
square centimeter. Middle scale, kinetic energy in MeV. Right-hand scale, atomic number Z of

stopping material and mass of particle. To use, connect range, energy, and Z by a straight line. *°
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Figure 29 Range-energy rela-
tion for (a) Ar4? [E. L. Hubbard,
UCRL 9053] and (b) median-
mass heavy fission fragments
(4 ~ 140). [C. B. Fulmer, Phys.
Rev., 108, 1113 (1957).1
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whereas the loss to electrons is proportional to
Z;
Zi%ert — (23.17)
m

The first equation, (2-3.16), applies to close nuclear collisions where
the entire charges of the fragment and the target are effective. In the case
of electronic collisions only the nct charge Zyers of the fission fragment,
with whatever electrons it carries along, is effective, and the target
electrons have unit charge. The factor Z» of Eq. (2-3.17) arises from the
presence of Z; electrons per nucleus. The approxiurate value of Zjen is
obtained by assuming that the fragment will lose all the electrons whose
orbital velocity in the atom is smaller than the velocity of the frag-
ment itself (see Fig. 2-9).

The two causes of energy loss considered above may be comparable,
but the energy loss due to nuclear collisions is concentrated in few
events, while the electronic collisions are much more uniformly distrib-
uted along the range. The nuclear collisions originate the peculiar
branches observable in cloud-chamber pictures of fission fragments.
The concentration of the nuclear energy loss in a few events is the cause
of the great value of the straggling shown by fission fragments.

2-4 Energy Loss of Electrons

The energy loss of electrons is a much more complicated phenome-
non than the encrgy loss by ionization of heavy ions, for in addition there
is an enecrgy loss due to electromagnetic radiation (bremsstrahlung)
emitted in the violent accelerations that occur during collisions (Fig.
2-10). We shall consider the two eflects separately, confining ourselves
here to the energy loss due to ionization. The combination of radiation
and ionization energy loss will be treated in Sec. 2-11. At low energies
(<2mc?) the loss by ionization is much greater than that by radiation.
For the derivaiion of ihe equations and a bibl
of Bethe and Ashkin in (Se 59).

The energy loss by ionization may be treated in a manner similar
to that used for heavy ions, but there are several important differences.
It is necessary to take into account the identity of the particles involved
in the collision and their reduced mass. The formula for nonrelativistic
electrons is

aphy see the article

g~ dlog2 +
Except for small factors in the logarithmic term, this formula is the same
as Eq. (2-3.11); hence, electrons and protons of the same nonrelativistic
velocity will lose energy at the same rate. For high relativistic velocities
the energy loss of electrons is

dE  4nét

N [lcg 2 Ylog(l - BV? — flog8 + ,.] 43
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Figure 2-10 An electron loses energy by radiation as shown by the sudden increase in curvature

of its t
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34 whereas for protons it is

dE  4nét 2mc? 1
CHAPTER 2 ey N [Iog - * 2log T yiE T 1] (2-4.3)
The Passage . .
of Radiations At equal values of B, the two expressions differ by less than 10 per cent
through up to proton energies of 10! eV. The difference between the average
i Matter energy loss of electrons and positrons is even smaller.

! An important practical difference between the behavior of heavy
particles and electrons arises from the fact that the trajectories of elec-
trons in matter are not straight lines, especially at low energies (E < mc?).
For this reason the actual path length of an electron passing through two
i points may be appreciably longer than the distance between these points
: measured on a straight line, as can be seen in Fig. 2-11. Thus, electrons
of the same energy are not all stopped by the same thickness of material,
and the concept of range has a limited validity.

For practical measurements of electron energy we can use the extrap-
olated range. It is important to note, however, that the geometry of
the apparatus influences the result. Thus, in order to use the data found
in the literature, one must reproduce the experimental arrangement used
to obtain them (Fig. 2-12).
| In the case of beta rays the electrons have a continuous energy
! spectrum, but it is still possible to find a relation between the upper
limit of the energy of the spectrum E and the maximum range R (in
i gcem™2 of aluminum) of the electrons (Feather, 1938). A relation fre-
quently used for a rapid determination of £ (MeV) is

Figare 2-11 Slow electrons
showing a curved path due to
scattering. A fast electron goes
straight. [Original from C. T. R.
Wilson, 1923.]
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See Fig 2-13 for a range-energy plot usable for beta emitters.

(24.4)

2-5 Polarization Effects— Cerenkov Radiation

The derivation of Eq. (2-3.11) did not take into account the electri-
cal polarization of the medium in which the heavy ion moves. The di-
clectric of the di k the electric field acting at a
distance from the ion, causing a decrease of the energy transfer to atoms
located far from the ion, and hence a decrease in the mass stopping
power. Thus, in the casc of a medium in two phases of different density,
such as water and vapor, the lower density phase has a higher mass

. g
0.03 005 01 02 0.5 1 5 10

max. KE, MeV

Figure 2-13 Range-energy plot of some common beta emitters (logarithmic scales). [(Si 55).]

stopping power. This effect is appreciable, however, only for relativistic
velocities and seldom amounts 1o more than a few per cent.

Another important effect of the dielectric constant is the production
of Cerenkov radiation (Cerenkov; Frank and Tamm, 1937). If a charge
moves with a velocity Bc in a medium of refractive index n, its electric
field propagates with velocity ¢/n; and if B¢ > ¢/n, a phenomenon similar
to the production of a bow wave results. Figure 2-14 gives the Huyghens’
construction for the electromagnetic waves emitted by the particle along
its path. At time ¢ = 0, the particle is at 0. One second later it is at P
after travcling a distance OF = fc. The front of the clectrumagictic
wave is on the surface of the cone of aperture sin~1(1/nB), which means
that the rays of the corresponding light make an angle 8 = cos-1(1/ng)
with the trajectory of the particle. The intensity of the Cerenkov light
can be calculated semiclassically [see for instance (Ja 62)): for the number
of quantum radiated per unit length with frequency between v and
v + dv one has

2
dn = € ( - _L)‘i" YL
np2) ¢ kc c
In the spectral region between 3,000 and 6,000 A Eq. (2-5.1) thus gives
approximately 750 sin2 8 photons per centimeter. The spectrum is a
continuum.

The light is polarized, with its electric vector pointing in the PQ
direction. The measure of the angle 8 of Cerenkov light may be used to
determine the value of B for the particle. The density effect and the
Cerenkov light are interrelated, both being functions of the dielectric
constant of the medium.

@s.1)

2-6 Ionization in Gases and Semiconductors

A charged particle passing through a gas ionizes it. However, only

. part of the energy goes into ionizing the gas and into imparting kinetic

energy to the electrons. A sizable fraction is spent in exciting the atoms
below the ionization limit, and some of it is then transformed into
detectable scintillation light. The average amount of energy required
per ion formed, is remarkably independent of the charge, mass, and
velocity of the particle producing the ionization, but depends on the
gas in which the ions are formed. There is no simple physical explanation

\
Figure 2-14 Huyghens’ con-
. . c/n
struction for electromagnetic
waves emitted by a moving 8 “~
charged particle. Origin of Ceren- ~
kov radiation. o Be
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