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8-6 SPIN-ORBIT INTERACTION ENERGY AND THE HYDROGEN
ENERGY LEVELS . ‘ _

In the first part of this section we sl':glll ?bta:inoin Ve():)p:;s;ut);xef:; ;}:t: us;u:l-;rnbgi rxsn l,cl; ’
action energy in terms of the potentia unc i the
and j. In the second part we shall explain how the expression Tltsl sed to predict fhe
detailed structure of the energy !eve!s of the hydrosie‘:;rziozi.asmi N 51 cssion for the
Spi:r;frgilstci::s?::lct;(;nmeﬁ:iregli,cggll aﬁgrrel:,tzrr’xdo?t will enter into our discussion of
gﬁclei, since they have very strong spin-orbit' interaction.s.

According to (8-27), the spin-orbit interaction energy is
1 ldV(r) S.L
T omicr dr

AE

To express this in terms of [, 5, and j, we first write
J=L+S8
Taking the dot product of this equality times itself, and employing the fact that
L-S=S8-L, we have
J.J=L-L+S-S+2S-L

So S L=(-J—L-L-S-5)2

or (8-34)

S-L=(2—L*—8Y2

In a quantum state associated with the quantum numbers /, 5, and j, each term on the
right has a fixed value, and S - L has the fixed value

s.L=%2[j(j+1)—l(l+1)—s(s+1)]

Thus

L dv(r)

. ¥ dr

1t should be evident that the spin-orbit energy for the state is the expectation value

of this quantity. (See Appendix J for a detailed justification.) That is, the energy
arising from the spin-orbit interaction is

BE = gz UU+ D =10+ ) = sts + 1] d:r)

where the expectation value (/1) dV(r)/dr is calculated using the potential function
V(r) for the system and the probability density (actually the radial probability density
4rr’R%R,,) for the state of interest. As was indicated earlier, (8-35) gives a conve-
nient expression of an important result.

Now we consider the cnergy levels of the hydrogen atom. In Section 7-5 we ob-
tained the predictions of quantum mechanics for the energy levels of 2 hydrogen
atom in which the spin-orbit interaction is not considered, and found that they are
simply the predictions of the Bohr model. In Example 8-3 we estimated the change
in the energy of a typical one of these levels due to the presence of the spin-orbit
interaction. We found that the energy is shifted up by about one part in 10* if L is
approximately parallel to S (if j =1+ 1/2), and that it is shifted down about that
amount if L is approximately antiparallel to S (if j = | — 1/2). We also saw that there
is obviously no spin-orbit energy shift if L =0 (if j = 1/2).

To obtain quantitative predictions of the hydrogen atom spin-orbit interaction
energy-level shifts from the general expression of (8-35), the potential function is
€quated to the Coulomb potential V(r) = —e*/4ne,r, and then the expectation value
(1/r)dV(r)/dr is calculated using the hydrogen atom eigenfunctions. However, before
these predictions can be compared with experiments, other effects, of comparable im-
portance in the hydrogen atom, must be taken into account. In discussing Sommer-
feld’s relativistic modification of the Bohr model in Section 4-10, we estimated that
the shift in a typical hydrogen atom energy level, due to the relativistic dependence
of mass on velocity, is about one part in 10% So this relativistic effect produces energy
shifts in the hydrogen atom comparable to those produced by the spin-orbit inter-
action, which is really also a relativistic effect but a different one. A complete treat-
ment of all the effects of relativity on the energy levels of the hydrogen atom can be
given only in terms of the Dirac theory. But results which are almost (ie., except for
! = 0 states) complete can be obtained from the Schroedinger theory by adding to
the simple hydrogen energy-level formula both the expectation value of the correc-
tion to the energy due to the spin-orbit interaction and the expectation value of the
correction to the energy due to the dependence of mass on velocity. We shall not do
this for two reasons: (1) it would get us into some fairly lengthy calculations, and
(2) relativistic effects, other than the spin-orbit interaction, are significant only for
hydrogen and a few more atoms of very small atomic number Z. For typical atoms
of medium and large values of Z, and the levels involved in their optical spectra, the
energy associated with these relativistic effects remains of the order of 10~* times
the energy of a level. But we shall see later that the spin-orbit interaction energy
increases very rapidly with increasing Z. The spin-orbit interaction is the only effect
we have considered that is generally important in a typical atom, and we have al-
ready said enough about it here, Therefore, we do no more than present the results

hZ
AE=W[J'U+ D~ + 1) = s(s + 1)]

(8-35)
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of Dirac’s completely relativistic treatment of the hydrogen atom energy levels, which
predicts that the energies are

ue* o? 1 3
-+ — = -
(47ze0)22h2n2[ T (j + 172 4n>] 839

In this equation p stands for the reduced electron mass, u = mM/(m + M), and o is
the fine-structure constant, o = e*/dneohe = 1/137.

If the student will compare these results of the Dirac theory with the resuits of
the Sommerfeld model expressed in (4-27a) and (4-27b), he will see that they are es-
sentially the same. (Both j + 1/2 and n, are integers ranging from 1 to n.) Since the
Sommerfeld model is based on the Bohr model, it is only a very rough approxima-
tion to physical reality. In contrast, the Dirac theory represents an extremely refined
expression of our understanding of physical reality. That these two theories lead to
essentially the same results for the hydrogen atom is a coincidence that caused much
confusion in the 1920s, when the modern quantum theories were being developed.
The coincidence occurs because the errors made by the Sommerfeld model, in ig-
noring the spin-orbit interaction and in using classical mechanics to evaluate the
average energy shift due to the relativistic dependence of mass on velocity, happen
to cancel for the case of the hydrogen atom.

The energy levels of the hydrogen atom, as predicted by Bohr, Sommerfeld, and
Dirac are shown in Figure 8-11. In order to make visible the energy-level splittings,

Bohr Sommerfeld Dirac
e — ng=3_________Jj=521l=2
=3 mli==—=j=32i=12
ng=1 j=1/2,1=0,1
| =2 ng=2 ——mm—— j=3/2,l= 1
ng=1=————j=1/2,1=0,1
b
g L
@ -
&
S -10
Rl mm m e mm =
~15} »
181 x 107" eV
= np=1 j=1/21=0

Figure 8-11 The energy tevels of the hydrogen atom for n =1, 2, 3 according to Bohr,
Spmmerfeld, and Dirac. The displacements of the Sommerfeld and Dirac levels from those
given by Bohr have been exaggerated by a factor of (1/«)? ~ (137)% ~ 1.88 x 10*.

called the fine structure, the shifts of the Sommerfeld and Dirac energy levels from
those given by Bohr have been exaggerated by a factor of (137)* = 1.88 x 10*. Thus
the diagrams would be completely to scale if the value of the fine-structure constant
« were | instead of ~1/137. Not shown on the Dirac energy-level diagram are the
values of the quantum number m;, which specify the orientation in space of the atom,
since its energy is independent of the orientation if there are no external fields. There
is a similar space orientation quantum number in the Sommerfeld model, whose

la
Ha %—Jlu__*_..—%‘——fzﬁmer

Metastable state

n=2,j=1/2( TEXISN 25

102 eV

n=1j=1/2—1——1=0
Ground state :

Figure 8-12 The apparatus of Lamb and Retherford. Molecular hydrogen (H,) entering
oven O is largely dissociated into atomic hydrogen which leaves the oven, passing througn
slits S, S. The arrangement K, A is essentially a vacuum diode, electrons being emitted
from heated cathode K and accelerated toward anode A. As the hydrogen passes through
this region, some atoms collide with the electrons and are excited into the n = 2, / = O state
described in the text. This state is called a metastable state because decay from it to the
ground state (n =1,/ =0) is highly inhibited by the A/ selection rule and because all other
states lie above it exceptthen = 2,1 = 1, j = 1/2 state which, according to the Dirac theory,
has exactly the same energy as the metastable state. The experiment showed, however
that the / = 1 state was in fact about 4.4 ueV below the metastabie state. These levels are
shown below the apparatus.

The metastable atoms pass out of the collision region K, A and are detected by detector
D. Any mechanism which causes these atoms to undergo a transition to the / = 1 state
(transitions to the ground state are forbidden) wilt result in a decreased signal from D,
which is sensitive only to metastable atoms. Such transitions can be induced by passing
the atoms through a region where there is an alternating electric field whose frequency
v is such that hv ~ 4.4 peV, or v ~ 1060 MHz. Such an alternating field is provided by a
waveguide W,W, through whose walls the beam is passed.

To measure exactly the energy difference (Lamb shift) between she metastable (/= 0) and
| = 1states (bothn = 2,j = 1/2), we could in principle merely vary thefrequency v, searching
for a value that maximized transitions from the former to the latter state, thereby
minimizing the signal from D. In practice, the frequency is not easily adjusted and the
levels themselves are adjusted instead by a known amount by means of a magnet MM,
this shifting being due to the Zeeman effect.
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yalues are not shown on the Sommerfeld energy levels, since the quantum number
is of no consequence unless an external field is applied to the atom. Also not shown
are the energy levels of hydrogen measured by optical spectroscopy. They are in very
good agreement with the levels of both Sommerfeld and Dirac.

The only difference between the results of these two treatments is that Dirac, but
not Sommerfeld, predicts that for most levels there is a degeneracy (in additio’n to
the trivial degeneracy with respect to space orientation just mentioned) because the
energy depends on the quantum numbers n and j but not on the quantum number
L Slnce there are generally two values of ! corresponding to the same value of j, the
Dirac theory predicts that most levels are really double. This prediction was verified
experimentally in 1947 by Lamb, who showed that for n = 2 and j = 1/2 there are
two levels, which actually do not quite coincide. The [ = 0 level lies above the I=1
level by about one-tenth the separation between that level and the n =2, j =3/2
{ =1 level. The experiments involved measuring the frequency of photons absorbeci
in transitions between the two levels, using the apparatus shown in Figure 8-12. The
energy separation between these levels is so small that the frequency is in the micro-
wave rgdxo range. Since measurements of radio frequencies can be made very accu-
rately, it is possible to obtain the energy separation to five significant figures. These
very 'accurate measurements of the so-called Lamb shift can be explained with preci-
sion in terms of the theory of quantum electrodynamics, as can the slight departure of
thg spin ¢ factor from 2 mentioned in Section 8-3. We cannot develop this quite so-
pl}lStlcat;d theory here, but we shall discuss it in the following section in connection
with radiation by excited atoms, and in Chapter 17 in connection with the properties
of the elementary particles.

Even with its exaggerated scale, Figure 8-11 cannot show the hyperfine splitting of
the energy levels, which in hydrogen is due to an interaction between the internal
magnetic field produced by the motion of the electron and a spin magnetic dipole
mon}ent of th; nucleus. As nuclear magnetic dipole moments are smaller than elec-
tromc‘magnetlc dipole moments by ~ 1073, the hyperfine splitting is smaller than
the spin-orbit splitting by the same factor. Nevertheless, we shall see later that this
effect can be understood quantitatively in terms of Schroedinger quantum mechanics,
and that it can be used to measure nuclear spins and magnetic moments. In fact,
every aspect of the behavior of a hydrogen atom can be explained in detail by the’
theories of quantum physics!

8-7 TRANSITION RATES AND SELECTION RULES

If hydrogen atoms are excited to their higher energy levels, e.g., in collisions with
energetic elejc'trons in a gas discharge tube, the atoms will in due course spontaneously
ma.ke transitions to successively lower energy levels. In each transition between a
pair of levels, a photon is emitted of frequency equal to the difference in their energies
divided by Planck’s constant. The discrete frequencies emitted in all the transitions
that take place constitute the “lines” of the spectrum, but measurements show that
not al.I conceivable transitions do take place. Photons are observed only with fre-
quencies corresponding to transitions between energy levels whose quantum numbers
satisfy the selection rules:

Al=t1 8-37)
Aj=0, +1 o (8-38)
That is, transitions take place only between levels whose | quantum numbers differ
by one and whose j quantum numbers differ by zero or one. Measurements of the

s.pcctr'a of other one-electron atoms show that these selection rules apply to transi-
tions in all such atoms.

As discussed in Section 4-11, some of the selection rules could be given some justifi-
cation in the old quantum theory by using the correspondence principle to invoke
certain restrictions that apply in the classical limit; but the predictions of this tech-
nique were not reliable. Furthermore, the old quantum theory had nothing at all to
say about atomic transition rates. A transition rate is the probability per second that
an atom in a certain energy level will make a transition to some other energy level.
It is easy to measure a transition rate by measuring the probability per second of
detecting a photon of the corresponding frequency, since this is proportional to the
intensity of the corresponding spectral line. So it should certainly be possible to cal-
culate a transition rate from atomic theory. An impressive feature of the Schroedinger
quantum mechanics is that this can be done with no difficulty, using the atomic
course all the selection rules can be obtained from transition rate

eigenfunctions. Of
ction rule just specifies which transitions have rates so small

calculations, since a sele

that they are not normally observed.
We have already used elementary quantum mechanics, in Example 5-13 and the

discussion following, to develop much of the physical picture that the theory provides
for the emission of photons by excited atoms. According to that example, if the wave
function describing an atom is the wave function associated with a single quantum
state, then the probability density function for the atom will be constant in time. But
if the wave function is a mixture of the wave functions associated with two quantum
states, corresponding to the two energy levels E, and E,, then the probability density
contains terms which oscillate in time at frequency v = (E; — E)/h. Since the atomic
electron can be found at any location where the probability density has an appre-
ciable value, the charge it carries is not confined to a particular location. In effect,
the atom has a charge distribution which is proportional to its probability density.
Thus when the atom is in a mixture of two quantum states its charge distribution
oscillates at precisely the frequency of the photon emitted in the transition between
the states. This is true since the photon carries away the excess energy E, — E;, and
so has frequency v = (E, — E\)/h.

The simplest aspect of the atom’s charge distribution that can be oscillating is the
electric dipole moment. This is the product of the electron charge and the expectation
value of its displacement vector from the essentially fixed massive nucleus. The elec-
tric dipole moment is a measure of the separation of the center of the electron charge
distribution from the nuclear center of the atom. Even in classical physics, a charge
distribution that is constant in time will not emit electromagnetic radiation, while a
charge distribution with an oscillating electric dipole moment emits radiation of fre-
quency equal to the oscillation frequency. In fact, an oscillating electric dipole is the
most efficient radiator.

We can actually use the classical formula for the rate of emission of energy by an
oscillating electric dipole to obtain the important factors in the formula for atomic
transition rates. In Appendix B it is shown that the dipole radiates electromagnetic
energy at the average rate R, where

P (8-39)
T 3¢y b
with p the amplitude of its oscillating electric dipole moment and v the frequency of
oscillation. Since the energy is carried off by photons whose energies are of magni-
tude hv, the rate of emission of photons, R, is*
R 4™
T 3ehc? b (8-40)
This probability per second that a photon is emitted is just equal to the probability
per second that the atom has undergone the transition. Thus R is also the atomic

transition rate.
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Relative to an origin at the essentially fixed nucleus, the electric dipole moment p

of the one-electron atom is defined as
. p=—er (8-41)
where —eis the charge of the electron and r is its position vector from the nucleus
at the origin. To obtain an expression for the amplitude of the oscillating electric
dipole rr?oment of the atom when it is in a mixture of two states, we calculate the
expectation value of p, using the mixed state probability density obtained in Ex-
ample 5-13
YW = T + eI + e BTN o clepy e BB
There is o way, from the present argument, for us to determine precisely what values
of the adjustable consgants ¢, and ¢, should be used to specify how much of the two
quantum states are mixed together. But the results we seek are independent of their
values, as will be seen shortly, so for simplicity we set them both equal to 1. Then
we have
WO = YU+ U+ YT e

where we have r.eplz}ced the labels 2 and 1 by i and f, for initial and final. As this
probability densxty' is not normalized, when we use it to evaluate the expéctation
value of p we obtain only a proportionality, but this will suffice. That is, we have

poc J‘{‘*(—er)‘{‘dr o« J“P*er‘i’dr

or

pec flﬁ}‘erl/qd‘r + -[l//i*en//idr + B Egtih waerxﬁf drv + e~ HE Eieth jtﬁ}‘enﬁdr

where we have sandwiched the term er between the other terms of the integrands to
conform with accepted notation, and where the integrals are three-dimensional. Now
the ﬁ‘rst two integrals on the right are not associated with an oscillating p; in fact
both' integrals yield zero. The last two integrals are each multiplied by comple:x expo-
nentials with a time dependence that oscillates at the frequency v =(1/2n)(E;— E )/h=
(E; — E )/h. These two terms describe oscillations in the electric dipole mlome{u ex-
pgctatlon value, of amplitude which is measured by the magnitude of the integral in
ftlther term. Thus we find that the amplitude of the oscillating electric dipole moment
is proportional to the quantity p;, where

Jl//}‘eﬂ//,-dt

Th1$t quantity is called the matrix element of the electric dipole moment taken between
.the initial a(ld final states. Note that its value depends on the behavior of the atom
in both the initial state, through ¥;, and in the final state, through s}, This is reason-
able because the radiating atom is in a mixture of the two states. Setting the p in
(8-40) proportional to p;, we obtain

Pri = (8-42)

3,2
VP
€ohc®

where R is the transition rate.

We have obtained the factors v3 and p, as well as the constants e;hc’, in the ex-
pression for the transition rate by a partly classical argument. A much more sophisti-
cated argumer_lt whlcl} uses only Schroedinger quantum mechanics {and is based on
the lasF equation c}erlve.d in Appendix K) leads to the same result, except that the
numerical proportionality constant is determined. The result is

1673v3p?,
R = ___._3L (8-43)
3eghe

The same equation can be derived in an even more rigorous manner from the
theory of quantum electrodynamics, which provides an exact treatment of the quan-
tization properties of electromagnetic fields. Although the results are not different,
quantum electrodynamics gives a more complete picture of the emission of photons
by excited atoms. In particular, it explains how the radiating atom gets into the mixed
state. This happens through a kind of resonance interaction between vibrations of
the appropriate frequency, in a surrounding field of electromagnetic radiation, and
an atom in the initial state. The interaction induces the charge oscillations of that
frequency, which are characteristic of the mixed state, and then the atom emits elec-
tromagnetic radiation of the same frequency. The process is indicated schematically
in Figure 8-13.

The emission of photons by atoms, under the influence of the photons that com-
prise an electromagnetic field applied to the atom, is a phenomenon called stimulated
emission. Atoms also emit photons when an electromagnetic field is not applied, in
a phenomenon called spontaneous emission. Quantum electrodynamics shows that -
spontaneous emission takes place because there is always some electromagnetic field
present in the vicinity of an atom, even if a field is not applied! The reason is that
the electromagnetic field has an energy content which is discretely quantized because
the energy, at any particular frequency, is given by the number of photons of that
frequency. Like any other system with discretely quantized energy, the electromag-
netic field has a zero-point energy. The quantum electrodynamics shows that there
will always be some electromagnetic field vibrations present, of whatever frequency
is required to induce the charge oscillations that cause the atom to radiate “spon-
taneously.” We can see that spontaneous and stimulated emission are qualitatively
similar. In spontaneous emission, the electromagnetic field surrounding the atom is
in its zero-point energy state. In stimulated emission an additional field is applied
so that the electromagnetic field surrounding the atom is in a higher energy state.
Then more intense field vibrations of the required frequency are present, and there
is more chance that the atom will be stimulated to radiate.

From this argument, it is apparent that the transition rate for stimulated emission
is proportional to the intensity of the applied electromagnetic field. For intense fields
it becomes very large and the atom radiates very efficiently. This has important prac-
tical consequences in the laser, a device to produce extremely bright beams of coher-
ent light that will be discussed in Chapter t1. In that chapter we shall go more deeply
into the relation between stimulated and spontaneous emission, but here we shall
consider only spontaneous emission.

The transition rate for spontaneous emission, evaluated in (8-43), is independent
of whether or not an external field is applied. It depends only on the proporties of
the atomic eigenfunctions. Since the eigenfunctions are known, the electric dipole
moment matrix elements between various pairs of levels can be obtained by calcu-
lating the value of the associated integral (8-42). Then the rates for transitions be-
tween these levels can be calculated from (8-43).

inducing
photon
— ~———— >
Emitted
O photon
~——a
-
R
Before Duriny After

Figure 813 A schematic iltustration of the emission of a photon by an atom. Electromag-
netic radiation impinging on the atom induces dipole charge oscillations in the atom. Then
the atom emits electromagnetic radiation.

16¢

STNY NOILOT1AS ANV STLVH NOILISNYHL




Chap. 8 MAGNETIC DIPOLE MOMENTS, SPIN, AND TRANSITION RATES 292

It is found that the agreement between the predictions and the measurements is
quite good, even though the transition rates vary appreciably from one case to the
next. For the transition of the hydrogen atom from its first excited state to its ground
state, the transition rate has the value R ~ 10% sec™!. This means that in about 10-8
sec the probability that the transition has occurred is about equal to one. It is said
that the first excited state has a lifetime t = 1/R ~ 1078 sec. Although the v* depen-
dence in (8-43) leads to a range of values of R, the value just quoted is typical of
the orders of magnitude encountered in atomic transition rates—except that the
transition rates between certain pairs of levels are essentially zero. These are the
transitions for which the spectral lines are observed to be absent, or extremely weak.
The transition rates are predicted to be zero in these cases because the integral in the
electric dipole matrix element yields zero. Thus the selection rules are a set of con-
ditions on the quantum numbers of the eigenfunctions of the initial and final energy
levels, such that the electric dipole matrix elements are zero when calculated with a
pair of eigenfunctions whose quantum numbers violate these conditions.

Example 8-6. When a hydrogen atom is placed in a very strong external magnetic field,
the spin-orbit interaction coupling of its orbital angular momentum L to its spin angular mo-
mentum S is overwhelmed, and both vectors precess independently about the direction of the
external field with constant z components L, = m and S, = mgh. That is, m; and m, are good
quantum numbers under these circumstances. Spectrum measurements made on such atoms
show the existence of a selection rule Am; = 0, £ 1. Obtain this section rule by evaluating
the appropriate electric dipole matrix element.

» Written in full, the matrix element is

w n2r

Pri= U ff Y .0,0)ery (r,0,0) sin 0 dr d0 dp
200

The triple integral factors into the product of three single integrals. The one that is interesting,
because it leads to the selection rule, is
2n

I= j OHond{p)dp
0
This is a vector quantity, which has components
2n
Iy= J DHe)xDL{¢) do

0
2z

= J D)y (@) do

0
2n

I,= J @)z} dop
0

If we use the relations

x = rsin § cos ¢

y=rsinfsin ¢

z=rcos @
which can be verified by inspecting Figure 7-2, and also evaluate ®{¢p) and ®F(¢) from (7-19),
we obtain

2
I, =rsin 0[ cos e TN o

0

2n

I,=rsin@ J sin e ™% do

0
2n

I, =rcosf .[ ™ dg
0
Any table of definite integrals will show that the integral in I, equals zero, unless
my, —my, =0 or Am; =0

The integral in I, can be rewritten, to yield
2n

I, = L J [y T e 4 =yt e do
.=
2
0
This definite integral equals zero, unless
m,l—m,!=i1 or Amy= *1

in I,. Therefore, unless Am; =0, or £ 1, there

Since this will also be true of the electric dipole
«

The same result is obtained from the integra
will be no components of I that are not zero.
matrix element, we have obtained the selection rule.

Physically, the selection rules arise because of symmetry properties of the. os(;:}llalt-
ing charge distribution of the atom. The atom cannot rad.latt': llk.c an elect'rlc dipo z
unless the electric dipole moment of its electron charge <'hstr‘1but10n is oscﬂlatmﬁz .
classical analogy is found in a very short gntenna, V{hlcb is center-fed frolnrldlgt
frequency sources of alternating current, as illustrated in Elgure 8-14. If the leads to
the antenna are fed out of phase, so that charge ﬂ.ows into one end.at the samﬁ
time it flows out of the other, the antenna will radiate relatively efficiently. But i

+

To ground 4-‘—— * 4_‘._
To ground _ .

+
|

+

+
+ -
r-fed antennas driven out of phase. Lower diagrams:

i : istributi hown at some initial time.
Driven in phase. Left diagrams: The gharge d|strlbut(oqs are s| : | 0
R/rgl;‘;; diagprams: At half a period later. The antenna driven in phas<_a witl emit very 1|ttlg
radiation if its length is short compared to a wavelength, and if the distance to the groun:

plane is long compared to a wavelength.

:

Figure 8-14 Upper diagrams: Cente
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the leads are fed in phase, so that charge flows into or out of both ends in unison,
the antenna will hardly radiate at all ’

Mathematically, it is the symmetry properties of the eigenfunctions in the matrix
glement that are responsible for the selection rules. Some idea of this can be obtained
in an easy way by considering the parities of the eigenfunctions. In Section 6-8 we
defined the parity of a one-dimensional eigenfunction as the quantity which describes
the behavior of the eigenfunction when the sign of the coordinate is changed. The
definition can be extended immediately to three dimensions. That is, eigenfunctions
satisfying the relation

. V(—x,—y,—2) = +¥(x,y,2) (8-44)
are said to be of even parity, and eigenfunctions satisfying the relation
U(—x,—y,—2) = —(x, y,2) (8-45)

are said to be of odd parity. All eigenfunctions that are bound-state solutions to
time-independent Schroedinger equations for a potential that can be written as V(r),
like the Coulomb potential, have definite parities, either even or odd. The reason
is that the probability densities y*i will then have the same value at the point (—x,
—y,—2) that they have at the point (x,),z), which is a requirement of the fact that
the potential has the same value at these points.

An_ example is found in the one-electron atom eigenfunctions of Table 7-2. To see
thxs3 inspect Figure 8-15, which shows that when the signs of the rectangular co-
ordinates are changed in the parity operation the behavior of the spherical polar
coodinates is

r—7, 8—-n—0, ¢-on+ @ (8-46)
By carrying out these changes on several of the eigenfunctions, it is easy to demon-
strate that

l//nlml(r’n - 01” -+ (P) = (— I)I'//nlm(rﬂsgo) (8'47)
The parity is determined by (~ 1)%; it is even if the orbital angular momentum quantum-
number | is even, and odd if | is odd. This is true for all eigenfunctions, bound or
unbound, of any spherically symmetrical potential V{(r), since the only significant
assumption that is used to obtain (8-47) is that ¥ can be written as V(r).
Now consider the matrix element of the electric dipole moment

Py= Ut//jerw,-d'c

The parity of er is odd since the vector r changes into its negative when the signs of
the rectangular coordinates are changed. Therefore, if the initial and final eigenfunc-
tions ¢; and i/, are of the same parity, both even or both odd, the entire integrand
will be of odd parity. If this is the case the integral will yield zero because the con-
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Figure 8-15 [Hustrating the parity operation.

tribution from any volume element will be cancelled by the contribution from the
diametrically opposite volume element. Then the transition rate will also be zero.
Therefore, the parity of the final eigenfunction must differ from the parity of the initial
eigenfunction in an eléctric dipole transition. Since the parities are determined by
(—1), we can understand why transitions for Al =0, or £2, are not allowed, in
agreement with the Al = + 1 selection rule of (8-37). The reason is that in such transi-
tions the parities of the initial and final eigenfunctions would be the same.

Quantum electrodynamics shows, and experiments verify, that a photon carries
angular momentum as well as linear momentum. In particular, the theory shows that
the angular momentum carried by a photon emitted in an electric dipole transition
is, in units of A, equal to 1. From this point of view, the total angular momentum
quantum number selection rule Aj =0, +1 of (8-38) represents the requirements of
angular momentum conservation, which is fundamentally a symmetry property, by
restricting electric dipole transitions to pairs of states where the change in the total
angular momentum of the atom can be compensated for by the angular momentum
carried by the photon it emits. (When Aj = 0 angular momentum conservation is
satisfied by a change in the orientation in space of the total angular momentum
vector of the atom at the time the photon is emitted.) This point of view also makes
it apparent that Al = +3 electric dipole transitions cannot occur because they would
lead to too large a change in the total angular momentum, even though they would
be all right as far as parity is concerned.

It should be mentioned that selection rules do not absolutely prohibit transitions
that violate them, but only make such transitions very unlikely. If a transition cannot
take place by the normal means of emission of radiation from an oscillating electric
dipole moment, there is a very small probability (typically reduced by a factor of
about 10™%) that it will take place by emission of radiation from an oscillating
magnetic dipole moment. This may occur through oscillations in orientation of elec-
tron spin angular momentum and magnetic dipole moment. Transitions can also
take place with very small probabilities (typically reduced by approximately a factor
of 10~%) by emission of radiation from an oscillating electric quadrupole moment.
This involves oscillations in the electron charge distribution of the atom between an
elongated ellipsoid and a flattened ellipsoid.

If an atom is excited to a state from which it can return to its ground state only
by one of these highly inhibited transitions, it may remain in the excited state for an
appreciable fraction of a second, instead of the lifetime of 108 sec corresponding to
the typical transition rate of 10° sec -1, The excited state is said to be metastable, and
the delayed emission of a photon is a form of phosphorescence. In practice, phos-
phorescence of atoms is rarely observed because the metastable state is deexcited,
without the emission of a photon, when the atom collides with the wall of its container
and gives up its excess energy directly to the atoms of the wall. A process completely
analogous to phosphorescence is commonly observed in nuclei, however.

8-3 A COMPARISON OF THE MODERN AND OLD QUANTUM THEORIES

We shall very briefly summarize the last chapters by making a comparison between
the modern quantum theories (Schroedinger, Dirac, and quantum electrodynamics)
and the old quantum theories (Bohr and Sommerfeld).

One of the most striking aspects of the modern quantum theories is the way they
lead progressively to more and more accurate treatments of the hydrogen atom. The
Schroedinger theory without electron spin accounts for the energy levels of the atom
that are observed in spectroscopic measurements of moderate resolution. Measure-
ments of high resolution reveal the fine-structure splitting of the energy levels. They
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