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CHAPTER IX

HYDROGEN FINE STRUCTURE AND THE DIRAC ELECTRON

Even the hydrogen spectrum, the simplest of all systems, is observed
'?co have a fine structure. At an early date Michelson studied the Balmer
lines with an interferometer and found that both H. and Hy were close
doublets with separations of only 0.14 and 0.08 A, or 0.32 and 0.33 cm™,
respectively. Many subsequent investigations by others have confirmed
these results (see Fig. 9.1).
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F1a. 9.1.—Photographs of the Hq line of both of the hydrogen isotopes H! and H2  (Ajter
Lewtis and Spedding.)

The most informing observations that have been made on hydrogen-
like atoms are those of Paschen! on the singly ionized helium line A4686.
This line (see Fig. 2.8) corresponds to the first member of the so-called
Paschen series of hydrogen. Historically Paschen’s observations were
made and published at a most opportune time, for in the next issue of
the Annalen der Physik Sommerfeld independently predieted just such a
fine structure by an extension of the Bohr atom to include elliptic orbits
and the special theory of relativity.? While the quantum mechanics
gives a more perfect account of the observed fine structure, the develop-
inenlt of the orbital model is interesting in that it leads to the same energy
evels.

9.1. Sommerfeld Relativity Correction.—The extension of Bohr’s
atomic model by Sommerfeld to include elliptic orbits adds no new
energy levels to the hydrogen atom (see Sec. 3.3). For a given total
quantum number n, all elliptic orbits s, p, d, . . . have just the same

1 Pascuen, F., Ann. d. Phys., 50, 901, 1916.
? SOMMERFELD, A., Ann. d. Phys., 61, 1, 1916,
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energy as the Bohr circular orbit with the same n.  This energy in wave
numbers is

w RZ?
v, ©.1)
where R is the Rydberg constant
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# is Planck’s constant, ¢ the velocity of light, m and ¢ the mass and charge
of the electron, and M the mass of the nucleus with charge Ze.

Bohr pointed out in his earliest papers that the relativistic change in
mass of the orbital electron should be taken into account in computing
the energy levels. Introducing elliptic orbits, Sommerfeld applied the

special theory of relativity to the _—_
electron mass. Due to the different ..”"‘ .
A

velocity of the electron in orbits of ‘
the same n but differing azimuthal

quantum number, the mass of the “‘!”““‘Q”"‘
electron and hence the resultant S 7

energy levels are all different. If the
rest mass of the electron is my, its
mass when moving with velocity v is
given by the special theory of rela-

tivity as
A
¢ Fic. 9.2.—Schematic representation of
the precession of an electron orbit due to

As a result of this change in mass, the relativity change in mass of the elec-
which is greatest % perihelion and tron with velocity. (After Sommerfeld.)
greatest for the most elliptic orbits, there is an advance of the perihelion,
or a precession of the electron orbit, similar to that of a penetrating orbit
in the alkali metals (see Fig. 7.4), or to that of the planet Mercury moving
about the sun. This precession is shown schematically in Fig. 9.2
While the derivation of Sommerfeld’s equation for the change in energy
due to this precession is out of place here, we shall find use for it in making
comparisons with the quantum-mechanical results.’ According to the
Sommerfeld theory the term values of hydrogen-like atoms are given by
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1 For a derivation of Sommerfeld’s relativistic fine-structure formula see ‘ Atomie 7

Structure and Spectral Lines,” p. 467, 1923; also A. E. Ruark and H. C. Urey, “Atoms, |
Molecules and Quanta,” p. 132.
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where « is the fine-structure constant

2,4
o? = %562' = 5.30 X 10-5 (9.5)
and
__Mm
L= Fm

For convenience of evaluation, Eq. (9.4) has been expanded by Som-
merfeld into a converging series,

W  RZ? Ra*Z“[n 3]
T=—2 = I3

he = n? nt { k
Ra*ZS 1/n\% = 3/n\® 3/n 5
B )
RabZ[1/n\® = 3/n\* 1713__1_5§2
e SO ORE ORI

15/7n 35
O3]
4o : (9.6)

The first term of this expansion is the same as that derived by Bohr
for circular orbits, neglecting relativity, and gives the major part of the
energy. Withn =1,2,3, - - -, and with Z = 1 for hydrogen, Z = 2
for ionized helium, and Z = 38 for doubly ionized lithium, this term gives
the following values:

TapLe 9.1.—TerM VaLues, NecLEcTING FINE-sTRUCTURE CORRECTIONS

Hydrogen Hydrogen Tonized Doubly
(isotope mass 1) | (isotope mass 2) helium ionized lithium
R = 109677.76 | R = 109707.66 | R = 1097224 | R = 109728.9

Forn =1 109677.76 109707 .56 438889.6 987560.1
2 27419.4 27426.9 109722 .4 246890.0
3 12186.4 12189.7 48765.5 109728.9
4 6854.8 6856.7 27430.6 61722.5
5 4387.1 4388.3 17555.5 39502.4
6 3046.6 3047 .4 12191.3 27432.2
7 2238.3 2238.9 8956.9 20154.4

To each of these values corrections from Eq. (9.6) must be added.
For small values of Z the first term involving Z* and o? is the only one
of importance and the third and succeeding terms may be neglected.
In x-ray spectra, however, Z becomes large for the heavier elements
and terms in o and o must be taken into account (see Chap. XVI).
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The corrections to be added to each of the above given terms are there-
fore given by

_ Ra?Z*(n 3\ _ Ra*Z%(1 3
AT = "n‘*—(Tc - «1) = T(E - Eﬁ) ©.7)
where % is Sommerfeld’s azimuthal quantum number 1, 2, 3, . . . for
s,p,d, . ... Forallallowed values of » and k the correction is positive

and is to be added to the terms in Table 9.1. For either of the two

hydrogen isotopes,
1\/1 3
AT = 5.819(773>(k - Eﬁ)' 9.8)

These corrections are shown graphically in Fig. 9.3. The straight
lines at the top of each of the four diagrams represent the first four terms
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Frc. 9.3.—Fine structure of the hydrogen energy levels, AT, and AT, represent
the relativity and the spin-orbit corrections respectively. The dashed lines represent
Sommerfeld’s relativity corrections.

of hydrogen given by Table 9.1. The shifted levels for each value of
n and k are shown by the dotted lines with the term value increasing
downward. The left-hand side of each diagram has to do with the
spinning-electron picture of the atom and will be taken up in the following
section. For ionized helium and doubly ionized lithium the intervals
given in Fig. 9.3 must be multiplied by 16 and 81, respectively.

9.2. Fine Structure and the Spinning Electron.—With the introduc-
tion of the spinning electron and the quantum mechanics another account
of the hydrogen fine structure has been given. Heisenberg and Jordan*

! He1sENBERG, W., and P. JorpaN, Zeits. f. Phys., 3T, 263, 1926.
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have shown from a quantum-mechanical treatment that Sommerfeld’s
relativity correction for hydrogen-like atoms should be

Ra®Z% 1 3
AT, = i (l-i-_—_% - E)’ 9.9)
where I = 0, 1,2, - - - for s, p, d, - - - electrons. A general compari-

son of all classical with quantum-mechanical results for the same phe-
nomenon shows that the classical values k, k2, and k? may usually, but not
always, be replaced by I + %, I( + 1), and I(l + 3)( + 1), respectively,
to obtain the quantum-mechanical results. Sommerfeld’s relativity
equation is a good example of this; k in Eq. (9.7) replaced by [ + 3 gives
Eq. (9.9).

To the quantum-mechanical relativity correction [Eq. (9.9)] a second
term due to the spin-orbit interaction must be added. This interaction
energy has already been calculated in Sec. 8.6 and shown to be given by
Eq. 8.17):¢
' RatZ4 "7‘:::2 [k g2
M = Zg+ DI+ D 2

Applying the first correction AT, to the hydrogen terms of Table 9.1,
each level n is split into n components as shown at the left of each of the
four diagrams in Fig. 9.3. Applying now the spin-orbit interaction
AT, each of these terms, with the exception of s terms, is split into two
parts just as in the alkali metals. In each case the level withj =14 %
has been shifted up, and the one with j = I — % has been shifted down,
to the nearest Sommerfeld level. In other words levels-with the same
7 values-come together at the older relativity levels k, where & = j + %
The remarkable fact that Sommerfeld’s formula der 1ved from the relatlvn;y
theory alone should give the same result as the newer theory, where both
relativity and spin are taken into account, is a good example of how
two incorrect assumptions can lead to the correct result. While the
number of numerically different energy levels is the same on both theories,
there is an experimental method for showing that the first theory is not
correct and that the latter very probably is correct. This will become
apparent in Sec. 9.4.

Since the newer theory leads to Sommerfeld’s equation, the sum of
Egs. (9.9) and (9.10) should reduce to Eq. (9.7). Since j takes on values
I+ %orl — % only, Eq. (9.10) is split into two equations:

Ra?Z*

(9.10)

. JU— . . — 1

AT, = I+ DCF D for =143 (9.11)
Ra2Z .o

ATy, = —!‘727(7_}_—%) for j=1-3 v(9.12)

1 Equation (9.10) was first derived on the quantum mechanics by W. Helsenberg
and P. Jordan, loc. cit,
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Ih_e;&g.llll_l_fr_@fc,ofihenghL:lland side of each of these equations has been

changed to conform with Fq. (9.9), where a positive sign means.an.
increase in the term value, or a decrease in the emergy. Adding Eq.

19°9)to each of Eqs. (9.11) and (9.12),
Ra*Z ( 1 3

T= & r = T — T ) = 1;
a ATw. + AT l+1 411) for =1+ 2

ne
Ra?Z 3 . 1 (9.13)
AT_ATI&_FAT_T(T_&—H,) for ]:l_ﬁ.

If k& in Sommerfeld’s equation is replaced by I and I + 1, respectively,
these equations will result. If again k is replaced by j + %, which is just
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Fi6. 9.4.—Schematic diagrams of the lines Hy and Hpg, in the Balmer series of hydrogen.

the same as replacing [ + 1 and [ of Eq. (9.13) by j + 3, we obtain the

single equation
AT = M(.J—_ - i) (9.14)

9.3. Observed Hydrogen Fine Structure.—Schematic diagrams of
the theoretical fine structure of the first two lines of the Balmer series
of hydrogen are shown in Fig. 9.4. Applying selection and intensity
rules, both H, and Hg should be composed of two strong components and
T;hree weaker ones. Neither one of these patterns has ever been resolved
into more than two components. The best results to date are those of
Lewis, Spedding, Shane, and Grace, obtained from H?, the behavior of

1Lewis, G. N., and F. H. SreppinG, Phys. Rev., 43, 964, 1933; also SPEDDING
F.H,C. D. SHANE, and N. 8. Gracg, Phys. Rev., 44 58, 1933. .
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the two known hydrogen isotopes. Using Fabry and Perot étalons,
photographs similar to the one shown in the center of Fig. 9.5 have been
obtained. TFor this photograph the first order of a 30-ft. grating mount-
ing (of the Littrow type) was used as the auxiliary dispersion instrument.
Microphotometer curves of both H! and H? are reproduced above and
below each pattern. It is to be noted that the components of H2 are
considerably sharper than 2, and that a third component is beginning to
show up. The broadening is due to the Doppler effect and should be
greater for the lighter isotope.

i
Ha

Fig. 9.5.—Fine structure of H} and HZ from the Balmer series of the two hydrogen
isotopes. Microphotometer curves above and below were made from the interference
patterns in the center. (After Spedding, Shane, and Grace.) :

Theoretical intensities for the fine strueture of hydrogen were first
calculated by Sommerfeld and Unsold! in 1926. Experimentally it is
found that the relative intensities of the two main components, the only
ones resolved, depend largely upon the conditions of excitation. In
some instances the supposedly weaker of the two lines will be the stronger,
as it is in Fig. 9.5.

In going to higher members of the Balmer series the separation of the
two strong components of each member approaches theoretically and
experimentally the separation of the common lower state, 0.364 cm™L.
This interval occurs in each doublet between the fainter of the two strong
lines and the next to the weakest satellite.

9.4. Fine Structure of the Ionized Helium Line 14686.—A better
detailed agreement between observation and theory has been found in the
hydrogen-like spectrum of ionized helium, A microphotometer curve
of the line \4686 is given at the bottom of Fig. 9.6. This line corresponds
with the first line of the Paschen series in hydrogen (see Fig. 2.8). With

1 SOMMERFELD, A., and A, UNsOLp, Zeits. f. Phys., 36, 259, 1926; 38, 237, 1926;
see also SCHRODINGER, E., 4nn. d. Phys., 80, 437, 1926.
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Z =2 :c_he fine-structure separations should be 16 times as great as in
hydrogen [see Eqs. (9.13) and (9.14)]. The predicted fine structure
shown above in Fig. 9.6 was first given by Sommerfeld and Unséld. At
least four and possibly five cf the predicted

: 4 F
components may be said to have been resolved 4 fﬁ 02
by Paschen.! The appearance of certain com- 47Dy 024
47 D3} 073

ponent lines in this pattern, which are not P;,J
allowed on Sommerfeld’s original theory of 4 Pyg}i
hydrogen fine structure, are strong points in
favor of the newer theory of the coincidence
of levels having the same j values. ‘ 3Dsy 057

9.5. The Dirac Electron and the Hydrogen %

em

Atom.—On Dirac’s? theory a single electronin 172

a central force field is specified by a set of gzgyz}

four wave functions ¥u, ¥z, ¥3, and ¥4, in place y2+

of just one as in the case of the Schrodinger He Cal
o ST neBe_ |l ] %

theory. Each of these functions is a solution A R

of a wave equation. Although the setting up

of the equations is out of place here we shall ,//lv\’h/!\%&

accept the solutions arrived at by Darwin
and Gordon?® and show in what way they 4686.1.0987.6.54.3%
correspond %o the earlier theories and, at the  Fic- 9.6.—Diagram of the
R R fine structure of the ionized
same time, get some picture of the new atom helium line A4686. (Ajfter Som-
model. merfeld, Unsold, and Paschen.)
With each wave function ¢, ¥s, ¥s, and ¥4 properly normalized, the
probability density, just as in the case of Schrodinger’s theory (see
Chap. IV), is given by
P = ¥, 9.15)
where

YW = Y+ el Yy + Yl (9.16)

For given values of the azimuthal quantum number [ and the mag-
netic quantum number m (m = u + 3}), there are two sets of solutions
corresponding to 7 = I + % and j =1 — 3, respectively (j equals inner

quantum number).

j-1+1

\Pl = —1M9P;':}_1 'M,-Fz

Yo = —tMPyH - M.Fy 9.17)
1//3=(l+u+1)M0P1i’ - MGy )

V= —(—u) MPH - MG

1 PascuEN, F., Ann. d. Phys., 82, 692, 1926.

2 Dirac, P. A. M., Proc. Roy. Soc., A, 117, 610, 1928; A, 118, 351, 1928; sce also
Darwin, C. G., Prce. Roy. Soc., A, 118, 654, 1928,

8 Gorbon, W., Zeits. f. Phys., 48, 11, 1928,



