Statistics, Curve Fitting, and Parameter Estimation in 8.13 A Practical Approach

Javier M. G. Duarte

Department of Physics MASSACHUSETTS INSTITUTE OF TECHNOLOGY

October 8, 2010

 \rightarrow 3 \pm 5 \rightarrow $2Q$ 重

Javier M. G. Duarte

メミメメ ヨメ

重

 $2Q$

1 [Statistics](#page-2-0)

- 2 [Probability Density Function, Histograms, & Error Bars](#page-4-0)
- 3 χ^2 [Test Statistic](#page-7-0)
- 4 [Minimization Techniques](#page-8-0)
- 5 [Tips & Tricks](#page-10-0)
- 6 [References](#page-11-0)

Javier M. G. Duarte

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ..

 $2Q$

Statistics: Who cares?

- We (as aspiring physicists) do!
- We employ statistics (study of large systems) as a way of making sense of fluctuations in our world (data)
- We use well-defined techniques to quantify measurement, and uncertainty
- Every random variable has some distribution (in theory)
- If we know what the distribution should be, we can peform a *FIT* to the data using the expected curve
- $\blacksquare \Rightarrow$ Extract some important, physical parameters (mean, σ , decay time constant, etc)
- **Most of the time, (Central Limit Theorem) it's a Gaussian**
- **If you're counting something, it's probably a Poisson**¹

```
<sup>1</sup>And Poisson <sup>µ→∞</sup> Gaussian
```
Javier M. G. Duarte

 $2Q$

Javier M. G. Duarte

 QQ

Probability Density Function (PDF)

- A PDF² is a *normalized*, distribution which tells you the probability of a finding your variable in some interval
- Random variable *x* ³ PDF *p*(*x*) then

$$
\text{Prob}(a < x < b) = \int_{a}^{b} p(x) \, dx \tag{1}
$$

 \blacksquare The probability interpretation only makes sense if you must find your variable *somewhere*!

$$
1 = \int_0^\infty p(x) dx
$$
 (2)

²Not Adobe's proprietary portable document format!

³Everything is a random variable! The energy deposited from a scattered photon (in Compton experiment), the number of entries in a specific bin of your MCA, the number of raindrops falling on your r[oof](#page-3-0)!

Javier M. G. Duarte

Histogram = Binned Data

■ Data (number of counts) binned so that *y*-axis denotes number of counts in each bin. $h(x_i)$ is the number of counts in bin x_i

 \rm{v}^2 Test

- "Integral" of data is total number of counts *N*
- Prediction shown as *Np*(*xi*)
- Assumed Poisson distributions for each entry $h(x_i) \Rightarrow$ informs error bar

E K

国 重り

 290

Javier M. G. Duarte

Error Bars

- **E** Fror bars are a tiny representation of the PDF for that data point
- **U** Vertical ones usually denote $\pm 1\sigma$, which characterizes the underlying PDF for that particular data point
- **Horizontal ones usually just indicate bin width (at least in Junior** Lab)
- See Bevington Sections 1.2-1.3

 $\sqrt{2}$ Test

 $2Q$

χ **Test Statistic**

- A χ^2 is a generally accepted variable⁴ which can test the "goodness-of-fit," i.e. agreement between theory and experiment A χ^2 variable is a function of your data (reality), assumed error bars (uncertainty), and the PDF (theory)
- **The definition is**

$$
\chi^2 = \sum_{i=1}^n \left(\frac{h(x_i) - Np(x_i)}{\sigma_i(h)} \right)^2 \tag{3}
$$

If we know that each entry in a bin follows a Poisson process, then we can estimate $\sigma_i(h) = \sqrt{h(x_i)}$

 \blacksquare The expected value is

$$
\langle \chi^2 \rangle = \nu = n - n_c = \text{dof} \tag{4}
$$

K ロ ト K 御 ト K ヨ ト K ヨ ト

where *n* is the number of measurements (bins), *n^c* is the number of parameters

■ See Bevington Section 4.3

Javier M. G. Duarte There are many test statistics, but the one we use. The one we use the one we use the one

■ Also known as method of *steepest descent*

$$
\vec{\nabla}\chi^2 = \sum_{i=1}^n \frac{\partial \chi^2}{\partial a_i} \hat{a}_i
$$
 (5)

■ "Go That Way"

- **Pros: Good at getting close to minimum from far away fast**
- Cons: Not great at finding minimum once it's in the neighborhood
- See Bevington Section 8.4

Javier M. G. Duarte

Levenberg-Marquardt

- Combines Grad Search with "Expansion Method"
- \blacksquare Expansion method finds an approximate analytic description of χ^2 near the minimum and uses this to find min
- Lev-Mar behaves like Grad Search far away from the minimum, then switches to be like the Expansion Method near the minimum
- Lev-Mar is tunable: λ controls the turning point
- See Bevington Sections 8.5-8.6

化重新润滑剂

 $2Q$

Tips & Tricks

- \blacksquare Make sure your errorbar vector $\sin \theta$ does not contain zeros! (easy symptom: $\chi^2 = \infty$)
- Make all of your parameters the same order of magnitude
- Make sure there isn't some physical reason for your PDF not fitting your data, e.g. a constant background offset that your PDF doesn't take into account
- Try using Grad Search first, then use those output parameters as the starting parameters for Lev-Mar with a small λ parameter (more likely to find minimum)
- DON'T BE AFRAID TO LOOK THROUGH THE CODE!
- Remember what physics you're trying to extract: maybe fit to a smaller region-of-interest, e.g. you just want the mean of a Gaussian and don't care about the tail or background rate (subtract it off!)
- If all else fails, talk to me

References

- 1 Bevington, Bevington, Bevington
- 2 Bevington Section 4.3 for χ^2
- 3 Bevington Chapter 8 for methods! Sections 8.4 = Gradient Search, 8.5-8.6 = Levenberg-Marquardt
- 4 For a discussion of alternatives to \sqrt{N} for Poisson errors: http://www-cdf.fnal.gov/physics/statistics/notes/pois_eb.txt

 $\sqrt{2}$ Test

Example

Sum of Many Lorentzians (Mossbauer Experiment) by S. Campbell (my partner) Junior Lab 2008

Javier M. G. Duarte