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THE KINEMATICS OF A HOMOGENEOUSLY

EXPANDING UNIVERSE

INTRODUCTION:

Observational cosmology is of course a rich and complicated subject. It is described
to some degree in Barbara Ryden’s Introduction to Cosmology and in Steven Wein-
berg’s The First Three Minutes, and I will not enlarge on that discussion here. I will
instead concentrate on the basic results of observational cosmology, and on how we can
build a simple mathematical model that incorporates these results. The key properties
of the universe, which we will use to build a mathematical model, are the following:

(1) ISOTROPY

Isotropy means the same in all directions. The nearby region, however, is rather
anisotropic (i.e., looks different in different directions), since it is dominated by the center
of the Virgo supercluster of galaxies, of which our galaxy, the Milky Way, is a part. The
center of this supercluster is in the Virgo cluster, approximately 55 million light-years
from Earth. However, on scales of several hundred million light-years or more, galaxy
counts which were begun by Edwin Hubble in the 1930’s show that the density of galaxies
is very nearly the same in all directions.

The most striking evidence for the isotropy of the universe comes from the observa-
tion of the cosmic microwave background (CMB) radiation, which is interpreted as the
remnant heat from the big bang itself. Physicists have measured the temperature of the
cosmic background radiation in different directions, and have found it to be extremely
uniform. It is just slightly hotter in one direction than in the opposite direction, by about
one part in 1000. Even this small discrepancy, however, can be accounted for by assuming
that the solar system is moving through the cosmic background radiation, at a speed of
about 400 km/s (kilometers/second). Once the effect of this motion is subtracted out,
the resulting temperature pattern is uniform in all directions to an accuracy of a few
parts in 100,000. ∗ Thus, on the very large scales which are probed by the CMB, the
universe is incredibly isotropic, as shown in Fig. 2.1:

∗ P. A. R. Ade et al. (Planck Collaboration), “Planck 2015 results, XIII: Cosmological
parameters,” Table 4, Column 6, arXiv:1502.01589. The Planck collaboration does not
quote a value for ∆T/T , the root-mean-square fractional variation of the CMB tempera-
ture, but it can be computed from their best-fit parameters, yielding ∆T/T = 4.14×10−5.

http://arxiv.org/abs/1502.01589
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Figure 2.1: The cosmic microwave background radiation as detected by
the Planck satellite, from the 2015 data release. After correcting for the
motion of the Earth, the temperature of the radiation is nearly uniform
across the entire sky, with average temperature Tcmb = 2.726 K. Tiny
deviations from the average temperature have been measured; they are so
small that they must be depicted in a color scheme that greatly exaggerates
the differences, to make them visible. As shown here, blue spots are slightly
colder than Tcmb while red spots are slightly warmer than Tcmb, across a
range of ∆T/Tcmb ∼ 10−4 or 10−5.

As an analogy, we can imagine a marble, say about 1 cm across, which is round
to an accuracy of four parts in 100,000. That would make its radius constant to an
accuracy of 2 × 10−7 m = 200 nm. For comparison, the wavelength of my green laser
pointer is 532 nm, so the required accuracy is less than half the wavelength of visible
light. Modern technology can certainly produce surfaces with that degree of accuracy,
but it corresponds to a good quality photographic lens. In short, it is not easy to achieve
spherical symmetry to an accuracy of a few parts in 100,000!

Note that the spherical symmetry stands as strong evidence against the popular
misconception of the big bang as a localized explosion which occurred at some particular
center. If that were the case, then we would expect the radiation to be hotter in the
direction of the center. Thus, the big bang seems to have occurred everywhere. (A
localized explosion could look isotropic if we happened to be living at the center, but
since the time of Copernicus scientists have viewed with suspicion any assumption that
we are at the center of the universe.)

(2) HOMOGENEITY

Homogeneity means the same at all locations. On scales of a few hundred million
light-years and larger, the universe is believed to be homogeneous. The observational
evidence for homogeneity, however, is not nearly as precise as the evidence for isotropy
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seen in the CMB. Our belief that the universe is homogeneous, in fact, is motivated
significantly by our knowledge of its isotropy. It is conceivable that the universe appears
isotropic because all the galaxies are arranged in concentric spheres about us, but such
a picture would be at odds with the Copernican paradigm that has been central to our
picture of the universe for centuries. So we assume instead that the universe is nearly
homogeneous on large scales. That is, we assume that if one observes only large-scale
structure, then the universe would look very much the same from any point.

The relationship between the two properties of homogeneity and isotropy is a little
subtle. Note that a universe could conceivably be homogeneous without being isotropic
— for example, the cosmic background radiation could be hotter in a certain direction, as
seen from any point in space, or perhaps the angular momentum vectors of all the galaxies
could have a prefered direction. Similarly, a universe could conceivably be isotropic (to
one observer) without being homogeneous, if all the matter were arranged on spherical
shells centered on the observer. However, if the universe is to be isotropic to all observers,
then it must also be homogeneous.

The hypothesis of homogeneity can be tested to some degree of accuracy by galaxy
counts. One can estimate the number of galaxies per volume as a function of radial
distance from us, and one finds that it appears roughly independent of distance. This
kind of analysis is hampered, however, by the difficulty in estimating distances. At large
distances it is also hampered by evolution effects — as one looks out in space one is also
looking back in time, and the brightness of a galaxy presumably varies with its age. Since
we can only see galaxies down to some threshold brightness, the number that we see can
depend on how their brightness evolves.

(3) HUBBLE’S LAW

Hubble’s law, enunciated theoretically by Georges Lemâıtre in 1927 and first demon-
strated observationally by Edwin Hubble in 1929, states that all the distant galaxies are
receding from us, with a recession velocity given by

v = Hr . (2.1)

Here

v ≡ recession velocity ,

H ≡ Hubble expansion rate ,

and

r ≡ distance to galaxy .
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For the real universe Hubble’s law is a good approximation, and Hubble’s law will be an
exact property of the mathematical model that we will construct.

The Hubble expansion rate H is often called “the Hubble constant” by astronomers,
but it is constant only in the sense that its value changes very little over the lifetime of
an astronomer. Over the lifetime of the universe, H varies considerably. The present
value of the Hubble expansion rate is denoted by H0, following a standard convention in
cosmology: the present value of any time-dependent quantity is indicated by a subscript
“0”. Some authors, including Barbara Ryden, reserve the phrase “Hubble constant” for
H0, and refer to the time-dependent H(t) as the “Hubble parameter.” To me this is not
much of an improvement, since in physics the word “parameter” is most often used to
refer to a constant. I will call it the Hubble expansion rate, a terminology that is used
by some other sources, including the Particle Data Group∗.

For decades, the numerical value of H0 proved difficult to determine, because of the
difficulty in measuring distances. During the 1960s, 70s, and 80s, the Hubble expansion
rate was merely known to lie somewhere in the range of

H0 =
0.5− 1.0

1010 years
. (2.2)

Note that H0 has the units of 1/time, so that when
it is multiplied by a distance it produces a velocity.
However, since we rarely in practice talk about veloci-
ties in units of such and such a distance per year, H0

is often quoted in a mixed set of units — for exam-
ple, 1/(1010 yr) corresponds to about 30 km/s per mil-
lion light-years. Astronomers usually quote distances
in parsecs rather than light-years, where one parsec
is the distance which corresponds to a parallax of 1
second of arc between the Earth and the Sun, when
they are separated by their nominal average distance
of 1 au (astronomical unit, 149.597870700 × 109 m),

Figure 2.2

as illustrated at the right. One parsec (abbreviated pc) corresponds to 3.2616 light-years.†
Astronomers usually quote the value of the Hubble expansion rate in units of km/s per

∗ Astrophysical Constants and Parameters, the Particle Data Group,
http://pdg.lbl.gov/2015/reviews/rpp2015-rev-astrophysical-constants.pdf
† One drawback in using light-years is that the definition is tied to that of a year, and

the International (SI) System of Units does not specify the definition of a year. This is
a significant ambiguity, because the tropical year (vernal equinox to vernal equinox) and
the sidereal year (full revolution about the Sun, relative to the fixed stars) differ by a

http://pdg.lbl.gov/2015/reviews/rpp2015-rev-astrophysical-constants.pdf
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megaparsec, where 1 megaparsec (Mpc) is a million parsecs. The value of 1/(1010 yr)
is equivalent to 97.8 km-s−1-Mpc−1, so the range of Eq. (2.2) corresponds roughly to a
Hubble expansion rate between 50 and 100 km-s−1-Mpc−1. For convenience, astronomers
also define the dimensionless quantity h0 by

H0 ≡ h0 × (100 km-s−1-Mpc−1) . (2.3)

The range of Eq. (2.2) translates into a value of h0 between 1
2 and 1.

While the actual value of the Hubble expansion rate certainly changes very little over
the lifetime of an astronomer, the same cannot be said for its measured value. Recent
precision measurements of the faint anisotropies in the cosmic microwave background
radiation, using instruments on the Planck satellite, enabled cosmologists to determine∗

H0 = 67.66± 0.42 km-s−1-Mpc−1 , (2.4)

which corresponds to a time-scale H−10 = 14.4 ± 0.1 billion years.† The uncertainty of
±0.42 km-s−1-Mpc−1 in Eq. (2.4), and all uncertainties in H0 in the following discussion,
are given as “1 σ” (one standard deviation) errors. Statistically one expects the correct
value to lie inside the uncertainty range 68% of the time, and outside it 32% of the time.

When Hubble first measured the expansion rate, however, he found a value much
larger than the value in Eq. (2.4). Due to a very bad estimate of the distance scale,
he found H0 ∼ 500 km-s−1-Mpc−1, corresponding to H−10 ∼ 2 billion years. Hubble’s

original published graph is reproduced here as Fig. 2.3‡:

fractional amount of about 4× 10−5. Both drift slowly with time due to changes in the
Earth’s orbit, and neither agrees with other conventions, such as the Julian or Gregorian
years. The International Astronomical Union (IAU), however, does specify the meaning
of a year, defining it as a Julian year, exactly 365.25 days (http://www.iau.org/science/
publications/proceedings_rules/units/). The day is 24× 60× 60 seconds, and the second
is defined by atomic standards.
∗ N. Aghanim et al. (Planck Collaboration), “Planck 2018 results, VI: Cosmological

parameters,” Table 2, Column 6, arXiv:1807.06209.
† It may not be obvious why measurements of the anisotropies in the CMB should

be related in any way to H0, but cosmologists have developed a detailed theory of how
these anisotropies were generated and how they have evolved, which we will pursue later
in the course when we discuss inflation. By fitting the predictions of this theory with the
observed anisotropies, it is possible to determine the values of a wide range of cosmological
parameters, including H0.
‡ Edwin Hubble, “A Relation Between Distance and Radial Velocity Among Extra-

galactic Nebulae,” Proceedings of the National Academy of Science, vol. 15, pp. 168-173
(1929), http://www.pnas.org/gca?gca=pnas;15/3/168.

http://www.iau.org/science/publications/proceedings_rules/units/
http://www.iau.org/science/publications/proceedings_rules/units/
https://arxiv.org/abs/1807.06209
http://www.pnas.org/gca?gca=pnas;15/3/168
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Figure 2.3: Edwin Hubble’s original data, published in 1929, which intro-
duced the first observational evidence for Hubble’s law and the expansion
of the universe.

The horizontal axis in Fig. 2.3 shows the estimated distance to the galaxies, and the

vertical axis shows the recession velocity, corrected for the motion of the Sun, in kilometers

per second (although it is labeled “km”). Each black dot represents a galaxy, and the

solid line shows the best fit to these points. Each open circle represents a group of these

galaxies, selected by their proximity in direction and distance; the broken line is the

best fit to these points. The cross shows a statistical analysis of 22 galaxies for which

individual distance measurements were not available. The evidence for a straight line is

not completely convincing, but we must keep in mind that this was only the first paper

on the subject. All the galaxies in Hubble’s original sample were in fact quite close, so

the local velocity perturbations were comparable to the Hubble velocities. Note that

1000 km/s, at the top of Hubble’s graph, corresponds to z ≈ 0.03, while modern tests of

Hubble’s law extend out to values of z of order 1. Hubble estimated the velocity of the

Sun, relative to the mean motion of the galaxies in the sample, to be about 280 km/s, so

the solar motion was a significant correction to the data.

After Hubble’s original paper, the evidence for the linearity of Hubble’s law improved

very quickly. In 1931, Hubble and Humason published data that extended to much larger

redshift:
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Figure 2.4: Data published by Edwin Hubble and Milton Humason in
1931*, extending Hubble’s original measurements to significantly greater
distances.

The data from the first paper are shown as dots in the lower left corner, all with velocities
less than 1000 km/s. The new value for H0 was 560 km-s−1-Mpc−1.

As we will see later, a value of the Hubble expansion rate as large as 500 or 560
km-s−1-Mpc−1 would imply a very small age for the universe, and the inconsistency of
this age with other estimates was a serious problem for big bang theorists for much of
the 20th century. It was not until 1958 that the measured value came within the range of
Eq. (2.2), primarily due to the work of Walter Baade and Allan Sandage. Summaries of

these early measurements may be found in Kragh†, Tamman and Reindl‡, and Kirshner¶.

* Edwin Hubble and Milton L. Humason, “The velocity-distance relation among
extra-galactic nebulae,” Astrophysical Journal, vol. 74, pp. 43–80 (1931), http://
adsabs.harvard.edu/abs/1931ApJ....74...43H.
† Helge Kragh, Cosmology and Controversy: The Historical Development of Two The-

ories of the Universe (Princeton: Princeton University Press, 1996).
‡ G. A. Tammann and B. Reindl, in the proceedings of the XXXVIIth Moriond Astro-

physics Meeting, The Cosmological Model, Les Arcs, France, March 16-23, 2002. Avail-
able at http://arXiv.org/abs/astro-ph/0208176.
¶ R. P. Kirshner, “Hubble’s diagram and cosmic expansion,“ Proceedings of

the National Academy of Sciences USA, vol. 101, no. 1, pp. 8-13 (2004),
http://www.pnas.org/content/101/1/8.

http://adsabs.harvard.edu/abs/1931ApJ....74...43H
http://adsabs.harvard.edu/abs/1931ApJ....74...43H
http://arXiv.org/abs/astro-ph/0208176
http://www.pnas.org/content/101/1/8
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Figure 2.5: An extension of the Hubble diagram, showing observations
up to 2002 of Type 1a supernovae. Error bars correspond to uncertainties
in determining distances to each object. The small red box near the origin
indicates the range covered in Hubble’s original plot.

The situation improved dramatically during the 1990s, largely due to the ability of
the Hubble Space Telescope to resolve Cepheid variable stars in a number of galaxies
besides our own. Cepheids are variable stars, pulsing in a regular pattern, typically over
a period of days. The period of the pulsations is a very good indicator of the star’s
intrinsic brightness — the brighter the star, the longer its period. By comparing the
intrinsic brightness and the observed brightness of these stars, astronomers can estimate
the distance, making Cepheids an invaluable tool for studying the relationship between
distance and redshift. In addition to the Cepheids, supernovae of a type called 1a also
began to play a major role in measurements of the Hubble constant. Type 1a super-
novae explode once and then fade from view, unlike the periodic cycles of Cepheid stars.
Nonetheless, the so-called “light-curves” from these supernovae — the way their bright-
ness rises sharply to a peak and then falls over characteristic time-scales — can likewise
be related quantitatively to their intrinsic brightness. Fig. 2.5 shows a more modern
Hubble diagram, displaying measurements of Type 1a supernovae, all measured before
2002.

In 2001 the Hubble Key Project Team announced its final result,∗ H0 = 72± 8 km-
s−1-Mpc−1, a considerable improvement over the large uncertainty expressed in Eq. (2.2).

∗ W. L. Freedman et al., “Final results from the Hubble Space Telescope Key Project
to measure the Hubble Constant,” Astrophysical Journal, vol. 553, pp. 47–72 (2001),
http://arXiv.org/abs/astro-ph/0012376.

http://arXiv.org/abs/astro-ph/0012376
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The Tammann and Sandage group∗ still advocated a slightly lower value, H0 = 60 km-
s−1-Mpc−1, “with a systematic error of probably less than 10%,” but the difference
between this number and the Hubble Key Project number is rather small.

Soon after that, astronomers reported new measurements of H0 based on a com-
plementary method. In February 2003 astronomers using the Wilkinson Microwave
Anisotropy Probe (WMAP), a satellite dedicated to measuring the faint anisotropies

in the cosmic background radiation, released an analysis of their first year of data.† By
combining their data with several other experiments, they found the most precise value
of H0 that had yet been announced: 71± 4 km-s−1-Mpc−1. Since 2003 a number of new

measurements have been announced, including WMAP measurements with 5 years,‡ 7

years,¶ and then 9 years§ of data, as well an estimate based on the higher resolution
data from the Planck satellite, with data releases in 2013,♣ 2015,♦ and 2018.♥

Estimates based on CMB measurements, especially the most recent Planck re-
sults, have found values for H0 a little lower than estimates based on more astronom-
ical methods, such as the 2018 measurement by Riess et al.♠, who used Cepheid vari-
ables and supernovae of type Ia to recalibrate the cosmic distance scale, finding a value
H0 = 73.52 ± 1.62 km-s−1-Mpc−1. The discrepancy between this value and the Planck

∗ G. A. Tammann, B. Reindl, F. Thim, A. Saha, and A. Sandage, in A New Era in
Cosmology (Astronomical Society of the Pacific Conference Proceedings, Vol. 283), eds.
T. Shanks and N. Metcalfe, http://arXiv.org/abs/astro-ph/0112489.
† D. N. Spergel et al., “First year Wilkinson Microwave Anisotropy Probe (WMAP)

observations: Determination of cosmological parameters,” Astrophysical Journal Supple-
ment, vol. 148, pp. 175–194 (2003), http://arXiv.org/abs/astro-ph/0302209.
‡ E. Komatsu et al., “Five-year Wilkinson Microwave Anisotropy Probe observations:

cosmological interpretation,” Astrophysical Journal Supplement, vol. 180, pp. 330-376
(2009), Table 1, Column 6, http://arXiv.org/abs/arXiv:0803.0547.
¶ E. Komatsu et al., “Seven-year Wilkinson Microwave Anisotropy Probe (WMAP)

observations: Cosmological interpretation,” Astrophysical Journal Supplement, vol. 192,
article 18 (2011), Table 1, Column 6, http://arXiv.org/abs/1001.4538.
§ G. Hinshaw et al., “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP)

Observations: Cosmological parameter results,” http://arXiv.org/abs/1212.5226, Table
3, Column 5.
♣ Planck Collaboration: P. A. R. Ade et al., “Planck 2013 results. XVI. Cosmological

parameters,” Table 2, Column 7, http://arXiv.org/abs/1303.5076.
♦ Planck 2015 results, XIII, op. cit.
♥ Planck 2018 results, VI, op. cit.
♠ A. G. Riess et al. (SH0ES Collaboration), “Milky Way Cepheid Standards for Mea-

suring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble
Constant,” Astrophys. J. 861, 126 (2018), arXiv:1804.10655 [astro-ph.CO].

http://arXiv.org/abs/astro-ph/0112489
http://arXiv.org/abs/astro-ph/0302209
http://arXiv.org/abs/arXiv:0803.0547
http://arXiv.org/abs/1001.4538
http://arXiv.org/abs/1212.5226
http://arXiv.org/abs/1303.5076
https://arxiv.org/abs/1804.10655
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value of Eq. (2.4) is at the level of 3.5 σ, which means that if there are no systematic
errors that are being overlooked, the probability that the two results should differ by this
much is only about 1 in 2000. The discrepancy might nonetheless be a statistical fluke,
or it could be due to some unknown systematic error. If neither of these is the case, it
would seem to indicate that the contents of the universe include some new ingredient
that is currently unknown.

These and a number of other measurements of the Hubble constant are listed in
Table 2.1.¶

THE HOMOGENEOUSLY EXPANDING UNIVERSE:

Given the statements about isotropy, homogeneity, and Hubble’s law described
above, our task now is to build a mathematical model that incorporates these ideas.

In the real universe, of course, the properties of isotropy, homogeneity, and Hubble’s
law hold only approximately, and only if the complicated structure that exists on length
scales less than a few hundred million light-years is ignored. For a first approximation,
however, it is useful to construct a mathematical model describing an idealized universe
in which these properties hold exactly.

¶ References that have not already been given are Georges Lemâıtre, “Un Univers
homogène de masse constante et de rayon croissant, rendant compte de la vitesse ra-
diale des nébuleuses extra-galactiques,” Annales de la Société Scientifique de Bruxelles,
vol. A47, pp. 49-59 (1927) [Translated into English as “A homogeneous universe of con-
stant mass and increasing radius accounting for the radial velocity of extra-galactic neb-
ulae,” Monthly Notices of the Royal Astronomical Society, vol. 91, pp. 483-490 (1931)];
W. Baade, I.A.U. Trans. VIII (Cambridge Univ. Press), p. 397 (quoted by Tammann
and Reindl (2002), op. cit.); A. Sandage, “Current problems in the extragalactic distance
scale,” Astrophysical Journal, vol. 127, pp. 513–526 (1958), http://adsabs.harvard.edu/
abs/1958ApJ...127..513S; G. de Vaucouleurs and G. Bollinger, “The extragalactic dis-
tance scale. VII - The velocity-distance relations in different directions and the Hub-
ble ratio within and without the local supercluster,” Astrophysical Journal, Part 1,
vol. 233, pp. 433-452, http://adsabs.harvard.edu/abs/1979ApJ...233..433D; A. G. Riess,
W. H. Press, and R. P. Kirshner, “A precise distance indicator: Type 1a supernova
multicolor light-curve shapes,” Astrophysical Journal, vol. 473, pp. 88-109 (1996),
http://arxiv.org/abs/astro-ph/9604143; A. G Riess et al., “A 3% solution: Determina-
tion of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3,”
Astrophysical Journal, vol. 730, 119 (2011), http://arXiv.org/abs/1103.2976.; A. G. Riess
et al. (SH0ES Collaboration), “A 2.4% Determination of the Local Value of the Hubble
Constant,” http://arxiv.org/abs/1604.01424 [astro-ph.CO]; J. N. Grieb et al. (BOSS
Collaboration), “The clustering of galaxies in the completed SDSS-III Baryon Oscillation
Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final
sample,” Mon. Not. Roy. Astron. Soc. 467, 2085-2112 (2017); S. Birrer et al. (H0LiCOW
collaboration), “H0LiCOW-IX: Cosmographic analysis of the doubly imaged quasar SDSS
1206+4332 and a new measurement of the Hubble constant,” arXiv:1809.01274 [astro-
ph.CO].

http://adsabs.harvard.edu/abs/1958ApJ...127..513S
http://adsabs.harvard.edu/abs/1958ApJ...127..513S
http://adsabs.harvard.edu/abs/1979ApJ...233..433D
http://arxiv.org/abs/astro-ph/9604143
http://arXiv.org/abs/1103.2976.
http://arxiv.org/abs/1604.01424
https://arxiv.org/abs/1809.01274
https://arxiv.org/abs/1809.01274
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Measurements of the Hubble Constant H0

Author Date Value (km-s−1-Mpc−1)

Lemâıtre 1927 575 – 625

Hubble 1929 500

Hubble & Humason 1931 560

Baade 1952 250

Sandage 1958
75, with a possible uncertainty

of a factor of 2

de Vaucouleurs & Bollinger 1979 100± 10

Riess et al. (SN 1a & cepheids) 1996 65± 6

Hubble Key Project 2001 72± 8

Tammann, Sandage, et al. 2001 60± probably less than 10%

WMAP 1-year (with other data) 2003 71± 4

WMAP 5-year (with other data) 2008 70.5± 1.3

WMAP 7-year (with other data) 2011 70.2± 1.4

Riess et al. (SN 1a & cepheids) 2011 73.8± 2.4

WMAP 9-year (with other data) 2012 69.3± 0.8

Planck 2013 (with other data) 2013 67.3± 1.2

Planck 2015 (with other data) 2015 67.7± 0.5

Riess et al. (SH0ES collaboration, SN Ia & cepheids) 2016 73.2± 1.7

Grieb et al. (BOSS collaboration) 2016 67.6± 0.7

Riess et al. (SH0ES collaboration, SN Ia & cepheids) 2018 73.5± 1.6

Planck 2018 (with other data) 2018 67.7± 0.4

Birrer et al. (H0LiCOW collaboration,
gravitationally lensed quasars)

2018 72.5± 2.2

Table 2.1

At first thought, one might think that the concept of homogeneity is inconsistent
with Hubble’s law — if the universe is expanding, there must be a unique point which
is at rest. This argument would be valid if there were some physical way of telling if
an object is at rest. However, the basic principle of the theory of relativity asserts that
all inertial reference frames are equivalent, and that any reference frame traveling at a
uniform velocity with respect to an inertial reference frame is also an inertial reference
frame. For example, if a train moves at a constant speed in a fixed direction, then
observers on the train would observe exactly the same laws of physics as observers on the
ground. The viewpoint of observers on the train, for whom the ground is moving and the
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table in the dining car is at rest, is just as “real” as the viewpoint of observers on the
ground. Thus, there is no meaning to being absolutely at rest. While special relativity
dates from 1905, the basic principle that all inertial frames are equivalent was emphasized
by Galileo as early as 1632 in his Dialogue Concerning the Two Chief World Systems.
The concept was crucial to Galileo’s view of the solar system, because it explained why we
do not feel the huge velocities (∼30,000 m/s ≈ 65,000 mph) associated with the rotation
of the Earth and its motion around the Sun. (The principle that all inertial frames are
equivalent was temporarily abandoned, however, in the 19th century, when the ether was
introduced in the description of electromagnetism.)

To see how Hubble’s law is consistent with homogeneity, it is easiest to begin with a
one dimensional example. To this end, we will borrow a diagram from Steven Weinberg’s
book, The First Three Minutes, shown in Fig. 2.6

Figure 2.6: Hubble’s Law is compatible with homogeneity in space. Each
observer can consider herself at rest, and will observe other points moving
away from her at speeds proportional to their distance from her.

This diagram shows a row of evenly spaced points. In the top part, the point A is
shown in the center, with points B and C to the right, and Z and Y to the left. The
picture is drawn from the point of view of an observer at A, so A is at rest in this reference
frame. The observer at A sees a pattern of motion dictated by Hubble’s law, which means
that B and Z are each receding at some speed v, and C and Y are each receding at 2v.
(For now let us assume that v � c, so we need not worry yet about any of the peculiar
effects associated with special relativity.) In this picture it looks as if A is special because
it alone is at rest, and the picture is therefore not homogeneous. However, the lower
portion the picture is shown from the point of view of an observer at B. The picture is
shown in the rest frame of B, and so of course B is at rest. Each velocity in this picture
is obtained from the velocity in the picture above by adding a velocity v to the left. One
can see that an observer at B can also regard himself as the center of the motion, and he
also sees a pattern of motion consistent with Hubble’s law.

It is significantly harder to visualize this picture in three dimensions, so it is useful
to introduce some mathematical machinery. The concept of a homogeneously expanding
universe can be described most simply by using the analogy of a roadmap. A roadmap
is of course much smaller than the area that it describes, but the distances are related
by the scaling that is usually indicated in one of the corners of the map. It might read,
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for example, “1 inch = 7 miles.” If some sorcerer somehow caused the entire region to
uniformly double in size, we would be shocked, but we would not have to throw away
the map. Instead we could just cross out the statement “1 inch = 7 miles” and replace
it with “1 inch = 14 miles.”

While it is not likely that we will meet such a sorcerer, the universe is to a good
approximation expanding uniformly, and we can use the same map trick to describe it.
Even though the universe is expanding, we can represent it by a map that does not
change with time. The universe is three-dimensional, so the map takes the form of a
three-dimensional coordinate system, with coordinates x, y, and z. The coordinate axes
can be marked off in arbitrary units, which I will call “notches.” We could measure the
map in ordinary distance units, like centimeters, and in fact most cosmology textbooks
do that. But by inventing a new unit, we can emphasize that distances on the map have
no fixed relation to the physical distances between the actual objects that are pictured
on the map. By using notches, we give ourselves an extra dimensional check on our
calculations. If we keep track of our units and the answer is given in notches, then we
will know that we calculated a map distance, and not the physical distance between real
objects.

As time progresses, the expansion of the universe can be described by changing the
relation between physical distances and the notch. At one time a notch might correspond
to a million light-years, and at a later time it might correspond to one and a half million
light-years. A coordinate system that expands with the universe in this way is called a
comoving coordinate system. The expansion of a part of the universe, with the comoving
coordinate system shown, could be depicted as in Fig. 2.7:

=⇒ =⇒

Figure 2.7: By employing “comoving coordinates,“ a single map can rep-
resent the locations of objects in an expanding universe. Distances between
objects on the map are measured in “notches,” while the relation between
notches and physical units (such as centimeters or light-years) changes over
time.
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Objects that are moving with the Hubble expansion are at rest in these coordinates,
and the motion is described entirely by the scale factor a(t), which gives the physical
distance that corresponds to one notch at any time t. The scale factor a(t) might be
measured, for example, in units such as m/notch. The physical distance between any two
points at any given time is then given by

`p(t) = a(t)`c . (2.5)

Here `c denotes the coordinate distance between the two objects (such as the galaxies
depicted in Fig. 2.7). It is measured in notches and is independent of time. `p denotes the
physical distance, which is measured in meters and increases with time as the universe
expands.

(Note that the diagrams in Fig. 2.7 show that the distances between galaxies are
growing uniformly, while the galaxies themselves are not expanding. Inside each galaxy
the gravitational pull of the mass concentration has caused the expansion to halt. For
now, however, we are interested only the properties of the universe that are seen when
averaging over large regions with many galaxies, so the details of what happens inside
these galaxies are not important.)

Since special relativity tells us that moving rulers contract in the direction of motion,
the concept of “physical distance” needs to be carefully defined. Should the distance
between us and a distant galaxy be measured with rulers at rest relative to us, or with
rulers at rest relative to the distant galaxy? Neither of these choices is good, since either
choice would require rulers on one end or the other that are moving at high speed relative
to the matter around them. The relativistic contraction would distort the distances, so
that the average separation between galaxies would appear to vary with the distance from
the observer.

To avoid this problem, cosmologists use the concept of “comoving” rulers — rulers
which move with the nearby matter. To define the physical distance between us and a
far-away galaxy, one imagines marking off a line between us and the galaxy with closely
spaced grid marks. The distance between each two grid marks is then measured with
a ruler that is at rest with respect to the matter in the region between the two grid
marks, and the distance between us and the galaxy is defined by adding the distances so
measured. This is how the quantity `p(t) in Eq. (2.5) is defined. Distance defined in this
way is called the proper distance. We will also refer to `p(t) as the physical distance, in
contrast with the (comoving) coordinate distance `c.

We are now in a position to see how the homogeneous expansion implied by Eq. (2.5)
leads directly to Hubble’s law. To see this, one simply differentiates Eq. (2.5) in order to
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find the velocity. If `p denotes the distance between a particular distant galaxy and us,
then the recession velocity of that galaxy is given by

v =
d`p
dt

=
da

dt
`c =

[
1

a(t)

da(t)

dt

]
a(t)`c . (2.6)

Note that this can be rewritten as

v =
d`p
dt

= H`p , (2.7)

where H(t) is given by

H(t) =
1

a(t)

da(t)

dt
. (2.8)

By comparing Eqs. (2.7) and (2.1), we see that the assumption of uniform expansion has
led immediately to Hubble’s law. Even better, in Eq. (2.8) we have derived an expression
for the Hubble expansion rate, H(t).

MOTION OF LIGHT RAYS:

To understand observations in a universe described by a comoving coordinate system,
we will need to be able to trace the path of light rays through it. The rule is very simple:
light travels in a straight line, with a speed that would be measured by each local observer,
as the light ray passes, at the standard value c = 299, 792, 458 m/s. The key point is
that the speed is fixed in the physical units, such as m/s, while the coordinate system is
marked off in notches. Thus, at any given time one must use the conversion factor a(t)
to convert from meters to notches, in order to find the speed of a light pulse in comoving
coordinates.

Consider, for simplicity, a light pulse moving along the x-axis. If the speed of light in
m/s is c, and the number of meters per notch is given by a(t), then the speed in notches
per second is given by c/a(t):

dx

dt
=

c

a(t)
. (2.9)

To check our units, we can use square brackets [A] to denote the units of some quantity
A. Then [

c

a(t)

]
=

m/s

m/notch
=

notch

s
, (2.10)

which gives the right units for dx/dt, since x is a coordinate measured in notches.
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Since we have not studied general relativity, the reader might well be leery that
the subtleties of spacetime might somehow lead to a flaw in this argument. Eq. (2.9),
however, is in fact rigorously correct in general relativity. It can be derived in the context
of hypothetical point particles that travel at the speed of light, as we argued here, or one
can incorporate Maxwell’s equations into general relativity, and then calculate the speed
of electromagnetic waves.

THE SYNCHRONIZATION OF CLOCKS:

One of the key ideas discussed earlier in the context of special relativity was the
notion that simultaneity is a frame-dependent concept — two clocks which appear syn-
chronized to one observer will appear to be unsynchronized to an observer in relative
motion. Thus, when we speak of a(t) as a single function which characterizes the entire
universe, we should ask ourselves how we will synchronize the clocks on which t will be
measured.

The answer turns out to be simple, although a little subtle. Imagine that we are
living in this idealized universe, so we can measure the expansion function a as a function
of our own clock time, using our own choice of a notch. Similarly, we can imagine another
civilization of creatures living in the galaxy M81, who measure a according to their own
clocks, with their choice of a notch. We will assume that communication is possible, but
time signals alone are not sufficient to synchronize clocks, since the signals travel with at
most the speed of light, and the distance from the Earth to M81 is time-dependent and
initially unknown. Thus, if we receive a signal from M81 saying that “this signal was
sent at t = 0,” we would have no way of knowing how much time had elapsed since the
signal was sent. So, is it possible for the M81 creatures and us to agree on a definition of
time and on the scale factor a(t)?

Common units for distance and time can in principle be established by using atomic
standards, in the same way as we do on Earth — time can be defined in terms of a
sharply defined atomic frequency, and distance can be defined in terms of how far light
can travel in a unit of time. But one must still ask how the clocks are to be synchronized.
One might think that one could synchronize the clocks by fixing the zero of time to be
the instant when the scale factor a reaches a certain value, but this plan is complicated
by the fact that it requires the creatures on M81 to understand not only what we mean
by meters and seconds, but also what we mean by notches. Since the physical distance
corresponding to a notch is time-dependent, we cannot communicate its definition until
we have found a way to synchronize clocks.

The idea then is to find some physically measurable quantity and use its time de-
pendence to synchronize clocks. One choice is the Hubble expansion rate H(t). In prin-
ciple, we and the M81 creatures could synchronize our clocks by setting them all to zero
when H(t) reaches some prescribed value. Alternatively, the temperature of the cosmic
microwave background radiation could be used, resulting in the same synchronization.



THE KINEMATICS OF A HOMOGENEOUSLY EXPANDING UNIVERSE p. 17

8.286 LECTURE NOTES 2, FALL 2018

(Note that the assumption of homogeneity implies that the relationship between H(t)
and the microwave background temperature T (t) must be the same at all points in the
universe.) Time defined in this way is called cosmic time, and it is this definition of time
that will be used for the rest of this course, unless otherwise specified.

Once we agree with the M81 creatures on how to synchronize our clocks, we can also
fix a definition of the notch by fixing its value in atomic units at the time of synchroniza-
tion. They and we can then independently measure the scale factor a(t) for all future
times. Will we get the same value? By the assumption of homogeneity, of course we will
— otherwise there would have to be some real distinction between the way the universe
appears to them and the way it appears to us.

If one is looking for subtle problems, one might ask what would happen in a universe
in which H(t) just happens to be a constant (independent of time), and in which there is
no microwave background radiation. A spacetime of this type was first studied in 1917
by the Dutch astronomer Willem de Sitter, and is called de Sitter space. The definition
of cosmic time given above does not make sense in de Sitter space, and it turns out
that there is no unique definition. Does this have any relevance to cosmology? Yes, as
we will see later when we discuss inflation. Although the de Sitter model is no longer
regarded as a viable description of the present universe, the model has become relevant in
a different context. The inflationary universe scenario, which we will be discussing later
in this course, is characterized by a phase in which the universe is accurately described
by a de Sitter space. Furthermore, it is likely that the present acceleration of the cosmic
expansion, discovered in 1998∗, could indicate the beginning of a de Sitter space era in
our future.

By using the time dependence of H(t) or T (t), we can define what it means to say
that two events happened at the same time t, even if they occurred billions of light-years
apart. In cosmology, in other words, we may single out a special class of observers:
those who are moving with the Hubble expansion, and hence are at rest with respect
to the matter in their own vicinity. Clocks carried by these special observers define the
measurement of cosmic time. The special observers in different regions are moving with
respect to each other, and thus the cosmic time system that they measure is not equal
to the time that would be measured in any one inertial reference frame.

To summarize: the time variable t that we are using is called cosmic time, and any
observer at rest relative to the galaxies in her vicinity can measure it on her own clock.
The clocks throughout the universe can be synchronized by using the Hubble expansion
rate H(t) or the temperature T (t) of the cosmic microwave background radiation.

∗ A. G. Riess et al., “Observational evidence from supernovae for an accelerating
universe and a cosmological constant,” Astronomical Journal, vol. 116, pp. 1009-10038
(1998), http://arxiv.org/abs/astro-ph/9805201; S. Perlmutter et al., “Measurements of
Omega and Lambda from 42 high redshift supernovae,“ Astrophysical Journal, vol. 516,
pp. 565-586 (1999), http://arxiv.org/abs/astro-ph/9812133.

http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/astro-ph/9812133
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THE COSMOLOGICAL REDSHIFT:

Suppose an atom on a distant galaxy is emitting light with wave crests separated
by a fixed time interval ∆tS (“S” for “source”). We will receive these wave crests at
a Doppler-shifted interval, which we will call ∆tO (“O” for “observer”). Our goal is to
relate the Doppler shift to the behavior of the scale factor a(t). We might think that
we could just use the special relativity formula for the Doppler shift that we derived in
Lecture Notes 1, but that would not properly take into account the motion of light rays
in an expanding universe, as described by Eq. (2.9). To take this into account, we start
the calculation from scratch.

Let us construct a coordinate system with ourselves at the origin, and let us align
the x-axis so that the galaxy in question lies on it, as in Fig. 2.8:

Figure 2.8: Diagram for discussing the transmission of a light signal from
a distant galaxy to us. We are at the origin, and the galaxy is along the
x-axis, at x = `c. The light signal travels to us along the x-axis.

Let tS be the cosmic time at which the first crest is emitted from the distant galaxy,
with the second crest emitted at tS + ∆tS . The atom is a kind of clock situated on the
distant galaxy, so the time interval measured by the atom agrees with the interval of
cosmic time. (Note that this is different from the relativistic Doppler shift calculation in
Lecture Notes 1, in which we explicitly took into account the slowing down of a clock on
a moving source. Here we are using a different kind of coordinate system, with a different
definition of the time coordinate. Each clock is at rest in the non-inertial comoving
coordinate system, and the cosmic time of the coordinate system is by definition the time
as read on such clocks.)

The next step is to understand the relationship between the time interval of emission
∆tS and the time interval of observation ∆tO. Note that after the first crest is emitted,
it travels a physical distance λS ≡ c∆tS before the second crest is emitted. If ∆tS is the
time between the emission of wave crests, then

λS ≡ c∆tS (2.11)

is the wavelength of the emitted wave. The two crests are then separated by a coordinate
distance

∆x = λS/a(tS) . (2.12)
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We assume that the period of the wave ∆tS is very short compared to the time scale on
which a(t) varies, so it does not matter whether the denominator is written as a(tS) or
a(tS + ∆tS). According to Eq. (2.9), the velocity of light in these coordinates depends
on t, but is independent of spatial position. Thus, at any given time the two crests will
travel at the same coordinate velocity dx/dt, and thus will stay the same coordinate
distance apart. When they arrive at the observer they will still be separated by the same
coordinate distance ∆x with which they started. The physical separation at the observer
will then be given by

λO = a(tO)∆x =
a(tO)

a(tS)
λS , (2.13)

and thus the wavelength is simply stretched with the expansion of the universe. The time
separation between the arrival of the crests will be

∆tO =
λO
c

=
a(tO)

a(tS)
∆tS . (2.14)

Finally, one has

1 + z ≡ ∆tO
∆tS

=
λO
λS

=
a(tO)

a(tS)
. (2.15)

Thus, the Doppler shift factor 1 + z is just the ratio of the scale factors at the times of
observation and emission. Equivalently, the wavelength of the light is stretched by the
expansion of the universe.

It is natural to ask how this calculation is related to the calculation of the relativistic
Doppler shift of Lecture Notes 1. Since this calculation did not involve any explicit
reference to time dilation, one might think that this calculation is nonrelativistic. If you
carefully go back over the calculation, however, you will find that there is no step that
depends on these relativistic effects in any way. Eq. (2.15) is a rigorous consequence of
Eq. (2.9) and the construction of the comoving coordinate system. In fact, Eq. (2.15) is an
exact result of general relativity, which includes the effects of both special relativity and
gravity. It is possible to apply Eq. (2.15) to the special case in which gravity is negligible,
and the usual result of special relativity can, with some effort, be recovered. (You will be
given the opportunity to carry out this exercise, with some hints, on a problem set later
in the term.) However, the content of Eq. (2.15) differs from the special relativity result
in two ways:

(1) The special relativity result holds exactly only in the absence of gravity,
while Eq. (2.15) includes the effects of gravity — provided, of course, that
one knows the effects of gravity on the scale factor a(t).

(2) Eq. (2.15) expresses the Doppler shift in terms of the behavior of the scale
factor a(t) for objects at rest in a comoving coordinate system, while the
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special relativity result expresses the Doppler shift in terms of the velocity
as measured in an inertial coordinate system. Thus, the two results can-
not be compared until one works out the relationship between these two
coordinate systems. When Eq. (2.15) is applied to the special case in which
gravity is negligible, one finds that the details of special relativity — time
dilation, Lorentz-Fitzgerald contraction, etc. — must be used in order to
relate these two coordinate systems.

While the cosmological Doppler shift is in general different from the special relativity
Doppler shift, since it takes into account the effects of gravity, we will see in the next
set of lecture notes that the effects of gravity grow with distance. So, if the source and
observer are close, we would expect that the effects of gravity would be negligible and
the two answers would agree.

To see this, we use the fact that if the source and observer are close, then the
transmission time δt ≡ tO − tS will be small. Over this small time interval, we can
apporximate a(t) by its first order Taylor expansion about tS :

a(t) = a(tS) + ȧ(tS)(t− tS) + . . .

= a(tS) [1 +H(tS)(t− tS) + . . .] ,
(2.16)

where an overdot denotes a time derivative, and use was made of Eq. (2.8). Applying
this eqation to t = tO,

a(tO) = a(tS) [1 +H(tS) δt+ . . .] . (2.17)

The coordinate separation ∆x between source and observer can be found by integrating
the coordinate velocity given by Eq. (2.9):

∆x =

∫ tO

tS

c dt

a(t)
=

∫ tS+δt

tS

c dt

a(tS) [1 +H(tS)(t− tS) + . . .]

=
c

a(tS)

∫ tS+δt

tS

dt [1−H(tS)(t− tS) + . . .] =
c

a(tS)

[
δt− 1

2
H(tS)δt2 + . . .

]
.

(2.18)
Since we are interested in very small δt, we use the lowest order result that ∆x =
c δt/a(tS). If we let δr denote the physical distance between source and observer at time
tS , then to lowest order in δt,

δr = a(tS) ∆x = c δt , (2.19)

which we might well have foreseen. Eq. (2.19) is a consequence of the fact that if δt is
small, then the effect of the expansion of the universe during the time δt is negligible.
The cosmological redshift is then given by

1 + z =
a(tO)

a(tS)
= 1 +H(tS) δt+ . . . , (2.20)
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where we used Eq. (2.16). Then by using Eqs. (2.20) and (2.19) we find

z = H(tS) δt =
H(tS)c δt

c
=
H(tS)δr

c
=
v

c
, (2.21)

where in the last step we used Hubble’s law, Eq. (2.1). To lowest order in β ≡ v/c, this
agrees with the special relativity Doppler formula,

z =

√
1 + β

1− β
− 1 (relativistic), (2.22)

where β = v/c.

Although the cosmological redshift is caused by both gravity and by motion, there
is no natural way to divide it into these two parts. You might suggest, for example, that
we define the part due to gravity by asking how much the Doppler shift would change
if gravity were omitted from the calculation. The problem is that the trajectories of the
source, the observer, and the light rays would all be different in the absence of gravity.
Thus, we cannot ask what the redshift would be in a universe that is like ours, but without
gravity. If gravity were not involved, there would not be any universe that is like ours.


