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MORE DYNAMICS OF NEWTONIAN COSMOLOGY

THE AGE OF A FLAT UNIVERSE:

We showed last time that the scale factor for a flat, matter-dominated universe
behaves as

a(t) = bt2/3 , (4.1)

for some constant of proportionality b. This model universe is “flat” in the sense that
k = 0 (or Ω = 1), and it is “matter-dominated” in the sense that the mass density
is dominated by the rest mass of nonrelativistic particles. (The assumption of matter-
domination entered the derivation when we assumed that the total mass M(ri) contained
within a given comoving radius ri does not change as the system evolves. Photons or
highly relativistic particles, by contrast, would redshift as the universe expands, and hence
they would lose energy. In Lecture Notes 6 we will discuss the evolution of a universe
dominated by relativistic particles, and in Lecture Notes 7 we will describe the effects of
a cosmological constant, or vacuum energy. Since the energy loss of an expanding gas is
proportional to its pressure, the “matter-dominated” case can also be described as the
case in which the pressure is negligible.) Using Eq. (4.1), it is easy to calculate the age of
such a universe in terms of the Hubble expansion rate. In Lecture Notes 2 it was shown
that the Hubble expansion rate is given by

H(t) = ȧ/a , (4.2)

where the over-dot has been used to denote a derivative with respect to time t. Thus,

H(t) =
2
3bt
−1/3

bt2/3
=

2

3t
. (4.3)

Recall that we have defined the origin of time so that the scale factor a(t) vanishes at
t = 0, so t = 0 is the earliest time that exists within the mathematical model. We
therefore refer to t as the age of the universe, which can then be expressed in terms of
the Hubble expansion rate by

t =
2

3
H−1 . (4.4)

We should keep in mind, however, that we would be foolish to pretend that we actually
understand the origin of the universe, so the phrase “age of the universe” is being used
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loosely. It is almost certain that our universe underwent an extremely hot dense phase
at t ≈ 0, and we can call this phase the big bang. The variable t represents the age of
the universe since the big bang, but we can only speculate about whether the big bang
actually represents the beginning of time. As we will see near the end of the course,
the current understanding of inflationary cosmology suggests that the big bang was very
likely not the beginning of time.

Consistency requires that the age of the universe be older than the age of the oldest
stars, and this requirement has turned out to be a strong constraint. It was a very serious
problem in the time shortly after Edwin Hubble’s first measurement, when Hubble’s bad
estimate for the Hubble expansion rate led to age estimates of only several billion years.
More recently, as quoted in Lecture Notes 2, the Planck satellite team, using their own
data combined with other data, estimated that H0 = 67.66±0.42 km-s−1-Mpc−1.* Using
Eq. (4.4) and the relationship

1

1010 yr
= 97.8 km-s−1-Mpc−1 ,

we find that a flat matter-dominated universe with a Hubble expansion rate in this range
(i.e., 67.24 to 68.08 km-s−1-Mpc−1) must have an age between 9.58 and 9.70 billion years.

Today the oldest stars are believed to be those in globular clusters, which are tightly
bound, nearly spherical distributions of stars that are found in the halos of galaxies. A

careful study of the globular cluster M4 by Hansen et al.†, using data from 123 orbits of
the Hubble Space Telescope, determined an age of 12.7 ± 0.7 billion years. Krauss and

Chaboyer‡ argue that Hansen et al. did not take into account all the uncertainties, and
claim that the globular clusters in the Milky Way (including M4) have an age of 12.6+3.4

−2.2
billion years. (Both sets of authors are quoting 95% confidence limit errors, also called
2σ errors, meaning that the probability of the true value lying in the quoted range is
estimated at 95%.) Krauss and Chaboyer estimate that the stars must take at least 0.8
billion years to form, implying that the universe must be at least 11.2 billion years old.

* N. Aghanim et al. (Planck Collaboration), “Planck 2018 results, VI: Cosmological
parameters,” Table 2, Column 6, arXiv:1807.06209.
† B.M.S. Hansen et al., “The White Dwarf Cooling Sequence of the Globu-

lar Cluster Messier 4,” Astrophysical Journal Letters, vol. 574, p. L155 (2002),
http://arXiv.org/abs/astro-ph/0205087.
‡ L.M. Krauss and B. Chaboyer, “Age Estimates of Globular Clusters in the

Milky Way: Constraints on Cosmology,” Science, vol. 299, pp. 65-70 (2003), avail-
able with MIT certificates at http://www.sciencemag.org.libproxy.mit.edu/content/
299/5603/65.abstract or for purchase at http://www.sciencemag.org/content/299/5603/
65.abstract

https://arxiv.org/abs/1807.06209
http://arXiv.org/abs/astro-ph/0205087
http://www.sciencemag.org.libproxy.mit.edu/content/299/5603/65.abstract
http://www.sciencemag.org.libproxy.mit.edu/content/299/5603/65.abstract
http://www.sciencemag.org/content/299/5603/65.abstract
http://www.sciencemag.org/content/299/5603/65.abstract
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(That is, the stars are at least 12.6 - 2.2 = 10.4 billion years old, and could not have
formed until the universe was already 0.8 billion years old.)

With either of these estimates for the age of the oldest stars, however, the age
of the universe is inconsistent with the measured value of the Hubble expansion rate
and the assumption of a flat, matter-dominated universe. We will see later in these
lecture notes that the age calculation gives a larger answer if we assume an open universe
(Ω ≡ ρ/ρc < 1), but inflationary cosmology predicts that Ω should be very close to 1,
and starting with the first BOOMERANG long duration balloon experiment of 1997,*
measurements of the fluctuations in the CMB have indicated a nearly flat universe. The
CMB measurements now imply that Ω = 1 to high accuracy. Combining their own data
with results of other experiments, the Planck team† concluded that Ω = 0.9993± 0.0037.
We will see in Lecture Notes 7, however, that the age discrepancy problem is completely
resolved by the inclusion of dark energy. With about 70% of the mass density in the
form of dark energy, H0 = 67.7 km-s−1-Mpc−1 is consistent with an age of 13.79± 0.02

billion years, which is our current best estimate‡ for the age of the universe. Since
the age estimates are not consistent if we assume a matter-dominated flat universe, the
age calculations help to support the proposition that our universe is dominated by dark
energy, which we will discuss in detail in Lecture Notes 7.

THE BIG BANG SINGULARITY:

This mathematical model of the universe starts from a configuration with a(t) = 0,
which corresponds to infinite density. From Eq. (4.3) we see that the initial value of the
Hubble expansion rate is also infinite. We will see shortly that these infinities are not
peculiarities of the flat universe model, but occur also in the models for either a closed
or open universe. This instant of infinite density is called a singularity.

One should realize, however, that there is no reason to believe that the equations
which we have used are valid in the vicinity of this singularity. Thus, although our
mathematical models of the universe certainly begin with a singularity, it is an open
question whether the universe actually began with a singularity. If we use our equations
to follow the history of the universe further and further into the past, the universe becomes
denser and denser without limit. At some point one encounters densities that are so far
beyond our experience that the equations are no longer to be trusted. We will discuss
later in the course where this point may occur, but for now I just want to make it clear
that the singularity should not be considered a reliable consequence of the theory.

* P. D. Mauskopf et al., “Measurement of a peak in the cosmic microwave background
power spectrum from the North American test flight of BOOMERANG,” Astrophysical
Journal Letters, vol. 536, pp. L59–L62 (2000), http://arXiv.org/abs/astro-ph/9911444.
† N. Aghanim et al. (Planck Collaboration), cited above, Table 4, Column 4.
‡ N. Aghanim et al. (Planck Collaboration), cited above, Table 2, Column 6.

http://arXiv.org/abs/astro-ph/9911444
https://arxiv.org/abs/1807.06209
https://arxiv.org/abs/1807.06209
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THE HORIZON DISTANCE:

Since the age of the universe in the big bang model is finite, it follows that there
is a theoretical upper limit to how far we can see. Since light travels at a finite speed,
there will be particles in the universe that are so far away that light emitted from these
particles will not yet have reached us. The present distance of the furthest particles from
which light has had time to reach us is called the horizon distance. If the universe were
static and had age t, then the horizon distance would be simply ct. In the real universe,
however, everything is constantly in motion, and the value of the horizon distance has to
be calculated.

The calculation of the horizon distance can be done most easily by using comoving
coordinates. The speed of light rays in a comoving coordinate system was given in
Eq. (2.8) as

dx

dt
=

c

a(t)
. (4.5)

(Recall that this formula is based on the statement that the speed of light in meters per
second is constant, but the scale factor a(t) is needed to convert from meters per second
to notches per second.) One can then calculate the coordinate horizon distance (i.e., the
horizon distance in “notches”) by calculating the distance which light rays could travel
between time zero and some arbitrary final time t. By integrating Eq. (4.5), one sees that

`c,horizon(t) =

∫ t

0

c

a(t′)
dt′ . (4.6)

The physical horizon distance at time t is then given by

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′ . (4.7)

For the special case of a flat, matter-dominated universe, one can use Eq. (4.1) to obtain

`p,horizon(t) = bt2/3
∫ t

0

c

bt′2/3
dt′ . (4.8)

Carrying out the integration, the physical horizon distance for a flat matter-dominated
universe is found to be

`p,horizon(t) = 3ct . (4.9)

The horizon distance can also be expressed in terms of the Hubble expansion rate,
by using Eq. (4.4):

`p,horizon(t) = 2cH−1 . (4.10)



MORE DYNAMICS OF NEWTONIAN COSMOLOGY p. 5

8.286 LECTURE NOTES 4, FALL 2018

Taking H0 = 67.7 km-s−1-Mpc−1, the horizon distance today, under the assumption of
a flat matter-dominated universe, is found to be about 29 billion light-years.

The factor of 3 on the right-hand side of Eq. (4.9) implies that the horizon distance
is three times larger than it would be in a static universe, and hence it is significantly
larger than most of us would probably guess. The reason, of course, is that the horizon
distance refers to the present distance of the most distant matter that can in principle
be seen. However, the light that we receive from distant sources was emitted long ago,
and the present distance is large because the matter has been moving away from us ever
since. In the limiting case of matter exactly at the horizon, the light that we receive
today left the object at t = 0, at the instant of the big bang.

You might wonder why light from every object did not reach us immediately, since the
scale factor a(t) was zero at t = 0, so the initial distance between any two objects was zero.
To be honest, you are pretty safe in believing whatever you like about what happens at
the initial singularity. The classical description certainly breaks down as the mass density
approaches infinity, and there does not yet exist a satisfactory quantum description. So,
if you want to believe that everything could communicate with everything else at the
instant of the singularity, nobody whom I know could prove that you are wrong. But
nobody whom I know could prove that you are right, either. If one ignores the possibility
of communication at the singularity, however, it is then a well-defined question to ask
how far light signals can travel once the classical description becomes valid. As t → 0
the scale factor a(t) approaches zero, but its time derivative ȧ(t) approaches infinity. If
we think about some object at coordinate distance `c from us, at early times its physical
distance a(t)`c was arbitrarily small, but its velocity of recession ȧ(t)`c was arbitrarily
large. If such an object emitted a light pulse in our direction at some very early time
t = ε > 0, even though the light pulse would have traveled toward us at the speed of
light, the expansion of the universe was so fast that the distance between us and the light
pulse would have initially increased with time. The coordinate distance that the light
pulse could travel between then and now is at most equal to `c,horizon, as given Eq. (4.6),
so the pulse could reach us by now only if the present distance to the object is less than
the horizon distance as given by Eq. (4.7).

EVOLUTION OF A CLOSED UNIVERSE:

The time evolution equations are easiest to solve for the case of a flat (k = 0)
universe, but the equations for a closed or open universe are also soluble. We will first
consider the closed universe, for which k > 0, E < 0, and Ω > 1.

From Lecture Notes 3, we write the Friedmann equation as(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, (4.11)



MORE DYNAMICS OF NEWTONIAN COSMOLOGY p. 6

8.286 LECTURE NOTES 4, FALL 2018

where the mass density ρ can be written as

ρ(t) =

[
a(ti)

a(t)

]3
ρ(ti) . (4.12)

(The above equation is a slight generalization of Eq. (3.23), ρ(t) = ρi/a
3(t). Eq. (3.23) was

derived under the assumption that a(ti) = 1, while Eq. (4.12) makes no such requirement.)
Here we will use Eq. (4.12) to conclude that the quantity ρ(t)a3(t) is independent of time.

To obtain the desired solution in an economical way, it is useful to identify from the
beginning the quantities of physical interest. Note that a is measured in units of, for
example, meters per notch, while k is measured in units of notch−2. Thus the quantity
a/
√
k has units of physical length (meters, for example), and is therefore independent of

the definition of the notch. We will therefore choose

ã(t) ≡ a(t)√
k

(4.13)

as the variable to use in our solution of the differential equation. Similarly we will use

t̃ ≡ ct , (4.14)

rather than t, so that all the spacetime variables have units of length.

Multiplying the Friedmann equation (4.11) by a2/(kc2), it can be rewritten as

1

kc2

(
da

dt

)2

=
8π

3

Gρa2

kc2
− 1

=
8π

3

Gρa3

k3/2c2

√
k

a
− 1 .

(4.15)

In the second line the factors have been arranged so that we can rewrite it as(
dã

dt̃

)2

=
2α

ã
− 1 , (4.16)

where

α ≡ 4π

3

Gρã3

c2
. (4.17)

Note that the parameter α also has the units of length. While the above expression for
α contains the product ρ(t)ã3(t), Eq. (4.12) guarantees that this quantity is independent
of time, so α is a constant. Eq. (4.16) can be solved formally by rewriting it as

dt̃ =
dã√
2α
ã − 1

=
ã dã√

2αã− ã2
(4.18)
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and then integrating both sides. One could use indefinite integrals, as we did for the
k = 0 case in Eq. (3.37). Using indefinite integrals, the arbitrary constant of integration
would become an arbitrary constant in the solution to the equation. We found, however,
that the arbitrary constant could be eliminated by choosing the zero of time so that
a(t) = 0 at t = 0. Here, mainly for the purpose of demonstrating an alternative method,
I will use definite integrals. In this method the arbitrary constant in the solution will be
fixed by the specification of the limits of integration. Following the standard convention,
I will again choose the zero of time to be the time at which the scale factor is equal to
zero. Using a subscript f to denote an arbitrary final time, one has

t̃f =

∫ t̃f

0

dt̃ =

∫ ãf

0

ã dã√
2αã− ã2

, (4.19)

where ãf ≡ ã(t̃f ). The subscripts f will be dropped when the problem is finished, but for
now it is convenient to use them to distinguish the limits of integration from the variables
of integration.

The only remaining step is to carry out the integration shown in Eq. (4.19). Com-
pleting the square in the denominator, and then replacing the variable of integration
by

x ≡ ã− α , (4.20)

one finds

t̃f =

∫ ãf

0

ã dã√
α2 − (ã− α)

2

=

∫ ãf−α

−α

(x+ α) dx√
α2 − x2

.

(4.21)

The integral can now be simplified by the trigonometric substitution

x = −α cos θ , (4.22)

which leads to

t̃f = α

∫ θf

0

(1− cos θ)dθ = α(θf − sin θf ) . (4.23)

Since θf denotes the final value of θ, we can combine Eqs. (4.20) and (4.22) to find
xf = ãf − α = −α cos θf , so

ãf = α(1− cos θf ) . (4.24)

Dropping the subscript f and recalling the definitions (4.13) and (4.14), the two
equations above provide a solution to our problem:
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ct = α(θ − sin θ) ,

a√
k

= α(1− cos θ) .

(4.25a)

(4.25b)

These two equations provide a parametric description of the function a(t). That
is, Eq. (4.25a) determines in principle the function θ(t), and then Eq. (4.25b) defines
the function a

(
θ(t)

)
. (There is, however, no explicit expression for θ(t), so the function

a(t) cannot be constructed explicitly.) Some of you may recognize these equations as the
equations for a cycloid. The curve which they trace can be generated by imagining a
graph of a/

√
k vs. ct, with a disk of radius α that rolls along the t-axis, as shown below.

As the disk rolls, the point P traces the graph of a/
√
k vs. ct:

Figure 4.1: Evolution of a closed universe. The figure shows a graph
of a/

√
k vs. ct for a closed matter-dominated universe. If one imagines a

circle rolling on the ct axis, a point on the circle traces out a cycloid, which
is exactly the equation for a/

√
k for a closed universe. The insert at the

upper right includes labels for various distances, showing the connection
with Eq. (4.25).

The relation between Eqs. (4.25) and the rolling disk can be seen in the insert at the
top right: after the disk has rolled through an angle θ, the horizontal component of P is
given by αθ − α sin θ, and the vertical component is given by α− α cos θ.
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The model for the closed universe reaches a maximum scale factor when θ = π, which
corresponds to a time ct = πα. The corresponding value of a is given by

amax√
k

= 2α . (4.26)

By that point the pull of gravity has overcome the inertia of the expansion, and the
universe begins to contract. The scale factor during the contracting phase reverses the
behavior it had during the expansion phase, and the universe ends in a “big crunch”.
The total lifetime of this universe is then

ttotal =
2πα

c
=
πamax

c
√
k

. (4.27)

The angle θ is sometimes called the “development angle,” because it describes the
stage of development of the universe. The universe begins at θ = 0, reaches its maximum
expansion at θ = π, and then is terminated by a big crunch at θ = 2π.

Eqs. (4.25) contain the two parameters α and k, which might lead one to believe
that there is a two-parameter family of closed universes. We must remember, however,
that these equations still allow us the freedom to define the notch, so the numerical value
of k is physically irrelevant. Many books, in fact, define k to always have the value +1
for a closed universe. The parameter α, on the other hand, is physically meaningful, and
is related to the total lifetime of the closed universe. (When general relativity effects
are described in Lecture Notes 5, we will learn that a closed universe actually has a
finite size, and that the maximum size is determined by α.) Thus there is really only a
one-parameter class of solutions.

THE AGE OF A CLOSED UNIVERSE:

The formula for the age of a closed universe can be obtained from the formulas in
the previous section, but we have to do a little work. Eqs. (4.25) tell how to express the
age in terms of α and θ, but this is not the result we want. We would prefer to relate α
and θ to other quantities that are in principle measurable. Since we need to determine
two variables, α and θ, we will have to imagine measuring two physical quantities. These
two measurable quantities can be taken to be the Hubble expansion rate H and the mass
density parameter Ω ≡ ρ/ρc.

Our goal, then, is to express all the quantities related to the closed universe model
in terms of H and Ω. To start, the mass density ρ can be rewritten as Ωρc, where
ρc = 3H2/8πG (see Eq. (3.33)). So

ρ =
3H2Ω

8πG
, (4.28)
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or equivalently
8π

3
Gρ = H2Ω . (4.29)

Recalling that H = ȧ/a (see Eq. (2.7)), the above formula can be substituted into the
Friedmann equation (4.11), yielding

H2 = H2Ω− kc2

a2
, (4.30)

which can then be solved for a2 to give

ã2 =
a2

k
=

c2

H2(Ω− 1)
. (4.31)

If we want to get our signs right for the entire evolution of the closed universe, we need to
be careful. Note that Eq. (4.31) does not determine the sign of ã, since it only specifies
the value of ã2. The scale factor is by definition positive, however, and for the case under
consideration k > 0. We adopt the standard convention that the square root of a positive
number is positive, so

√
k > 0. Thus, the definition ã ≡ a/

√
k implies that ã > 0, so

Eq. (4.31) implies that

ã =
a√
k

=
c

|H|
√

Ω− 1
. (4.32)

We write Eq. (4.32) with absolute value indicators aroundH, because during the contract-
ing phase H is negative, while we know that only the positive square root of Eq. (4.31)
is physically relevant.

We are now ready to evaluate α, using the definition (4.17). Using Eqs. (4.28) and
(4.32) to replace ρ and ã, we find

α =
c

2|H|
Ω

(Ω− 1)3/2
. (4.33)

Recall that α has direct physical meaning — if our universe is closed, then the total
lifetime of the universe (from big bang to big crunch) would be given by 2πα/c.

The value of θ can now be found from Eq. (4.25b), using Eq. (4.32) to replace a/
√
k

on the left-hand side, and Eq. (4.33) to replace α on the right-hand side. After these
substitutions, Eq. (4.25b) becomes

c

|H|
√

Ω− 1
=

c

2|H|
Ω

(Ω− 1)3/2
(1− cos θ) , (4.34)

which can be solved for either cos θ or for Ω:

cos θ =
2− Ω

Ω
, (4.35)
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Ω =
2

1 + cos θ
. (4.36)

Using

sin θ = ±
√

1− cos2 θ = ±2
√

Ω− 1

Ω
, (4.37)

Eq. (4.25a) can now be rewritten to obtain the desired formula for the age of the universe:

t =
Ω

2|H|(Ω− 1)3/2

{
arcsin

(
±2
√

Ω− 1

Ω

)
∓ 2
√

Ω− 1

Ω

}
(for a closed universe),

(4.38)

where the sign choices correspond to Eq. (4.37) (i.e., if the upper sign is used in Eq. (4.37),
then both upper signs should be used in Eq. (4.38).) Both the square root and the inverse
sine function are multibranched functions, so the evaluation of Eq. (4.38) requires some
additional information. It is easy to see which branch to use, however, if one remembers
that Eq. (4.38) is a rewriting of Eq. (4.25a), and that in Eq. (4.25a) the variable θ runs
monotonically from 0 to 2π over the lifespan of the closed universe.

To describe the branches in detail, it is necessary to divide the full cycle, with θ
varying from 0 to 2π, into quadrants. The first quadrant is from θ = 0 to θ = π/2, where
we see from Eq. (4.36) that θ = π/2 corresponds to Ω = 2. Thus, the first quadrant
corresponds to the beginning of the expanding phase, with 1 ≤ Ω ≤ 2. For this quadrant
sin θ > 0, so we use the upper signs in Eq. (4.38), and the inverse sine is evaluated in
the range 0 to π/2. The other quadrants are understood in the same way, producing the
following table of rules:

Quadrant Phase Ω Sign Choice sin−1()

1 Expanding 1 to 2 Upper 0 to π
2

2 Expanding 2 to ∞ Upper π
2 to π

3 Contracting ∞ to 2 Lower π to 3π
2

4 Contracting 2 to 1 Lower 3π
2 to 2π

Our universe is not currently matter-dominated, but it could be just barely closed. If
we considered the hypothesis that our universe was matter-dominated, it would certainly
be in the expanding phase, with Ω < 2, and so it would be in the first quadrant. That
means that the age would be given by Eq. (4.38), using the upper signs, and evaluating
the inverse sine function in the range of 0 to π/2.
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EVOLUTION OF AN OPEN UNIVERSE:

The evolution of an open universe can be calculated in a very similar way, except
that one must use hyperbolic trigonometric substitutions in order to carry out the crucial
integral. Fortunately, none of the complications with multibranched functions will occur
in this case. For the open universe k < 0, E > 0, and Ω < 1. We will define κ ≡ −k to
avoid the inconvenience of working with a negative quantity, and we will define

ã(t) ≡ a(t)√
κ

(4.39)

instead of ã = a(t)/
√
k. Eq. (4.16) is then replaced by(

dã

dt̃

)2

=
2α

ã
+ 1 , (4.40)

while Eq. (4.17),

α ≡ 4π

3

Gρã3

c2
,

continues to be valid, although the meaning of ã has changed. Eqs. (4.19) and (4.21) are
then replaced by

t̃f =

∫ ãf

0

ã dã√
2αã+ ã2

=

∫ ãf

0

ã dã√
(ã+ α)

2 − α2

=

∫ ãf+α

α

(x− α) dx√
x2 − α2

.

(4.41)

In this case one uses the substitution

x = α cosh θ , (4.42)

and one obtains the result

ct = α(sinh θ − θ) ,
a√
κ

= α(cosh θ − 1) .

(4.43a)

(4.43b)
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THE AGE OF AN OPEN UNIVERSE:

The methods are again identical to the ones used previously, so I will just state the

results. Eqs. (4.35), (4.36) and (4.37) are replaced by

Ω =
2

1 + cosh θ
, cosh θ =

2− Ω

Ω
(4.44)

and

sinh θ =
√

cosh2 θ − 1 =
2
√

1− Ω

Ω
, (4.45)

and the final result for the age of the universe becomes

t =
Ω

2H(1− Ω)3/2

{
2
√

1− Ω

Ω
− sinh−1

(
2
√

1− Ω

Ω

)}
(for an open universe).

(4.46)

Below is a graph of Ht versus Ω, using Eqs. (4.38) and (4.46). The graph shows that

the curve is actually continuous at Ω = 1, even though the expressions (4.38) and (4.46)

look rather different. In fact, these two expressions are really not so different. Although

it is not obvious, the two expressions are different ways of writing the same analytic

function. You can verify this by using the usual techniques to evaluate square roots of

negative numbers, and the trigonometric and hypertrigonometric functions of imaginary

arguments.

To summarize, the age the universe can be expressed as a function of H and Ω as

|H| t =



Ω

2(1− Ω)3/2

[
2
√

1− Ω

Ω
− sinh−1

(
2
√

1− Ω

Ω

)]
if Ω < 1

2/3 if Ω = 1

Ω

2(Ω− 1)3/2

[
sin−1

(
±2
√

Ω− 1

Ω

)
∓ 2
√

Ω− 1

Ω

]
if Ω > 1

(4.47)

Graphically,
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Figure 4.2: The age of a matter-dominated universe, expressed as Ht
(where t is the age and H is the Hubble expansion rate), as a function of
Ω. The curve describes all three cases of an open (Ω < 1), flat (Ω = 1),
and closed (Ω > 1) universe.

THE EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

The following graph shows the evolution of the scale factor for all three cases: open,
closed, or flat. The graphs were constructed using Eqs. (4.1) for the flat case, (4.43) for
the open case, and (4.25) for the closed case. The parametric equations are plotted by
choosing a finely spaced grid of values for θ, using the formulas to determine t and a
for each value of θ. Since the only parameter, α, appears merely as an overall factor, a
graph that is valid for all values of α can be obtained by plotting the dimensionless ratios
a/(α

√
|k|) and ct/α:
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Figure 4.3: The evolution of a matter-dominated universe. Closed and
open universes can be characterized by a single parameter α, defined by
Eq. (4.17). With the scalings shown on the axis labels, the evolution of a
matter-dominated universe is described in all cases by the curves shown in
this graph.

Although the graph shows all three cases, it must be remembered that it is still restricted
by the assumption that the universe is matter-dominated — that is, the mass density is
dominated by nonrelativistic matter, for which pressure forces are negligible.


