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BLACK-BODY RADIATION AND

THE EARLY HISTORY OF THE UNIVERSE

INTRODUCTION:

In Lecture Notes 3 and 4 we discussed the dynamics of Newtonian cosmology under
the assumption that mass is conserved as the universe expands. In that case, since the
physical volume is proportional to a3(t), the mass density ρ(t) is proportional to 1/a3(t).
In these lecture notes we will extend our understanding to include the dynamical effects
of electromagnetic and other forms of radiation. Electromagnetic radiation is intrinsically
relativistic (v ≡ c!), so we need to begin by discussing the concepts of mass and energy
in the context of relativity.

According to special relativity, mass and energy are equivalent, with the conversion
of units given by the famous formula,

E = mc2 . (6.1)

When one says that mass and energy are equivalent, one is saying that they are just two
different ways of expressing precisely the same thing. The total energy of any system is
equal to the total mass of the system — sometimes called the relativistic mass — times
c2, the square of the speed of light.

Although c2 is a large number in conventional units, one can still think of it concep-
tually as being merely a unit conversion factor. For example, one can imagine measuring
the mass/energy of an object in either grams or ergs, with

1 gram = 8.9876× 1020 erg , (6.2)

where c2 = 8.9876× 1020 cm2/s2. So one gram is a huge number of ergs. For SI units,

1 kg = 8.9876× 1016 joule = 2.497× 1010 kw-hr. (6.3)

To put this number in perspective, we might compare it to the world power supply, which
is about 1.8×1010 kilowatts, according to the International Energy Agency.* Thus, if we

* Key World Energy Statistics, 2017, http://www.iea.org/
publications/freepublications/publication/KeyWorld2017.pdf. The 2015 annual “Total
Primary Energy Supply” is given as 13,647 million tonnes of oil equivalent (Mtoe), which
in more familiar units is 1.587 × 1014 kW-hr. If this energy production were uniformly
spread over the year, the average power would be 1.811 × 1010 kW. With a 2015 world
population of 7.35 billion people, this corresponds to 2.46 kW per person.

http://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf
http://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf
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could build a machine that would convert 1 kg per hour entirely into energy, its power
output would be about 1.5 times the world’s total power supply. A 15 gallon tank of
gasoline, if it could be converted entirely to energy, would power the world for two and
a half days. Unfortunately, however, it is not so easy: when a uranium-235 nucleus
undergoes fission, for example, only about 0.09% of its mass is converted to energy.

Since c is conceptually a unit conversion factor, many physicists (especially nuclear
and particle physicists) work in unit systems for which c ≡ 1. A common choice is to use
the MeV (106 eV) or GeV (109 eV) as the unit of energy, where

1 eV = 1 electron volt = 1.6022× 10−19 J, (6.4)

and then

1 GeV = 1.7827× 10−27 kg. (6.5)

The mass of a proton is 0.938 GeV.

It will be useful to know some basic properties of the energy-momentum four-vector,
so I will summarize them here. The energy-momentum four-vector is defined by start-
ing with the momentum three-vector (p1, p2, p3) ≡ (px, py, pz), and appending a fourth
component

p0 =
E

c
, (6.6)

so the four-vector can be written as

pµ =

(
E

c
, ~p

)
. (6.7)

As with the three-vector momentum, the energy-momentum four-vector can be defined
for a system of particles as the sum of the vectors for the individual particles. The
motivation for putting the four components together is that the four-vector obeys a
simple transformation law that describes how to calculate the components measured by
an inertial observer in terms of the components measured by another inertial observer
who is moving relative to the first. The transformation law is identical to one that
describes the transformation of the spacetime coordinate vector, xµ = (ct, ~x), known as
the Lorentz transformation. The mass of a particle in its own rest frame is called its rest
mass, which we denote by m0. If the particle moves with velocity ~v, then the relativistic
expressions for its momentum and energy are given by

~p = γm0~v ,

E = γm0c
2 =

√
(m0c2)

2
+ |~p|2 c2 ,

(6.8)
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where as usual γ is defined by

γ =
1√

1− v2

c2

. (6.9)

Like the Lorentz-invariant interval that we discussed with Eq. (5.30), the energy-
momentum four-vector has a Lorentz-invariant square:

p2 ≡ |~p|2 −
(
p0
)2

= |~p|2 − E2

c2
= − (m0c)

2
. (6.10)

For a particle at rest, Eq. (6.8) implies that the energy E0 is given by

E0 = m0c
2 , (6.11)

since ~p = 0. To see the implications of this equation, we can imagine a hydrogen atom,
which is composed of a proton and an electron. If the two particles are started an infinite
distance apart, then the initial total energy is given by Etot = (mp + me)c

2, where we
are defining the zero of potential energy so that it vanishes at infinite separation. As
the particles come together they attract each other, and therefore accelerate. They gain
kinetic energy, and the potential energy becomes negative. If the particles combine to
form a hydrogen atom in its ground state (i.e., its lowest energy state), then an energy
∆E is given off. This energy is called the binding energy of the hydrogen, and has a
value of 13.6 eV. The energy is most commonly given off in the form of photons. (There
is also some kinetic energy associated with the recoil of the hydrogen atom, but the recoil
energy is very small when the rest energy of the recoiling object is large compared to the
energy given off. Here we will ignore the recoil.) The mass mH of the resulting hydrogen
atom is then given by

mH = mp +me −∆E/c2 , (6.12)

where mp is the mass of the proton, and me is the mass of the electron. The rest mass
of the system is reduced by the energy given off, divided by c2. Thus, a small part of the
rest mass of the proton and electron has been converted into other forms of energy.

For a particle in motion, one can define a relativistic mass mrel by

mrel =
E

c2
. (6.13)

Many authors prefer to never introduce the concept of relativistic mass, and it is certainly
not necessary. Since it is defined solely in terms of the energy, anything that can be
thought or said in terms of the relativistic mass of a particle can equally well be expressed
in terms of its energy. However, when one discusses the gravitational field of a system
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including relativistic particles, then the concept of relativistic mass can be useful. The
gravitational field of a single moving particle, according to general relativity, is anisotropic
and rather complicated, but fortunately we will not have to deal with this. However, if
one has a gas of relativistic particles with no net momentum in the frame of interest,
then the gravitational field can be computed as if the particles were at rest, but using the
relativistic mass, as defined by Eq. (6.13). If one adopts the concept of relativistic mass,
then the famous equation E = mc2 can be described by saying that energy and mass are
equivalent, related in all cases by a factor of c2. The concept of relativistic mass is also
useful when discussing the gravitational force that acts on a body. If a gas of relativistic
particles were sealed inside a box, and the box were placed on a scale, then the scale
would register the relativistic mass of the particles in the gas.

THE MASS OF RADIATION:

We are perhaps not used to thinking of electromagnetic radiation as having mass,
but it is well-known that radiation has an energy density. If the energy density is denoted
by u, then the electromagnetic radiation has a relativistic mass density ρ given by

ρ = u/c2 . (6.14)

That is, the formula above describes the amount of relativistic mass (mrel) per unit vol-
ume. According to general relativity, such a mass density contributes to the gravitational
field just like any other mass density.*

To my knowledge nobody has ever actually “weighed” electromagnetic radiation in
any way, but the theoretical evidence in favor of Eq. (6.14) is overwhelming — light
does have mass. Nonetheless, the photon has zero rest mass, meaning that it cannot
be brought to rest. The general relation for the square of the four-momentum reads
p2 = −(m0c)

2, as in Eq. (6.10), so for the photon this becomes p2 = 0. Writing out the
square of the four-momentum leads to the following relation for photons:

|~p |2 − E2

c2
= 0 , or E = c|~p | . (6.15)

In this set of notes we will examine the role which the mass of electromagnetic
radiation plays in the early stages of the universe.

* Authors who avoid the concept of relativistic mass would reach the same conclusion,
but would describe it by saying that the energy density u creates the same gravitational
field as a mass density u/c2.
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RADIATION IN AN EXPANDING UNIVERSE:

If we ignore the interactions of photons, then as the universe expands the photons
travel on geodesics, and their number is conserved. We will learn later that even when we
take into account the emission and absorption of photons by the matter in the universe,
their number is still very accurately conserved during the long period after inflation (to
be discussed later) and before the formation of the earliest stars. As long as the number
is conserved, the number density nγ of photons varies as 1/a3(t) as the universe expands,
just like the number density of nonrelativistic particles:

nγ ∝
1

a3(t)
. (6.16)

Note that the Greek letter γ (“gamma”) is often used to denote the photon, even when
the energy of the photon is far from the range of 104–107 eV that normally characterizes
what are called gamma rays.

Unlike nonrelativistic particles, however, the frequency of each photon is redshifted
as the universe expands, as we learned in Lecture Notes 2. The ratio of the period ∆t at
the time t2 to the period at the time t1 is given by the redshift factor

∆t(t2)

∆t(t1)
≡ 1 + z =

a(t2)

a(t1)
. (6.17)

Since the frequency ν (Greek letter “nu”) of each photon is related to the period by
ν = 1/∆t, the frequency of each photon decreases as 1/a(t) as the universe expands.
According to elementary quantum mechanics, the energy of the photon is related to the
frequency by

E = hν , (6.18)

where h is Planck’s constant (h = 4.136 × 10−15 eV-s). Thus the energy of the photon
decreases as 1/a(t) as the universe expands. The energy density uγ of the radiation is
given by

uγ = nγ Eγ , (6.19)

where Eγ is the mean energy per photon, so

nγ ∝
1

a3(t)
, Eγ ∝

1

a(t)
=⇒ ργ =

uγ
c2
∝ 1

a4(t)
. (6.20)

(Although I have justified this relation with quantum mechanical arguments, it can also
be derived from classical electromagnetic theory. However, in this case the quantum
argument is simpler.)
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THE RADIATION–DOMINATED ERA:

Today the energy density ur in the cosmic background radiation is given approxi-
mately by

ur = 7.01× 10−14 J/m
3
. (6.21)

(Here I have used the subscript “r” for radiation, rather than “γ” for photons, because I
have included both the energy density of photons and the expected density of neutrinos,
which we will talk about later.) To find the corresponding mass density, use

ρr =
u

c2
=

7.01× 10−14
(
kg-m2-s−2

)
m−3

(3× 108 m-s−1)
2

= 7.80× 10−31 kg/m
3

= 7.80× 10−34 g/cm
3
.

(6.22)

This can be compared with the critical mass density ρc, which was calculated in Eq. (3.34):

ρc = 1.88h2
0 × 10−29 g/cm

3
, (3.34)

where
H0 = 100h0 km-s−1-Mpc−1 .

One finds that the fraction Ωr of closure density in radiation is given by

Ωr ≡
ρr
ρc

=
7.80× 10−34 g-cm−3

1.88h2
0 × 10−29 g-cm−3

= 4.15× 10−5 h−2
0 , (6.23)

For h0 = 0.67, one finds Ωr = 9.2× 10−5. This is only a very small fraction, but Ωr was
larger in the past. Since ρr ∝ 1/a4, while the mass density ρm of nonrelativistic matter
behaves as 1/a3, it follows that

ρr/ρm ∝ 1/a(t) . (6.24)

Then density of nonrelativistic matter in our universe (visible and dark matter combined)
gives Ωm ≈ 0.30, so today ρr/ρm ≈ 9.2 × 10−5/0.30 ≈ 3.1 × 10−4. The constant of
proportionality in Eq. (6.24) is then determined, giving

ρr(t)

ρm(t)
=

[
a(t0)

ρr(t0)

ρm(t0)

]
1

a(t)
=
a(t0)

a(t)
× 3.1× 10−4 . (6.25)

Since a(t)→ 0 as t→ 0, the right-hand-side approaches infinity in this limit. Thus there
was a time at which the value of the right-hand-side went through one, and this time is
denoted by teq, the time of radiation-matter equality. We will assume that the universe is
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flat, and that for t > teq we can make the crude approximation that the universe can be
treated as if it were dominated by nonrelativistic matter. This approximation ignores the
effect of radiation for times shortly after teq, and it also ignores the effect of dark energy
(and the consequent acceleration) during the past 5 billion years or so. As discussed in
Lecture Notes 3, during the matter-dominated era the scale factor behaves as a(t) ∝ t2/3.
Thus, writing Eq. (6.25) for t = teq gives

ρr(teq)

ρm(teq)
≡ 1 =

a(t0)

a(teq)
× 3.1× 10−4 . (6.26)

Remembering that a(t0)/a(teq) = 1 + zeq (see Eq. (2.15)), the redshift zeq of matter-
radiation equality is given by

zeq =
1

3.1× 10−4
− 1 ≈ 3200 . (6.27)

If we ignore for now the acceleration that our universe has undergone during the last
5 billion years or so, we can approximate it as a flat matter-dominated universe, with
a(t) ∝ t2/3. This gives teq = 5.5× 10−6 t0, so for t0 = 13.8 Gyr, teq ≈ 75, 000 years. Our
approximations have been crude, but Barbara Ryden quotes a more precise numerical
calculation (on p. 97), where she finds teq ≈ 47, 000 years.

DYNAMICS OF THE RADIATION–DOMINATED ERA:

When we studied the dynamics of a matter-dominated universe (i.e., a universe whose
mass density is dominated by nonrelativistic matter) in Lecture Notes 3, we learned that
the evolution of such a universe can be described by the two Friedmann equations: ȧ

a

2

=
8π

3
Gρ− kc2

a2
(6.28a)(

matter-dominated
universe

)
ä = −4π

3
Gρa , (6.28b)

where a(t) is the scale factor, ρ(t) is the mass density, and an overdot represents differ-
entiation with respect to time t. In such a matter-dominated universe we found that the
mass density behaves as

ρ(t) ∝ 1

a3(t)
(matter-dominated). (6.29)

The three equations above are not independent, but in fact any two of them can be used
to derive the third. For example we can derive Eq. (6.28b) by multiplying Eq. (6.28a) by
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a2 and then differentiating it with respect to time. The resulting equation will contain a
term proportional to ρ̇. Eq. (6.28b) can then be obtained by replacing ρ̇ by

ρ̇ = −3
ȧ

a
ρ (matter-dominated), (6.30)

which can be derived from Eq. (6.29).

For a universe dominated by radiation, we have already learned (see Eq. (6.20)) that

ρ(t) ∝ 1

a4(t)
(radiation-dominated), (6.31)

in contrast to Eq. (6.29). This implies that Eqs. (6.28a) and (6.28b) will no longer be
consistent with each other, since the derivation of Eq. (6.28b) described in the previ-
ous paragraph will give a different result. To correctly describe a radiation-dominated
universe, we will have to reconcile this inconsistency.

While we have not yet used the word, Eq. (6.31) can be viewed as a statement about
the pressure of radiation. Pressure is relevant, because it is the pressure of a gas that
determines how much energy it looses if it expands. Consider, as a thought experiment,
a volume of gas contained in a chamber with a movable piston, as shown below:

Figure 6.1: A piston chamber, used to discuss the effect of pressure on the rate of change
of the energy density of an expanding gas.

We will assume that the piston chamber is small enough so that gravity plays no role
in our thought experiment. Let U denote the total energy of the gas, and let p denote
the pressure. Suppose that the piston is moved a distance dx to the right. (We suppose
that the motion is slow, so that the gas particles have time to respond and to maintain
a uniform pressure throughout the volume.) The gas exerts a force pA on the piston,
so the gas does work dW = pAdx as the piston is moved. The volume increases by an
amount dV = Adx, so dW = p dV . The energy of the gas decreases by this amount, so

dU = −p dV . (6.32)
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It can be shown that this relation is valid whenever the volume of a gas is changed,
regardless of the shape of the volume.

Now consider a homogeneous, isotropic, expanding universe, described by a scale
factor a(t). Let u = ρc2 denote the energy density of the gas that fills it. We will
consider a fixed coordinate volume Vcoord, so the physical volume will vary as

Vphys(t) = a3(t)Vcoord , (6.33)

and the energy of the gas in this region is given by

U = Vphysu . (6.34)

Using these relations, you will show in Problem Set 6 that

d

dt

(
a3ρc2

)
= −p d

dt
(a3) , (6.35)

and then that

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
. (6.36)

By comparing this equation with the matter-dominated relation of Eq. (6.30), we see
that nonrelativistic matter has zero pressure. This could have been expected, since
nonrelativistic matter means a gas of approximately motionless particles, and we assumed
starting in Lecture Notes 3 that there is no loss of energy when the universe filled with
nonrelativistic matter expands — the energy spreads out as the volume increases, but
otherwise it is not changed. By contrast, you will also show in Problem Set 6 that
radiation, with a mass density that falls off as 1/a4(t), has a pressure given by

p =
1

3
u =

1

3
ρc2 . (6.37)

Thus, the new ingredient that is introduced by radiation, which is causing an inconsis-
tency between Eqs. (6.28a) and (6.28b), is pressure.

The treatment of pressure in general relativity is unambiguous, and the implication
for this situation is simple: the ȧ equation (6.28a) is not modified, but the ä equation
(6.28b) needs to be modified. By accepting Eq. (6.28a) and using Eq. (6.36) for ρ̇, you
will show in Problem Set 6 that Eq. (6.28b) must be modified to read

d2a

dt2
= −4π

3
G

(
ρ+

3p

c2

)
a . (6.38)
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While general relativity might be needed to prove the above equation, Newtonian ar-

guments are sufficient to at least make this result seem extremely plausible. We know that

when the pressure is non-negligible, ρ̇ is given by Eq. (6.36), and that then Eqs. (6.28a)

and (6.28b) become incompatible. One or both of these equations, therefore, must be

modified by the presence of pressure. The two equations are different from each other,

however, in an obvious way. The ä equation is a force equation, as in ~F = m~a, and in fact

we derived it in our Newtonian model by applying ~F = m~a to each particle in the model

universe. The ȧ equation, on the other hand, was derived by finding a first integral of the

ä equation, and therefore looks like a conservation of energy equation. In fact, we showed

in Problem 3, Problem Set 3, that for the Newtonian model with a finite radius Rmax, the

ȧ equation is precisely equivalent to the statement that the total energy of the Newtonian

model universe is fixed. Does it make sense to add a pressure term to a conservation of

energy equation? No, it does not. As a toy problem, we can ask what would happen

if the universe were filled with TNT, and at a certain pre-arranged time little gremlins

throughout the universe ignited the TNT, so the pressure suddenly changed. The pres-

sure change can in principle be very large and fast, but there is no mechanism to cause

any of the other quantities in Eq. (6.28a) to change rapidly. We can consider a small

region of space, in which the velocities associated with the Hubble expansion are all small,

so we can expect that we can trust our Newtonian understanding of how matter should

behave. In that case ρ describes an energy density that cannot change discontinuously,

and a and ȧ describe the positions and velocities of particles, which also cannot change

discontinuously. So, our conclusion is that a term depending on the pressure cannot be

added to Eq. (6.28a), and then Eq. (6.38) follows as a consequence.

Note that Eq. (6.38) is implying something that is perhaps very surprising: the

pressure is contributing to the gravitational acceleration. That is, the pressure as well

as the energy density can act as a source for the gravitational field. We will not make

much use of Eq. (6.38) in the rest of this chapter, as Eq. (6.28a) will be sufficient for most

of our conclusions. But we can keep in mind that Eq. (6.28a) would not be consistent

with ρ(t) ∝ 1/a4(t) if Eq. (6.38) were not true. We will learn later that the pressure

term in Eq. (6.38) can have dramatically new consequences. In particular, we will learn

that pressures, unlike mass densities, can sometimes be negative. Eq. (6.38) implies that

a negative pressure can result in a gravitational repulsion. We believe that the current

acceleration of the universe, which we mentioned briefly in Lecture Notes 3, can be

attributed to the negative pressure of an unidentified material that is called dark energy.

Many of us also believe that the early universe underwent a very brief period of incredibly

rapid acceleration, called inflation, which was also driven by a negative pressure. We will

return to both of these topics in later sets of lecture notes.
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DYNAMICS OF A FLAT RADIATION-DOMINATED UNIVERSE:

As a simple (but important) special case, consider the evolution of a radiation-
dominated universe with k = 0. From Eqs. (6.20) and (6.28a), one has

1

a2

(
da

dt

)2

=
const

a4
, (6.39)

which leads to
da

dt
=

√
const

a
. (6.40)

This equation can be solved by rewriting it as

ada =
√

const dt (6.41)

and then integrating both sides to obtain

1

2
a2 =

√
const t+ const′ . (6.42)

The convention is to choose the zero of time so that a(t) = 0 for t = 0, which implies
that const′ = 0. Thus, the final result can be written as

a(t) ∝
√
t (radiation-dominated) . (6.43)

The Hubble expansion rate H(t) is given by Eq. (2.8), which says that

H(t) = ȧ/a . (6.44)

Combining this equation with Eq. (6.43), one has immediately that

H(t) =
1

2t
(radiation-dominated) . (6.45)

The age of a radiation-dominated universe is therefore related to the Hubble constant
by t = 1

2H
−1. (Recall for comparison that for a matter-dominated flat universe with

a(t) ∝ t2/3, the age is 2
3H
−1.) The horizon distance is given by Eq. (4.7), and the result

here is

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′

= 2ct (radiation-dominated) .

(6.46)
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(Recall that this answer is to be compared with 3ct for the matter-dominated universe.)
If one inserts Eq. (6.45) into Eq. (6.28a) (with k = 0, still), one obtains a relation for the
mass density as a function of time:

ρ =
3

32πGt2
. (6.47)

Note that the 1/t2 behavior in the above equation is consistent with what we already
know: ρ ∝ 1/a4(t), and a(t) ∝

√
t.

BLACK–BODY RADIATION:

If a cavity is carved out of any material, and the walls of the cavity are kept at a
uniform temperature T , then the cavity will fill with radiation. Assuming that the walls
are thick enough so that no radiation can get through them, then the energy density (and
also the entire spectrum of the radiation) is determined solely by the temperature T —
the composition of the material is entirely irrelevant. The material is serving solely to
keep the radiation at a uniform temperature. Radiation of this type is generally called
either thermal radiation or black-body radiation.

The motivation for the name “black-body radiation” stems from the fact that a
“black” body in empty space can be shown to emit radiation of exactly this intensity
and spectrum. Here the word “black” is used to describe an object that absorbs all
light that hits it, so there is no reflected light, although there is emission due to thermal
effects. Emission is distinguished from reflection by the fact that reflection is an im-
mediate response to the radiation that is currently hitting the material. To understand
the radiation emitted by a black body, imagine a block of such material inside the cavity
described in the previous paragraph. Since thermal equilibrium has been established, one
concludes that the block at temperature T must emit radiation which precisely matches
the radiation that it is absorbing — otherwise it would either heat up or cool down,
and that would violate the assumption of thermal equilibrium. In fact, not only must
the energy densities match, but the entire spectrum must match — otherwise one could
imagine introducing a frequency-selecting filter that would cause the black body to heat
or cool. That is, if there were any frequency band for which the radiation emitted by the
block did not match the radiation hitting the block, then we could surround the block by
a filter that transmits only in that frequency band, and we would see the block heat up
or cool down. Since objects will never heat up or cool down once thermal equilibrium is
reached, the emitted and absorbed radiation must match in every frequency band. Since
the block is assumed to be black, none of the emitted radiation is reflection, so all of it
is thermal emission that will continue to be emitted even if the block is removed from
the cavity. Thus, a black body will emit radiation with an intensity and a spectrum that
depends only on the temperature, and not on any property of the material other than
the fact that it is black.
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The energy density and other properties of the radiation can be derived using the
standard principles of statistical mechanics, but the derivation will not be included in this
course. However, I will make a few comments about the underlying physics, and then I will
state the results. The rule of thumb for classical statistical mechanics is the “equipartition
theorem,” which says that under certain circumstances (which I will not specify), each
degree of freedom of a system at temperature T acquires a mean thermal energy of 1

2kT .
For example, in a gas of point particles each particle acquires a mean thermal energy of
3
2kT , since motion in the x, y and z directions constitutes three degrees of freedom. For
the system of radiation inside a cavity, each possible standing wave pattern corresponds
to one degree of freedom. In a rectangular cavity, for example, a standing wave can be
described in terms of a polarization, which has two linearly independent values, and a

wave vector ~k, with the wave amplitude proportional to Re{ei~k·~x}. For the standing wave

to exist, each component of ~k must satisfy the condition that the wave amplitude must
vary either an integral or half-integral number of cycles from one side of the cavity to
the other. Thus a standing wave pattern exists only for a discrete set of frequencies.
The discrete set of frequencies is, however, infinite, since there is no upper limit to the
frequency of a standing wave. The number of degrees of freedom is therefore infinite,
and the equipartition theorem cannot be applied. This problem is known as the “Jeans
catastrophe,” and represents an important failure of classical physics. The implications
can be stated as follows: if classical physics were correct, then a region of space containing
an electromagnetic field could never come into thermal equilibrium — instead it would
continue indefinitely to absorb energy from its surroundings, and the energy absorbed
would be used to excite higher and higher frequency standing waves of the field. The
electromagnetic field would be an infinite heat sink, draining away all thermal energy.

Of course the electromagnetic field does not drain away all thermal energy, and the
reason comes from quantum theory. Classically it would be possible to excite a standing
wave by an arbitrary amount, but quantum theory requires that the excitations occur
only by the addition of discrete photons, each with an energy hν, where ν is the frequency
of the standing wave. For cases in which hν � kT , the classical answer is not changed
— such standing waves acquire a mean energy of 1

2kT for each polarization. However,
for those standing waves with hν � kT , the minimum excitation is much larger than the
energy which is classically expected. These modes are then only rarely excited, and the
total energy is convergent.

When the calculation is done quantum mechanically, one finds that black-body elec-
tromagnetic radiation has an energy density given by

u = g
π2

30

(kT )4

(h̄c)3
, (6.48)
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where

k = Boltzmann’s constant = 1.381× 10−16 erg/K

= 8.617× 10−5 eV/K , (6.49)

h̄ =
h

2π
= 1.055× 10−27 erg-sec

= 6.582× 10−16 eV-sec ,

and

g = 2 (for photons) . (6.50)

The factor of g is introduced to prepare for the discussion below of black body radiation
of particles other than photons. g is taken as 2 for photons because the photon has two
possible polarization states. The polarization states can be described as linearly polarized,
or as circularly polarized, depending on one’s choice of basis. In either case, however,
there are two polarizations. A photon traveling along the z-axis can be linearly polarized
in either the x or y directions, or it can have a circular polarization of left or right. The
polarization is related to the intrinsic angular momentum, or spin, of the photon: right
circular polarization corresponds to the spin being aligned with the momentum, while
left circular polarization is the opposite. Thus one could say that g is taken as 2 because
the photon has two spin states.

One also finds that the radiation has a pressure, given by

p =
1

3
u . (6.51)

The number density of photons is found to be

n = g∗
ζ(3)

π2

(kT )3

(h̄c)3
, (6.52)

where

ζ(3) =
1

13
+

1

23
+

1

33
+ · · · ≈ 1.202 (6.53)
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is the Riemann zeta function evaluated at 3, and

g∗ = 2 (for photons) . (6.54)

Finally, the radiation has an entropy density s (entropy per unit volume) given by

s = g
2π2

45

k4T 3

(h̄c)3
. (6.55)

We will not need to know the precise meaning of entropy, but it will suffice to say that the
entropy is a measure of the degree of disorder (or uncertainty) in the statistical system.
Entropy is conserved if the system remains in thermal equilibrium, and this assumption
appears to be quite accurate for most processes in the early universe. (The inflationary
process, to be discussed later, is a colossal exception.) When departures from thermal
equilibrium occur, the entropy is monotonically increasing, a principle known as the
second law of thermodynamics.

In the laboratory the only kind of thermal radiation that can be achieved is that of
photons. The radiation in the early universe, on the other hand, is believed to have also
contained neutrinos. During the 20th century these neutrinos were thought to have zero
rest mass, like the photon, but that is no longer the case. We now believe that neutrinos
have a very small but nonzero mass. Nonetheless, as long as m0c

2 � kT , which is
certainly the case throughout the history of the universe, the neutrinos contribute to the
thermal radiation as if they were massless particles.

Besides having a nonzero rest mass, neutrinos differ from photons in another property
which has an important effect on their thermal radiation. The photon belongs to a class of
particles called bosons, and these particles have the property that there is no limit to the
number of particles that can exist simultaneously in a given quantum state. It is precisely
because of this property that the photon can give rise to a classical electromagnetic field.
The field behaves classically because it is composed of huge numbers of photons. The
neutrino, on the other hand, belongs to a class of particles called fermions. For these
particles it is impossible to have more than one particle in a given quantum state at one
time. An electron is also a fermion, and the principle of one electron per quantum state
is sometimes called the “Pauli Exclusion principle.”

In relativistic quantum field theory it is possible to prove the spin-statistics theorem,
which says that the boson/fermion property of a particle is connected to its intrinsic
angular momentum, also called the particle’s spin. If the spin is an integer (in units of
h̄), then the particle must be a boson. The only other possibility is that the spin is half-
integer (more precisely, half-odd-integer, again in units of h̄), in which case the particle
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is a fermion. The proof requires relativistic invariance, so there is no analogous theorem
in nonrelativistic quantum mechanics.

Since fermions obey the Pauli exclusion principle, which is a restriction on the states
that they can occupy, the fact that a particle is a fermion leads to a reduction in the
number of particles that will be present in black-body radiation. The equations that
describe the black-body radiation of fermions have the same form as the equations for
bosons, so the energy density u, the pressure p, the number density n, and the entropy
density s are again described by Eqs. (6.48), (6.51), (6.52), and (6.55) above. The Pauli
exclusion principle, however, causes the factor g to be multiplied by 7/8 if the particle is
a fermion, and the factor g∗ to be multiplied by 3/4.

To find the values of g and g∗ for neutrinos, we must count how many types of
neutrinos exist. While there is only one kind of photon, we believe that there are three
different species, or flavors, of neutrinos: the electron neutrino νe, the muon neutrino
νµ, and the tau neutrino ντ . The existence of the three species causes g and g∗ to be
multiplied by 3. In addition, neutrinos exist as particles and antiparticles, in contrast
to the photon which is its own antiparticle. The particle/antiparticle option leads to a
factor of 2 for both g and g∗. While the photon has two spin states, the neutrino has only
1: neutrinos are left-handed, which means that their spin points in the opposite direction
from their momentum, while antineutrinos are right-handed. Thus the values of g and g∗

for neutrinos are given by

gν =
7

8︸ ︷︷ ︸
Fermion factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/antiparticle

× 1︸ ︷︷ ︸
Spin states

=
21

4
.

g∗ν =
3

4︸ ︷︷ ︸
Fermion factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/antiparticle

× 1︸ ︷︷ ︸
Spin states

=
9

2
.

(6.56)

(6.57)

[One might wonder why neutrinos are not produced when a piece of metal is heated
until it glows. The answer is that neutrinos interact very weakly at these low energies,
and their production rate is totally negligible. Thermal equilibrium neutrino radiation
can in principle be seen at any temperature, but it is very difficult to produce. The
radiation would reach thermal equilibrium only if it were confined to a box opaque to
neutrinos, which means that the walls of the box would have to be much thicker than the
diameter of the earth. In the early universe, however, the temperatures were much higher.
Neutrino interaction rates increase with energy, so in the early universe they interacted
rapidly with the other particles, and were quickly brought to thermal equilibrium.]
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As the temperature is increased, more and more types of particles contribute to the
thermal radiation. Any particle with mc2 � kT will contribute in essentially the same
way as a massless particle. In particular, when kT is much larger than the value of
mc2 for an electron (0.511 MeV), then electron-positron pairs contribute to the thermal
radiation. Electrons and positrons each have two spin states, and they are antiparticles
of each other. They are again fermions, so

ge+e− =
7

8︸ ︷︷ ︸
Fermion factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/antiparticle

× 2︸ ︷︷ ︸
Spin states

=
7

2
.

g∗e+e− =
3

4︸ ︷︷ ︸
Fermion factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/antiparticle

× 2︸ ︷︷ ︸
Spin states

= 3 .

(6.58)

(6.59)

Including photons, three species of neutrinos, and the electron-positron pairs, the total
value of g is given by

gtot = 2 +
21

4
+

7

2
= 10

3

4
. (6.60)

This value is appropriate for values of kT which are larger than 0.511 MeV, but smaller
than 106 MeV (where muons begin to be produced).

THE ENERGY DENSITY OF RADIATION

In Eq. (6.21) we stated an estimate for the energy density in radiation of the cur-
rent universe, which we are now prepared to justify. The value can be calculated in
terms of the current temperature Tγ of the cosmic microwave background. The best
single measurement of Tγ to date was done by the FIRAS (Far InfraRed Absolute Spec-
trophotometer) instrument on the COBE (Cosmic Background Explorer) satellite, which
released its final analysis in 1999,* reporting a value of Tγ = 2.725 ± 0.002 K. In 2009

Fixsen† combined the results of all experiments to date to obtain a value 2.7255± 0.0006
K.

The radiation that exists in the universe today consists of photons and neutrinos. The
energy density is therefore given by Eq. (6.48), using g = 2 for the photon contribution,

* J.C. Mather, D.J. Fixsen, R.A. Shafer, C. Mosier, and D.T. Wilkinson, “Calibrator
Design for the COBE Far-Infrared Absolute Spectrophotometer (FIRAS),” Astrophysical
Journal, vol. 512, pp. 511–520 (1999), http://arxiv.org/abs/astro-ph/9810373.
† D.J. Fixsen, “The Temperature of the Cosmic Microwave Background,” Astrophys-

ical Journal, vol. 707, pp. 916–920 (2009), http://arxiv.org/abs/arXiv:0911.1955.

http://arxiv.org/abs/astro-ph/9810373
http://arxiv.org/abs/arXiv:0911.1955
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and g = 21/4 for the neutrino contribution, as given by Eq. (6.56). There is a further
complication, which you explore in Problem Set 7: the temperature Tν of the neutrinos
is not the same as the temperature Tγ of the photons, but instead

Tν =

(
4

11

)1/3

Tγ , (6.61)

This temperature differential is established as the e+e− pairs disappear from the thermal
equilibrium mix, as kT falls below the electron rest energy of 0.511 MeV. The asymmetry
results from the fact that the neutrinos interact too weakly to absorb any significant
amount of the energy from the e+e− pairs, so all the energy goes into heating the photons
relative to the neutrinos. Combining the two contributions to the energy density,

urad,0 =

[
2 +

21

4

(
4

11

)4/3
]
π2

30

(kTγ)
4

(h̄c)3

= 7.01× 10−14 J/m
3
,

(6.62)

in agreement with Eq. (6.21).

NEUTRINO MASSES:

The fact that neutrinos have mass has become known only relatively recently, and
we still do not know what the masses are. The status of particle data is tallied by the
Particle Data Group at Lawrence Berkeley Laboratory, which can be found on the web at
http://pdg.lbl.gov/. In 1996 the Particle Data Group reported that there is “no direct,
unconstested evidence for massive neutrinos,” while in 1998 it added that suggestive
evidence had been found. In 2000 the evidence was “rather convincing,” and by 2002 the
evidence had become “compelling.”

The evidence remains indirect, however. The mass of a neutrino has never been
measured, but instead the existence of a nonzero mass is inferred from the fact that we
see neutrinos “oscillate” from one species to another. For many years it was a mystery
why we do not detect as many neutrinos from the Sun as is expected, but we are now
convinced that the deficit is caused by the fact that the electron neutrinos produced in
the Sun can oscillate to become muon or tau neutrinos, which are much harder to detect.
The muon and tau neutrinos can now be detected by the Sudbury Neutrino Observatory
buried 2100 m underground in a mine near Sudbury, Ontario, and by SuperKamiokande,
buried 1000 m in a mine at Hida-city, Gifu prefecture, Japan. In addition, starting in 1998,
experiments at SuperKamiokande and other locations have found that muon neutrinos
produced by cosmic ray collisions in the upper atmosphere can undergo oscillations into
other species before reaching the ground. The 2015 Nobel Prize in Physics was awarded

http://pdg.lbl.gov/
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to Takaaki Kajita and Arthur McDonald “for the discovery of neutrino oscillations, which
shows that neutrinos have mass.”

Such oscillations would not be possible if the neutrinos were massless, essentially
because a massless particle experiences an infinite time dilation, so time effectively stops.
A massless particle in vacuum cannot do anything except travel at the speed of light. The
measurements of the oscillations do not allow a determination of the mass, but instead
allow one to infer the differences between the squares of the masses. As of 2016, the
Particle Data Group reports

∆m2
21 c

4 = (7.53± 0.18)× 10−5 eV2 ,

∆m2
32 c

4 = (2.44± 0.06)× 10−3 eV2 ,

or

∆m2
32 c

4 = (2.51± 0.06)× 10−3 eV2 , (6.63)

where the two options for ∆m2
32 depend on assumptions about the ordering of the masses.

The masses are labeled 1, 2, and 3, which are related to the better-known flavor labels νe,
νµ, and ντ in a complicated way. The PDG also reports that the rest energy of each type
of neutrino is known to be less than 2 eV. The flavor labels νe, νµ, and ντ indicate how
the neutrinos are produced, but in the peculiar context of quantum theory these states
do not have a well-defined mass. Instead each state of definite mass is a superposition of
different flavor states, and vice versa. Although these issues are fascinating, we will not
have cause to pursue them any further. If you have not studied quantum theory you will
probably have no idea what the last few sentences mean, and that is okay as far as this
course is concerned.

Nonetheless, the presence of any mass for the neutrino, no matter how small, raises an
important question about the counting of spin states, which is important in our formulas
for the black-body radiation of neutrinos. The bottom line will be that the mass makes
no difference, but the reasoning is not simple.

We said above that the neutrino has one spin state, because neutrinos are always
left-handed: their spin points in the opposite direction from their momentum. If the
neutrino were massless, this statement could be precisely true. It can be shown that
for massless particles, if the statement is true for one observer, then the spin and the
momentum measured by any other observer would align in the same way. Thus, if the
neutrino were massless, its left-handedness would be a relativistically invariant property.
While it is difficult to prove this invariance, it is easy to see that the invariance fails if the
mass of the neutrino is not zero. For definiteness, consider a left-handed neutrino moving
along the z axis in the positive direction, so its spin points in the negative z direction.
If it has a nonzero mass then it moves slower than the speed of light, so we can always
imagine an observer who moves faster, also along the z axis in the positive direction.
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To the moving observer the neutrino will be moving in the negative z direction, but the
spin will still point along the negative z direction. Hence, the moving observer will see a
right-handed particle. But what is this mysterious right-handed particle? Is this a new
spin state that must be counted in our calculations of black-body radiation?

We do not yet have a unique theory of neutrino masses, but there are two possibilities.
The neutrino might have a Majorana mass, in which case the mysterious right-handed
particle in the above thought experiment would be an ordinary antineutrino. Since the
antineutrino has already been included in the black-body formulas, they will not be
changed. The other possibility is that the neutrino can have a Dirac mass, which would
be the same type of mass that an electron has. In that case, the mysterious right-handed
particle in the thought experiment would be a new spin state of the neutrino. The
statement that neutrinos are always left-handed would be blatantly false. Nonetheless,
our theories would allow us to calculate the strength of the interactions of these right-
handed neutrinos, and they would be incredibly weak. They would be so weak that they
would essentially never be produced in the early inverse, so again our black-body formulas
would not require modification.

THERMAL HISTORY OF THE UNIVERSE:

We now have all the ingredients necessary to calculate the temperature of the universe
as a function of time. Eq. (6.47) gives the mass density as a function of time, and
Eq. (6.48) relates the energy density to the temperature. Recalling that u = ρc2, one can
combine these relations and solve for the temperature as a function of time:

kT =

(
45h̄3c5

16π3gG

)1/4
1√
t
. (6.64)

To find the temperature at 1 sec after the big bang, we now need only plug in numbers:

kT =

[
45
(
1.055× 10−34 J-s

)3 (
2.998× 108 m-s−1

)5
16π3(10.75)

(
6.673× 10−11 m3-kg−1s−2

) ]1/4

× 1

(1 s)
1/2
×
(

1 J

kg-m2-s−2

)1/4

= 1.378× 10−13 J ,

where the factor (1 erg/gm-cm2-sec−2)1/4 is equal to 1, and has been inserted to convert
the units to the desired form. Using 1 eV = 1.602× 10−12 erg, one can convert this result
if one wishes to

kT = 0.860 MeV .
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Since one knows that T ∝ t−1/2, one can write down a general expression for the time-
temperature relation, for 0.511 MeV� kT � 106 MeV, as

kT =
0.860 MeV√
t (in sec)

, (6.65a)

or equivalently

T =
9.98× 109 K√
t (in sec)

. (6.65b)

As an example one can use Eq. (6.65b) to calculate the temperature of the universe
at the end of the first seven days. (Here we are making a minor error, since the value
gtot = 10 3

4 is not appropriate when kT falls below 0.5 MeV.) One finds T ≈ 1.3× 107 K,
which is roughly the temperature which is believed to exist in the core of a bright star.

RELATIONSHIP BETWEEN a AND T :

When a gas of black-body radiation expands in thermal equilibrium, there is a simple
relationship between the scale factor a and the temperature T . We have already seen that
the energy density ρ ∝ 1/a4, and that ρ ∝ T 4. It follows that the product aT remains
constant as the universe expands. The constancy of aT is actually a direct consequence of
statistical mechanics, and has nothing to do with the dynamics of the expanding universe.
As long as the expansion of the universe is slow enough so that the radiation stays in
thermal equilibrium, which it is, then the entropy of the expanding gas remains constant.
According to Eq. (6.55) the entropy density is proportional to gT 3, so the total entropy
S contained in a fixed region in the comoving coordinate system obeys the relation

S = sVphys = sa3(t)Vcoord ∝ ga3T 3 , (6.66)

where Vcoord is the coordinate volume of the region. As long as g does not change,
then the conservation of entropy implies that aT remains constant. Eq. (6.66) allows us
to also understand what happens when g does change, which happens when there is a
change in the kinds of particles that contribute to the black-body radiation. For example,
when kT falls below 0.5 MeV and the electron-positron pairs disappear from the thermal
equilibrium mix, the entropy that had been contained in the electron-positron component
of the gas must be given to the other components. However, at this point the neutrinos
have decoupled, which means that they are no longer undergoing significant interactions
with the rest of the gas. The entropy from the electron-positron pairs is therefore given
entirely to the photons, and essentially none is given to the neutrinos. The photons are
heated relative to the neutrinos, and they continue to be hotter than the neutrinos into
the present era. On Problem Set 7 you will show that this transfer of entropy from the
electron-positron pairs to the photons increases the quantity aTγ , where Tγ is the photon

temperature, by a factor of (11/4)
1/3

= 1.40.
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RECOMBINATION AND DECOUPLING:

The observed baryonic matter in the universe — the matter made of protons, neu-
trons, and electrons — is about 80% hydrogen by mass. Most of the rest is helium, with
an almost negligible amount of heavier elements. One can use statistical mechanics to
understand the behavior of this hydrogen under the conditions prevalent in the early
universe, but I will not attempt such a calculation in this course. As one might guess,
hydrogen will ionize (i.e. break up into separate protons and electrons) if the temperature
is high enough. The temperature necessary to cause ionization depends on the density,
but for the history of our universe one can say that the hydrogen is ionized when T is
greater than about 4, 000 K.

Thus, when the temperature falls below 4, 000 K, the ionized hydrogen coalesces into
neutral atoms. The process is usually called “recombination,” although I am at a loss
to explain the significance of the prefix “re-”. When recombination occurs, the universe
becomes essentially transparent to photons. The photons cease to interact with the other
particles, and this process is called “decoupling”. Decoupling occurs slightly later than
recombination, at a temperature of about 3, 000 K, since even a small residual density of
free electrons is enough to keep the photons coupled to the other particles. The photons
which we observe today in the cosmic background radiation are photons which for the
most part have last scattered at the time of decoupling.

We can estimate the time of decoupling by using the constancy of aT . Here T
indicates the temperature of the photons, since the neutrinos have decoupled and are not
relevant to the current discussion. It is very accurate to assume that aT has remained
constant from the time of decoupling to the present, since the photons are not interacting
significantly with anything else, so the conservation of photon entropy implies that a3sγ ∝
a3T 3 is constant. Using the subscript d to denote quantities evaluated at the time of
decoupling, and subscript 0 to denote quantities evaluated at the present time, one has

adTd = a0T0 , (6.67)

from which one has immediately that

ad
a0

=
T0

Td
. (6.68)

Assuming that the universe is flat, and making the crude approximation that it can be
treated as matter-dominated from td to the present, one has a(t) ∝ t2/3 and

(
td
t0

)2/3

=
T0

Td
. (6.69)
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Solving, one has

td =

(
T0

Td

)3/2

t0

≈
(

2.7 K

3000 K

)3/2

×
(
13.7× 109 yr

)
≈ 370, 000 yr .

(6.70)

On p. 159, Ryden quotes a more accurate numerical calculation, giving td ≈ 350, 000 yr.

THE SPECTRUM OF THE COSMIC BACKGROUND RADIATION:

The cosmic background radiation was discovered by Penzias and Wilson in 1965.
They measured at one frequency only, but found that the radiation appeared to be
coming uniformly from all directions in space. This radiation was quickly identified by
Dicke, Peebles, Roll, and Wilkinson as the remnant radiation from the big bang. Since
then the measurement of the cosmic background radiation has become a minor industry,
and much data has been obtained about the spectrum of the radiation and about its
angular distribution in the sky.

The prediction from big bang cosmology is that the spectrum should be thermal,
corresponding to black-body radiation that has been redshifted from its initially very
high temperature. It is a peculiar feature of the black-body spectrum that it maintains
its thermal equilibrium form under uniform redshift, even though the photons in the
radiation are noninteracting. That is, if each photon in the black-body probability dis-
tribution is redshifted by the same factor, the net effect is to produce a new probability
distribution which is again of the black-body form, except that the temperature is modi-
fied by a factor of the redshift. Thus, the redshift reduces the temperature, but does not
lead to departures from the thermal equilibrium spectrum.

The ideal Planck spectrum for such radiation has an energy density ρν(ν)dν, for
radiation in the wavelength interval between ν and ν + dν, given by

ρν(ν)dν =
16π2h̄ν3

c3
1

e2πh̄ν/kT − 1
dν . (6.71)

The subscript ν on ρν indicates that it is the energy density per frequency interval,
while one could alternatively speak of the energy density per wavelength interval, ρλ.
(As with the other statistical mechanics results in this set of Lecture Notes, we will use
Eq. (6.71) without derivation.) Observers usually do not directly measure the energy
density, however, but instead measure the intensity of the radiation. It can be shown
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that the power hitting a detector per frequency interval per area of aperature per solid
angle of aperture is given by

Iν(ν) =
c

4π
ρν(ν) =

4πh̄ν3

c2
1

e2πh̄ν/kT − 1
. (6.72)

The data on the spectrum available in 1975 is summarized on the two graphs on
the following page. The graphs show measurements of the energy density in the cosmic
background radiation at different frequencies (or wavelengths). The lower horizontal axis
shows the frequency in gigahertz (109 cycles per second), and the upper horizontal axis
shows the corresponding wavelength. The solid line is the expected blackbody distribu-
tion, shown for the best current determination of the temperature, 2.726 K. Part (a)
shows the low frequency measurements, including those of Penzias & Wilson and Roll
& Wilkinson (which was published about 6 months after the Penzias & Wilson result).
Part (b) includes the full range of interesting frequencies. The circles show the results
of each measurement, and the bars indicate the range of the estimated uncertainty. The
measurements with small uncertainties are shown with dark shading. A high-frequency
broad-band measurement is shown on part (b), labeled “1974 Balloon” — the measured
energy density is shown as a solid line, and the estimated uncertainty is indicated by gray
shading. The 1971 balloon measurements were taken by the MIT team of Dirk Muehlner
and Rainer Weiss. (The energy density on both graphs is measured in electron volts per
cubic meter per gigahertz.)

The earth’s atmosphere poses a serious problem for measuring the high frequency
side of the curve, so the best measurements must be done from balloons, rockets, or
satellites. In 1987 a rocket probe was launched by a collaboration between the University
of California at Berkeley and Nagoya University in Japan. The resulting paper* included
a graph of the remarkable data shown in Figure 6.3.

Note that the points labeled 2 and 3 are much higher than the black body spectrum
predicts. Using each of these points individually to determine a temperature, the authors
find:

Point 2: T = 2.955± 0.017 K
Point 3: T = 3.175± 0.027 K

These numbers correspond to discrepancies of 12 and 16 standard deviations, respectively,
from the temperature of T = 2.74 K that fits the lower frequency points. In terms of
energy, the excess intensity seen at high frequencies in this experiment amounts to about

* T. Matsumoto, S. Hayakawa, H. Matsuo, H. Murakami, S. Sato, A.E. Lange, and
P.L. Richards, “The Submillimeter Spectrum of the
Cosmic Background Radiation,” Astrophysical Journal, vol. 329, pp. 567–571 (1988),
http://adsabs.harvard.edu/abs/1988ApJ...329..567M.

http://adsabs.harvard.edu/abs/1988ApJ...329..567M
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Figure 6.2: The spectrum of the cosmic microwave background as it was known in 1975.
Each graph shows the energy density of the radiation, in electron volts per cubic meter
per gigahertz, as a function of frequency. Part (a) shows the lowest frequencies, which
include the original measurement of Penzias and Wilson, while part (b) includes the full
range of interesting frequencies. The curve shows the black-body spectrum for 2.726 K.
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Figure 6.3: Three data points in the CMB spectrum measured by the Berkeley-Nagoya
rocket experiment in 1987. Point (3) differs from the theoretically expected curve by 16
standard deviations. The lesson, apparently, is that one should not reject a previously
successful theory until the evidence against it is reliably confirmed.

10% of the total energy in the cosmic background radiation. Cosmologists were stunned
by the extremely significant disagreement with predictions. Some tried to develop theories
to explain the radiation, without much success, while others banked on the theory that it
would go away. The experiment looked like a very careful one, however, so it was difficult
to dismiss. The most likely source of error in an experiment of this type is the possibility
that the detectors were influenced by heat from the exhaust of the launch vehicle — but
the experimenters very carefully tracked how the observed radiation varied with time as
the detector moved away from the launch rocket, and it seemed clear that the rocket was
not a factor.

The same group tried to check their results with a second flight a year later, but the
rocket failed and no useful data was obtained.

In the fall of 1989 NASA launched the Cosmic Background Explorer, known as
COBE (pronounced “koh-bee”). This marked the first time that a satellite was used
to probe the background radiation. Within months, the COBE group announced their
first results at a meeting of the American Astronomical Society in Washington, D.C.,
January 1990. The data was so spectacular that the audience rose to give the speaker,
John Mather, a standing ovation. The detailed preprint, with a cover sheet showing a
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sketch of the satellite, was released the same day, and later published as an Astrophysical
Journal letter.*

The data showed a perfect fit to the blackbody spectrum, with a temperature of
2.735± 0.06 K, with no evidence whatever for the “submillimeter excess” that had been
seen by Matsumoto et al. The data was shown with estimated error bars of 1% of the
peak intensity, which the group regarded as very conservative. The graph is reproduced
here as Fig. 6.5.

Figure 6.5: The original (1990) COBE measurement of the spectrum of the cosmic
microwave background, based on only 9 minutes of data. The vertical axis shows the
energy density in units of electron volts per cubic meter per gigahertz.

Once again, the vertical axis is calibrated in electron volts per cubic meter per gigahertz.

Since the COBE instrument is far more precise and has more internal consistency
checks, there has been no doubt in the scientific community that the COBE result su-
percedes the previous one. Despite the 16σ discrepancy of 1988, the cosmic background
radiation is now once again believed to have a nearly perfect black-body spectrum.

In January 1993, the COBE team released its final data on the cosmic background
radiation spectrum. The first graph had come from just 9 minutes of data, but now the

* J.C. Mather et al., “A preliminary measurement of the cosmic microwave background
spectrum by the Cosmic Background Explorer (COBE) satellite,” Astrophysical Journal,
vol. 354, pp. L37–L40 (1990), http://adsabs.harvard.edu/abs/1990ApJ...354L..37M.

http://adsabs.harvard.edu/abs/1990ApJ...354L..37M
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Figure 6.4: The cover page of the original preprint of the
COBE cosmic microwave background spectrum measurement.
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team had analyzed the data from the entire mission. The error boxes were shrunk beyond
visibility to only 0.03%, and the background spectrum was still perfectly blackbody, just
as the big bang theory predicted. The new value for the temperature was just a little
lower, 2.726 K, with an uncertainty of less than 0.01 K.

The perfection of the spectrum means that the big bang must have been very simple.
The COBE team estimated that no more than 0.03% of the energy in the background
radiation could have been released anytime after the first year of the life of the universe,
since energy released after one year would not have had time to reach such a perfect state
of thermal equilibrium. Theories that predict energy release from the decay of turbulent
motions or exotic elementary particles, from a generation of exploding or massive stars
preceding those already known, or from dozens of other interesting hypothetical objects,
were all excluded at once.

Although a few advocates of the steady state universe have not yet given up, the
COBE team announced that the theory is ruled out. A nearly perfect blackbody spectrum
can be achieved in the steady state theory only by a thick fog of objects that could
absorb and re-emit the microwave radiation, allowing the radiation to come to a uniform
temperature. Steady state proponents have in the past suggested that interstellar space
might be filled by a thin dust of iron whiskers that could create such a fog. However, a
fog that is thick enough to explain the new data would be so opaque that distant sources
would not be visible.

In this chapter we have discussed mainly the spectrum of the cosmic microwave
background (CMB). Starting in 1992, however, with some preliminary results from the
COBE satellite, astronomers have also been able to measure the anisotropies of the CMB.
This is quite a tour de force, since the radiation is isotropic to an accuracy of about 1 part
in 105. Since the photons of the CMB have been travelling essentially on straight lines
since the time of decoupling, these anisotropies are interpreted as a direct measure of the
degree of nonuniformity of the matter in the universe at the time of decoupling, about
380,000 years after the big bang. These non-uniformities are crucially important, because
they give us clues about how the universe originated, and because they are believed to
be the seeds which led to the formation of the complicated structure that the universe
has today. We will return to discuss the physics of these nonuniformities near the end of
the course.

The Nobel Prize in Physics 2006 was awarded jointly to John C. Mather and George
F. Smoot “for their discovery of the blackbody form and anisotropy of the cosmic mi-
crowave background radiation.”


