
The Tensor Renormalization Group

Caleb Cook
Department of Physics, Harvard University, Cambridge MA 02138

(Dated: May 15, 2015)

We review the tensor renormalization group (TRG), a real space renormalization technique for
coarse-graining 2D classical lattice models. We outline the method briefly in the context of a
honeycomb lattice and then show explicitly how tensor renormalization proceeds on a square lattice.
An implementation of the TRG on a square lattice Ising model is given in Python, and a comparison
between the exact and TRG-obtained free energies of the model is made. Finally, we discuss the
limitations of the TRG and an extension of the method that has been introduced to address these
limitations.

I. INTRODUCTION

Understanding emergent phenomena in many-body
systems is one of the major goals of modern physics,
and even numerically simulating such systems on com-
puters remains a great challenge. If the microscopic de-
grees of freedom and their interactions are known, one
may write the partition function of a classical statisti-
cal system (a weighted sum over all microscopic config-
urations), or the analogous path integral of a quantum
many-body system (a weighted sum over all conceivable
trajectories). These objects describe the collective phys-
ical properties of a many-body system completely, but
are in general very difficult to express in closed form. In
spite of this difficulty, the spin-blocking prescription pro-
posed by Kadanoff [1] and subsequent implementation
by Wilson [2] have opened the path to non-perturbative
approaches based on coarse-graining a lattice. More re-
cently, Levin and Nave have proposed the tensor renor-
malization group [3] as a more general RG approach for
classical lattice models.

The tensor renormalization group may been seen as
a generalization of the density matrix renormalization
group (DMRG) method, introduced by White [4] to
study the ground state of Heisenberg spin chains. The
DMRG itself generalizes Wilsonian RG by reformulat-
ing the approach in terms of matrix product states, it-
eratively dividing the system into blocks and truncating
basis states at each step. This truncation makes the algo-
rithm tractable and is performed in an error-minimizing
way by maximizing the entanglement entropy

S = −
∑
l

λl lnλl (1)

at each step, where λl are the the eigenvalues of the
reduced (post-truncation) density matrix. The DMRG
has been widely used to study thermodynamic proper-
ties of quantum lattice models, due in large part to its
lack of ”minus sign” problem. This ”minus sign” problem
plagues the otherwise most powerful numerical method,
quantum Monte Carlo, and makes it inapplicable to most
fermion systems [5].

Although approximate due to these truncations, the
DMRG is an extraordinarily precise method in one-

dimensional systems. This is due to the fact that in one
dimension, the surface of a lattice model contains just two
points and does not grow with system size. As the entan-
glement entropy scales with this surface area, only a small
matrix dimension is necessary for a matrix product state
to accurately represent a quantum state. In higher di-
mensions, exponential growth of the matrix dimension at
each iteration is required to faithfully represent a quan-
tum state, making the algorithm intractable. Addressing
this breakdown of the DRMG, Levin and Nave [3] intro-
duced the tensor renormalization group as way of gener-
alizing the DMRG to higher dimensions, in the (simpler)
context of classical systems.

In Section II, we briefly outline the TRG method using
a honeycomb lattice as an example, following [3]. In Sec-
tions III and V, we discuss in more detail the particular
application of the TRG to a square lattice and its im-
plementation in Python. In Section IV, we compare the
computed free energy of this TRG implementation to the
exact result and discuss how the TRG can be improved.

II. TRG OVERVIEW

The tensor renormalization group (TRG) is a real
space renormalization technique for coarse-graining 2D
classical lattice models. In the TRG, one begins by
writing the given lattice’s associated tensor network :
a network with tensors Tijk... and D-level indices i =
1, 2, . . . , D at each node for which

Z =
∑

iα,jα,kα...

Ti1j1k1...Ti2j2k2... · · · = tTr
[
⊗Ni=1T

]
(2)

where ⊗i is a tensor product over all network nodes and
the tensor-trace tTr represents the sum over all tensor in-
dices. A given lattice may have multiple associated tensor
networks. Moreover, by making a duality transformation
and considering Boltzmann weights in dual lattice vari-
ables, one can represent any classical lattice model with
local interactions as a tensor network. In dimensions two
and higher, carrying out the defining tensor-trace has
been shown to be NP-hard [6]. The TRG is an approx-
imate method that proceeds by making a DMRG-like
truncation at each step, allowing for tractable compu-

2

i

j

l

k
m

T T
i l

j k

S

S

n

FIG. 1. Graphical representation of the rewiring procedure
in the TRG of a rank-3 tensor.

tation of the partition function.

On a honeycomb lattice, each site has three nearest
neighbors, and so we use a rank-3 tensor Tijk in the net-
work representation. One iteration of the TRG then con-
sists two steps: rewiring and decimation. In the first step,
we find a tensor Slin satisfying∑

m

TijmTklm ≈
∑
n

SlinSjkn (3)

This corresponds to a rewiring of the bonds in the lat-
tice, as depicted in Figure 1. This step is (in general)
approximate. The optimal tensor S is found by viewing
the left-hand side as a D2×D2 matrix Mli,jk, performing
singular value decomposition (SVD), and then discarding
all but the D′ = min

(
D2, Dcut

)
largest singular values

to obtain the D′2×D′ matrix Sli,n. Here, Dcut is a fixed
parameter of the algorithm that specifies the truncation
threshold of D over all iterations, thus keeping the di-
mensionality of T from increasing without bound.

The second step then involves decimating the extra-
neous triangles generated by the rewiring procedure, as
shown in Figure 2, by summing over their internal in-
dices. This step is exact, and the contraction of triangle
indices yields a coarser honeycomb lattice’s tensor net-
work with rank-3, D′-dimensional tensors

T ′ijk =
∑
pqr

SkpqSjqrSirp (4)

at each node. It is in this way that the mapping T → T ′

defines a coarse-graining RG flow on the tensor network
for which

Z = tTr
[
⊗Ni=1T

]
≈ tTr

[
⊗N/3i′=1T

′
]

(5)

Repeated iteration of the TRG eventually yields a single
unit cell possessing six sites/tensors, in which case the
tensor-trace above may be easily evaluated.

Error in the TRG is introduced via the approximate
SVD decomposition in the rewiring step. Utilizing the
mapping between 2D classical models and (1+1)D quan-
tum models and the entanglement properties of gapped
ground states, Levin and Nave [3] show that this error
scales as∣∣M − S · ST ∣∣2 ∼ exp

[
−const · (logDcut)

2
]

(6)

T T

T T

T T

T T

T T

T T

T T

T TT T

T T

S
S

S S
S

S

S
S

SS
S

S S
S

S

S
S

S

S
S S

S
S S

S
S S

S
S S

S
S S

S
S S

T ′ T ′

T ′T ′T ′

T ′

T ′

T ′

T ′

T ′ T ′

i
j m

l
k

FIG. 2. One iteration of the TRG on a honeycomb lattice’s
tensor network. Red bonds in network are rewired per the
decomposition shown in Figure 1, and red triangles in the
rewired network are subsequently decimated. After rewiring
and decimation, the number of nodes has been reduced by a
factor of 3, and a coarser honeycomb lattice’s tensor network
is obtained.

away from criticality. By choosing Dcut sufficiently large,
we can make this error arbitrarily small. It is this prop-
erty ensures the accuracy of the TRG method.

III. 2D SQUARE LATTICE ISING MODEL

In [3], Levin and Nave mention in passing that a TRG
approach is also possible on a square lattice, but do not
show explicitly how to implement such a method. We
therefore turn our attention to applying the TRG to a 2D
square lattice of Ising spins si = ±1 with Hamiltonian

H = −J
∑
〈ij〉

sisj (7)

The Python code underlying this implementation of the
TRG is shown in the Appendix: Section V.

A. Tensor Network Representation

The partition function of this model is given by

Z = Tr e−βH = Tr
∏
�ijkl

eβJ(sisj+sjsk+sksl+slsi)/2 (8)

where the trace here sums over all spin configurations
{si} of the lattice, and the product is taken over all

3

l

u

d

T

l

u

r

d

l

u

r

d

S2

S4

S1

S3A

B

m

m

r

FIG. 3. Graphical representation of the rewiring procedure in
the TRG of a rank-4 tensor, keeping in mind the sublattice
from which each tensor came.

square plaquettes in the lattice. The factor of 1/2 in the
above exponent comes from the fact that breaking the
lattice into squares double counts each bond. Switching
to bond variables σij = sisj = ±1 then gives

Z = Tr
∏
〈ij〉

δ(σij − sisj)
∏
�ijkl

eβJ(σij+σjk+σkl+σli)/2 (9)

where the trace here now sums over all spins si and bonds
σij . The delta function in the above expression gives zero
weight to unphysical configurations in which the product
of bonds around a loop has value −1. We can therefore
rewrite this delta function to obtain

Z = Tr
∏
�ijkl

1 + σijσjkσklσli
2

eβJ(σij+σjk+σkl+σli)/2 (10)

Now consider the dual lattice, which is itself a square
lattice formed by connecting perpendicular bond bisec-
tors in the original lattice. There is a one-to-one corre-
spondence between square plaquettes �ijkl in the original
lattice and sites p in the dual lattice. As such, we can
take our tensor network to be the square lattice’s dual
lattice and write

Z = tTr
[
⊗Np=1T

]
(11)

with tensors

Trpuplpdp =
1 + σprσ

p
uσ

p
l σ

p
d

2
eβJ(σ

p
r+σ

p
u+σ

p
l +σ

p
d)/2 (12)

associated with each network node p. In this definition,
rp, up, lp, dp = 0, 1 index the rightward, upward, leftward,
and downward bonds, respectively, exiting each node p.
A bond index xp = 0 corresponds to anti-aligned spin
variables σxp = −1, and a bond index xp = 1 corresponds
to aligned spin variables σxp = 1.

TB TA TB TB

T ′ T ′

T ′ T ′ T ′

T ′ T ′

T ′ T ′

T ′ T ′ T ′

TB TA TB TA

TA TB TA TB

TA TB TA TB

S1

S3

S4

S2

S1

S3

S4

S2

S1

S3

S4

S2

S1

S3

S4

S2

S1

S3

S4

S2

S1

S3

S4

S2

S1

S3

S4

S2

S1

S3

S4

S2

S1

S3

S4

S2

S1

S3

S4

S2

S1

S3

S4

S2

α
β

γ
ω

l u

rd

l u

rd

FIG. 4. One iteration of the TRG on a square lattice’s ten-
sor network. Each sublattice in the network is rewired per
the decomposition shown in Figure 3, and red squares in the
rewired network are subsequently decimated. After rewiring
and decimation, the number of nodes has been reduced by a
factor of 4, and a coarser square lattice’s tensor network is
obtained.

B. Rewiring and Decimation

We now rewire the tensor network just obtained by
decomposing each rank-4 tensor T into the two rank-3
tensors Si and Si+2, as shown in Figure 3. In [3], Levin
and Nave note a phase ambiguity that appears when as-
sociating rewired tensors S with SVD components of T .
This ambiguity can be avoided if one keeps track of dif-
ferent tensors TA and TB for each sublattice of the tensor
network. Consequently, we decompose the tensor T sep-
arately on each sublattice as

TAruld =

D2∑
m=1

S1,ulmS3,drm (13)

TBruld =

D2∑
m=1

S2,ldmS4,rum (14)

The tensors Si are obtained approximately by SVD.
Explicitly, we view TAruld = Mlu,rd as a D2 ×D2 matrix
and perform SVD to obtain

M = UΣV † (15)

with Σ diagonal, having D2 eigenvalues λ1 > λ2 > · · · .

4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Coupling Constant K

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fr
e
e
 E

n
e
rg

y
 p

e
r

U
n
it

 S
it

e
 f

Kc

exact
TRG

FIG. 5. Comparison of the exact and TRG-obtained free energies of a 2D square lattice Ising model. The TRG was applied 3
times with Dcut = 6. The accuracy of the TRG method is seen to decrease by several orders of magnitude as the critical point
Kc is approached.

T T T T

T T

T T

T T

T T

T TT T

T T

i

j

l

k
i

j

l

k
T T

FIG. 6. Example of the ”environment” neglected by the TRG
but taken into account by the SRG on a honeycomb lattice.
A pair of tensors (left) to be decomposed in the rewiring step
of the TRG and their environment (right) are shown.

We may then write

TAruld ≈
D′∑
m=1

(√
λmUlu,m

)
︸ ︷︷ ︸

S1,ulm

(√
λmV

†
m,rd

)
︸ ︷︷ ︸

S3,drm

(16)

which is approximate since we have only kept a fixed
number D′ = min

(
D2, Dcut

)
of the largest eigenvalues

λm. The decomposition of TB is performed nearly iden-
tically.

Decimation is then carried out by summing over the
internal indices of each extraneous square generated by
the network rewiring, shown in Figure 4. This generates
a coarser square lattice’s tensor network with rank-4, D′-
dimensional tensors

T ′ruld =

D∑
α,β,γ,ω=1

S1,ωαrS2,αβuS3,βγlS4,γωd (17)

at each node. The iteration T → T ′ then defines the
TRG flow on this model.

IV. DISCUSSION

The TRG algorithm described in the previous section
was implemented in Python, shown in Appendix: Section
V. As Python is a high-level programming language, the
code is fairly human readable but runs rather slowly. We
were therefore only able to run 3 iterations of the TRG
on the square lattice with Dcut = 6. Even with Dcut = 6,
good agreement between the exact and TRG free energies
is obtained, as can be seen in Figure 5.

5

The TRG error scaling in Eq. 6 was derived by Levin
and Nave [3] under the assumption that the system is not
critical. Near criticality, the associated quantum states
under the classical-quantum lattice model mapping be-
come gapless ground states, which are more entangled
then their gapped counterparts. This results in the trun-
cated SVD decomposition failing to accurately represent
the original tensor T near criticality. The 2D square lat-
tice Ising model experiences a phase transition and there-
fore becomes critical at the value [7],

Kc =
1

2
ln
(

1 +
√

2
)
≈ 0.441 (18)

The breakdown of the TRG near this phase transition
can be seen in Figure 5.

Even away from criticality, the TRG can be improved.
As noted by Xiang and others [8], the TRG fails to take
into account the ”environment” lattice when performing
SVD composition tensors node in the rewiring step. More

specifically, at each step the TRG minimizes the trunca-
tion error of the local matrices M , whereas it is in fact
the truncation error of entire partition function, which
includes a contribution Me from the environment,

Z = tTr [MMe] (19)

that should be minimized. The concept of an ”environ-
ment” is shown graphically in Figure 6. In [8], this ex-
tension of the TRG is called the second renormalization
group (SRG) and is shown to improve the accuracy of
the TRG by several orders of magnitude.

ACKNOWLEDGMENTS

I would like to thank Prof. Mehran Kardar for teach-
ing his challenging but rewarding MIT 8.334 course. I
would also like to thank Prof. Guifre Vidal for his help-
ful guidance on this project via email correspondence.

[1] L. P. Kadanoff. Scaling laws for ising models near tc.
Physics, 2(6):263–272, 1966.

[2] Kenneth K. G. Wilson. The renormalization group: Crit-
ical phenomena and the kondo problem. Rev. Mod. Phys.,
47:773–840, Oct 1975.

[3] M. Levin and C. P. Nave. Tensor renormalization
group approach to two-dimensional classical lattice mod-
els. Phys. Rev. Lett., 99:120601, Sep 2007.

[4] S. R. White. Density matrix formulation for quantum
renormalization groups. Phys. Rev. Lett., 69:2863–2866,
Nov 1992.

[5] M. Troyer and U. Wiese. Computational complexity and
fundamental limitations to fermionic quantum monte carlo
simulations. Phys. Rev. Lett., 94:170201, May 2005.

[6] N. Schuch. Computational complexity of projected entan-
gled pair states. Physical Review Letters, 98(14), 2007.

[7] M. Kardar. Statistical physics of fields. Cambridge Uni-
versity Press, 2007.

[8] H. H. Zhao, Z. Y. Xie, Q. N. Chen, Z. C. Wei, J. W. Cai,
and T. Xiang. Renormalization of tensor-network states.
Phys. Rev. B, 81:174411, May 2010.

6

V. APPENDIX: PYTHON IMPLEMENTATION

1 # TRG.py

2

3 # Tensor Renormalization Group applied to a 2D square lattice Ising model

4

5 import numpy as np

6 from numpy.linalg import svd

7 from itertools import product

8

9 # returns TRG -obtained partition function Z

10 def Z_TRG(K, Dcut , no_iter):

11 D = 2

12 inds = np.arange(D)

13

14 # set up initial tensor network

15 T = np.empty([D, D, D, D])

16 for r, u, l, d in product(inds , inds , inds , inds):

17 T[r][u][l][d] = .5*(1 + (2*r -1)*(2*u -1)*(2*l -1)*(2*d -1))*np.exp(2*K*(r+u+l+d-2))

18

19 for n in np.arange(no_iter):

20 D_new = min(D**2, Dcut)

21 inds_new = np.arange(D_new)

22

23 # perform SVD decomposition and rewiring on each sublattice

24 Ma , Mb = [np.empty([D**2, D**2])]*2

25 for r, u, l, d in product(inds , inds , inds , inds):

26 Ma[l + D*u][r + D*d] = T[r][u][l][d]

27 Mb[l + D*d][r + D*u] = T[r][u][l][d]

28

29 S1 , S2 , S3 , S4 = [np.empty([D, D, D_new])]*4

30

31 U, L, V = svd(Ma)

32 L = np.sort(L)[:: -1][0: D_new]

33 for x, y, m in product(inds , inds , inds_new):

34 S1[x, y, m] = np.sqrt(L[m])*U[x + D*y][m]

35 S3[x, y, m] = np.sqrt(L[m])*V[m][x + D*y]

36

37 U, L, V = svd(Mb)

38 L = np.sort(L)[:: -1][0: D_new]

39 for x, y, m in product(inds , inds , inds_new):

40 S2[x, y, m] = np.sqrt(L[m])*U[x + D*y][m]

41 S4[x, y, m] = np.sqrt(L[m])*V[m][x + D*y]

42

43 # decimate extraneous , TRG -generated squares to obtain T’

44 T_new = np.empty([D_new , D_new , D_new , D_new])

45

46 for r, u, l, d in product(inds_new , inds_new , inds_new , inds_new):

47 T_new[r][u][l][d] = 0

48 for a, b, g, w in product(inds , inds , inds , inds):

49 T_new[r][u][l][d] += S1[w,a,r]*S2[a,b,u]*S3[b,g,l]*S4[g,w,d]

50

51 D = D_new

52 inds = inds_new

53 T = T_new

54

55 # after final TRG iteration , trace out remaining tensor to obtain Z

56 Z = 0

57 for r, u, l, d in product(inds , inds , inds , inds):

58 Z += T[r][u][l][d]

59

60 return Z

	The Tensor Renormalization Group
	Abstract
	INTRODUCTION
	TRG OVERVIEW
	2D SQUARE LATTICE ISING MODEL
	Tensor Network Representation
	Rewiring and Decimation

	DISCUSSION
	ACKNOWLEDGMENTS
	References
	Appendix: Python Implementation

