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In this paper, we aim to present a few of the many applications of the Tracy-Widom distribution
to problems in statistical physics. This probability distribution describes the largest eigenvalue of a
Hermitian matrix whose entries are independently Gaussian-distributed. While a derivation of this
distribution is beyond the scope of this paper, we describe its properties, and highlight its application
in calculating the higher moments of surface growth processes and in the totally asymmetric simple
exclusion process.

The theory of random matrices has found many and
varied applications in statistical physics since Wigner in-
troduced it in the 1950s to investigate the energy levels
of heavy nuclei. In particular, he showed that the distri-
bution of eigenvalues of a N×N Hermitian matrix whose
upper triangular entries are independent and identically
distributed, normalized to have mean zero and variance
one, converges as N → ∞ to a probability distribution
that we call the Wigner semicircle distribution, although
it is actually a semiellipse:

ρ(λ) =
1

πN

√
2N − λ2,

where ρ is the unit-normalized density of eigenvalues.
However, in many applications we are interested in the
statistics of the largest eigenvalue.

In the case of independent random variables, extreme
value statistics have been well understood for decades,
and fall into three universality classes. The eigenvalues
of such random matrices, however, are very strongly cor-
related, and so calculating the probability distribution
of the largest eigenvalue is somewhat more difficult. The
mean of the largest eigenvalue can simply be read off from
the semicircle law: 〈λmax〉 =

√
2N . In 1992, Forrester [2]

showed that the standard deviation of this distribution
scales as N−1/6, and Tracy and Widom further showed
that if

ξ ≡
√

2N1/6(λmax −
√

2N),

then the cumulative probability distribution of ξ is

F (ξ) = exp

(
−
∫ ∞
ξ

(x− ξ)q2(x) dx

)
.

Here q(x) is the solution to the nonlinear differential
equation

d2q

dx2
= x

dq

dx
+ 2q3,

subject to the boundary condition at infinity q(x) ∼
Ai(x), where Ai is the Airy function

Ai(x) =
1

π

∫ ∞
0

cos

(
t3

3
+ xt

)
dt.
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The desired probability density function is then dF/ds.
Unfortunately, deriving this functional form is quite far
beyond the scope of this paper; the original derivation
in [7] was quite technical and relied on the theory of
Fredholm determinants, and there is a somewhat simpler
(although still lengthy) derivation in [6], in which Nadal
and Majumdar relate the distribution to the partition
function of a 2-dimensional Coulomb gas constrained to
a line and placed in a harmonic trap.

This is a lot to take in, so let us describe some of the
properties of this distribution. First of all, the expected
value of this distribution is actually negative. Second
of all, it is highly asymmetric, with the tail on the left
decaying as exp(−|x|3/12) and the tail on the right de-
caying as exp(−4x3/2/3). It is also worth noting that
the range of validity of this distribution goes to zero as
N → ∞, since we scaled by N1/6. We thus need a dif-
ferent tool to examine the part of the distribution where
|λmax −

√
2N | > O(N−1/6). These tails for large but fi-

nite N have a dependence that goes as e−N
2

on the left
side and e−N on the right.

The first application of the extreme-value statistics of
random matrices was in evaluating the robustness of the
stability of dynamical systems to a small linear pertur-
bation, in [5]. Given any stable fixed point of a first-
order dynamical system with N variables, we can lin-
earize around it and diagonalize the relevant matrix. For
simplicity, we will set all the eigenvalues to -1. Then our
equations of motion are ẋi = −xi. Now turn on a linear
perturbation α

∑
j Jijxj , which we will model as a real

symmetric random matrix J with a constant α setting the
strength of the interaction. It is clear that this new sys-
tem is stable at xi = 0 if and only if all the eigenvalues λi
of J satisfy αλi ≤ 1, or equivalently that λmax ≤ 1/α. In
the N → ∞ limit, May noticed (through computer sim-
ulation) that this probability undergoes a sharp “phase

transition” at α = 1/
√

2: the probability that the sys-
tem remains stable (again, in the N → ∞ limit) is 0

if α > 1/
√

2 and 1 if α <
√

2. Recently, Majumdar
and Schehr [4] have shown that N is large but finite, the
Tracy-Widom distribution describes the crossover func-
tion between stable and unstable regimes of a random
dynamical system, and furthermore that there is a third-
order phase transition between these regimes, which also
occurs in the Coulomb gas, two-dimensional QCD, and
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several other systems of physical interest.
The Tracy-Widom distribution also appeared in the

solution of a longstanding problem from combinatorics,
first raised by Ulam in the early 60s. Consider a per-
mutation of the numbers 1, 2, . . . , N , picked uniformly at
random from the N ! such permutations. What is the
probability distribution of the longest increasing subse-
quence of this permutation? In 1999, Baik, Deift, and
Johansson proved that if ln is the longest increasing sub-

sequence, then as N →∞ the distribution of
ln − 2

√
N

N1/6

converges to the Tracy-Widom distribution [1]. Majum-
dar and Nechaev then showed that this problem maps
exactly onto a particular model of discrete-time ballistic
deposition in one spatial dimension, so that the height
fluctuations of this growth process are exactly described
by the Tracy-Widom distribution. This is significant, be-

cause many growth processes are known to belong to the
same universality class as that of the well-known KPZ
equation, but this universality is so far only known to
describe the variance of height fluctuations. Since this
model’s height fluctuations agree with the Tracy-Widom
distribution at all moments, this universality class might
be much broader than previously believed. Since then,
it has also been shown to describe free energy fluctua-
tions in one-dimensional directed polymers in a random
δ-correlated field, current fluctuations in a Fermi-Pasta-
Ulam chain, and fluctuations in the critical temperature
of a spin glass.

We invite the reader to survey some of the vast lit-
erature on random matrix theory in general, the Tracy-
Widom law in particular, and their applications to sta-
tistical physics; we here have only scratched the surface.
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