
The hard-core lattice gas

Daniel Zhu
Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139-4307

(Dated: May 21, 2021)

We give an overview of the hard-core lattice gas, a statistical model of particles in a lattice which
are forbidden to occupy adjacent sites. After an observation that this model obeys Ising universality,
we consider two different approximations of the model: a mean-field theory, and a transfer matrix
method where one of the dimensions is periodic.

I. INTRODUCTION

In this paper we will discuss the hard-core lattice gas,
a simple model of a lattice gas with surprisingly complex
behavior. In its simplest form, which is also the form that
we will focus on, it concerns arrangements of particles on
a square lattice, where each site can either be occupied or
not. The defining feature of the model, which is also the
reason for the name “hard-core”, is that arrangements
where two adjacent sites are both occupied are forbidden.
Thus, one can view the particles as rigid, where moving
two particles too close incurs an infinite energy penalty.
All valid arrangements are weighted by eµM , where M is
the number of particles and µ is the chemical potential.
As one might expect from its simplicity, this model

has many connections to other models. Mathematically
speaking, a valid arrangement of particles is the same as an
independent set of the grid graph encoding the adjacencies
of the square lattice, so the partition function Z can be
considered as a weighted enumeration of such sets. Also, it
is possible to map the hard-core lattice gas onto the Ising
model. Namely, if we let σi = −1 represents the absence
of a particle at site i and σi = 1 represents presence, the
hard-core lattice gas can be described via the Hamiltonian
−βH =

∑
〈i,j〉K(σi + 1)(σj + 1) +

∑
i
µ
2 (σi + 1) as K →

−∞. This is equivalent to the Ising Hamitonian −βH =∑
〈i,j〉Kσiσj +

∑
i hσi where h = µ/2 + 2K.

It might not be initially clear why there might even
be a phase transition, so we will first give a qualitative
description. As expected, as µ increases the density ρ
also increases, where we define ρ to the be fraction of
sites that are occupied. In the limit where µ is very
small, the repulsion of the particles is largely negligible,
so the distribution of particles is disordered. On the
other hand, if µ is very large, the particles arrange into a
configuration that maximizes ρ, namely, a checkerboard
sublattice which achieves ρ = 1/2. In particular, there
must be some µc where long-range order appears. (Since
the symmetry-breaking is discrete, there are no Goldstone
modes to destroy long-range order.)

In this paper, we will first argue that this model must
belong to the same universality class as the 2D Ising
model. Since the 2D Ising model has been solved exactly
on the square lattice, this result will provide crucial in-
formation regarding this system’s critical exponents. We
will then explore the relationship between µ and ρ using
two different perspectives. First, we will use a mean-field

theory to estimate the µ-ρ curve. Finally, we will ap-
proximate the square lattice with an L×∞ lattice with
periodic boundary conditions. We then solve this exactly
using transfer matrices.

One of the first considerations of this phase transition
was made by Gaunt and Fisher [2], who used several
series expansions to locate the phase transition and to
estimate β ≈ 1/8 (the meaning of β here will be dis-
cussed in Section II), strongly suggesting Ising universality.
These estimates were subsequently refined, with Todo and
Suzuki [8] later calculating that ν = 1.0001± 0.0003 and
β = 0.1249999±0.0000001. The mean-field model we will
present is adapted from work of Heringa, Blöte, and Lui-
jten [3]. Our transfer matrix model was first carried out
by Runnels and Combs [6], with some optimizations based
on [8]. Other techniques to analyze the hard-core lattice
gas include renormalization [4] and functional measure
theory [5].
The hard-core lattice gas is also part of a family of

models called the k-NN models, where the k shortest
possible differences between two particles are forbidden.
For example, the 1-NN model is just the hard-core gas,
while the 3-NN gas forbids particles at distances of 1,√

2, and 2 times the lattice spacing. This concept also
extends naturally to non-square lattices. Unlike the 1-NN
case, the mechanics of these more complex systems are
far more unknown and complex. For instance, it is possi-
ble for the system to undergo multiple phase transitions,
and in other cases it can exist in a “semi-ordered” state
where columns are rigid but free to slide past each other.
Finally, the universality class is not necessarily Ising; for
some models the calculated critical exponents appear to
match Potts models [7]. In general, these generalized
lattice gases are much more unknown, as the techniques
mentioned here either break down or require consider-
ably more computational power to achieve comparable
precision [1].

II. ISING UNIVERSALITY

As the phase transition involves interaction of the two
checkerboard sublattices, to capture it we must use or-
der parameters that involve these lattices. Namely, let
x(r), y(r) be the occupancy fractions of each of the two
sublattices, so that ρ = x+y

2 . Also let m = x− y.
Due to the symmetry between x and y, any Landau-
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Ginzburg-type Hamiltonian must be agnostic to the sign
of m. Then we may write

−βH =
∫
d2r
(
aρ+ bρ2 + t

2m
2 + um4

+ cρm2 + K

2 (∇ρ)2 + L

2 (∇m)2 + · · ·
).

Since the phase transition occurs when one sublattice
becomes favored over the other, we conclude that a phase
transition occurs when the coefficient of m2 changes sign,
though that no longer happens at t = 0 due to the cρm2

term. Therefore, our model can be thought of as a 2D
Ising model coupled to a scalar field ρ. While it is possible
to continue working directly with this model, perhaps by
using a saddle point approximation, the results are not
incredibly interesting and we will omit it here.

However, the fact that this Landau-Ginzburg Hamilto-
nian behaves equivalently to the Ising model is very useful
in examining the critical behavior of the model. Letting
f = − 1

N lnZ, where N is the number of lattice sites, it
is straightforward to show ρ = − df

dµ . On the other hand,
by the solution to the Ising model it is also true that
“heat capacity” − d

2f
dµ2 undergoes a logarithmic singularity.

Therefore, we should expect

ρ(µc + δµ) = ρc − c δµ log|δµ|+O(δµ).

for some c > 0. The hard-core lattice gas also inherits
the exponent ν = 1 from the Ising model. Other critical
exponents describe the behavior of the order parameter m.
For example, the exponent β = 1/8 implies that |x− y|
grows with order (µ− µc)1/8 for µ slightly above µc.

III. MEAN-FIELD THEORY

A crude way to approximate ρ as a function of µ as-
sumes that at densities x, y, particles are scattered ran-
domly within each sublattice. In particular, consider
one particular arrangement of particles in a sublattice at
density x. At an arbitrary site in the other sublattice,
the probability that none of its neighbors are occupied
is (1− x)4. At chemical potential µ, the probability that
that site itself is occupied is thus 1

1+e−µ (1 − x)4. Call
g(x) = 1

1+e−µ (1−x)4. Then we have shown that y = g(x).
Similarly, x = g(y).

When µ is low, the equation x = g(g(x)) has only one
solution a, so we must have (x, y) = (a, a) (see Fig. 1).
On the other hand, past some critical µc, there are three
solutions a < b < c, where g(a) = c, g(b) = b, and
g(c) = a. In this case, we find that |g′(b)| > 1. Therefore,
in some sense the solution (x, y) = (b, b) is unstable, since
small fluctuations to x cause y to fluctuate more, and
vice versa. As a result, the solution that is more likely to
represent reality is (x, y) = (a, c) or (x, y) = (c, a). This
constitutes a phase transition at µc.

FIG. 1: Plot of g(g(x)) − x for µ = −0.1, 0.

FIG. 2: ρ in the mean-field model.

The results of solving this system for various values
of µ are found in Fig. 2. A phase transition occurs at
ρc = 1

5 = 0.2 and µc = ln 125
131 ≈ −0.046. As we will see

later, the location of this critical point is rather inaccurate,
though this mean-field model does become more accurate
in higher dimensions [3]. As one might guess from the
graph, dρdµ has a jump discontinuity at µc, and since C =
− d

2f
dµ2 = dρ

dµ , we conclude α = 0. Moreover, β = 1/2.
It is also possible to derive these exponents through

calculation. At criticality, g(xc) = xc and g′(xc) = −1, so

d2

dx2 g(g(x))
∣∣∣∣
x=xc

= d

dx
g′(g(x))g′(x)

∣∣∣∣
x=xc

= g′′(xc)g′(xc)2 + g′(xc)g′′(xc) = 0.

Thus, a good toy model for g(g(x)) is (1− t)x+ax3 + bx4,
where we have translated so that xc = 0 and t = µ− µc.
If t < 0, then the only small solution to x = (1 − t)x +
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ax3 + bx4 is x = 0. However, if t > 0, then we must solve
t = ax2+bx3, which yields x = ±a−1/2t1/2+ b

2a2 t+O(t3/2).
The fact that β = 1/2 follows immediately from this
expression. Also, we find that ρ is zero for t < 0 and
b
a2 t+O(t3/2) for t > 0, reproducing the jump discontinuity
in dρ

dµ .

IV. TRANSFER MATRICES

Our final way of approaching the problem involves
replacing the infinite square lattice with a L×∞ lattice
that is only infinite in one dimension. We also impose
periodic boundary conditions in the dimension of finite
length.

In this circumstance, we can hope to compute Z directly
with transfer matrices. Let SL be the set of {0, 1}-vectors
S = (s1, s2, . . . , sL) so that si and si+1 are not both 1 for
all 1 ≤ i ≤ L, where we take sL+1 = s1. For S ∈ SL, let
|S| be the number of ones in S.
This setup now allows us to interpret a valid arrange-

ment of particles on the lattice as a series of vectors
S1, S2, . . . ∈ S, so that Si and Si+1 do not share any ones
at the same location. Each Si contributes a weight of
eµ|S|. Therefore, we conclude that

Z =
∑
{Si}

∏
i

T (Si, Si+1),

where the transfer matrix T is defined by

T (S, S′) =
{

0 si = s′i = 1 for some i
eµ(|S|+|S′|)/2 otherwise

.

As the lattice grows large, we conclude that Z = trTN/L.
Therefore, f = − 1

N lnZ = − 1
L lnλ0, where λ0 is the

largest eigenvalue of T (which is positive by the Perron-
Frobenius theorem). It is also true that ξ−1 = ln|λ0/λ1|,
where λ1 is the second-largest eigenvalue.

In theory, taking arbitrarily large values of L would
allow us to compute aspects of the hard-core lattice
gas to arbitrary precision. In practice, though, |SL| ∼
(1.61803 . . .)L, so the time required to diagonalize the
transfer matrix grows exponentially in L. Fortunately,
there are still a few optimizations that make this task
easier. For one, we have defined T to be symmetric,
meaning that its eigenvectors are all orthogonal. There
are several algorithms that take advantage of this fact to
find the largest eigenvalues of T much faster than a full
diagonalization. Also, it is possible to calculate Tv for
some vector v using less memory than it would take to
store T naïvely, which speeds up the process. In short,
this is possible by, instead of moving directly from S to
S′, using several “hybrid” representations that combine
parts of S and S′ together (see [8] for more details).
We implemented this procedure with L = 20, which

entailed diagonalizing 15127×15127 matrices. The results
for ρ may be seen in Fig. 3. While it is a bit harder to

FIG. 3: Comparison of the mean-field and transfer matrix
models.

FIG. 4: Behavior around criticality for the L = 20 transfer
matrix model.

detect than in the mean-field theory, a phase change can
be seen at µc ≈ 1.3 and ρc ≈ 0.37.

Zooming in around the phase change, we find that it is
characterized by a maximum in dρ/dµ (see Fig. 4), which
should approximate a logarithmic divergence. Moreover,
we see a divergence of ξ. Since we set the length of one
of the sides of the lattice to be L, a correlation length
exceeding L signifies that the system is being affected
by the periodic boundary conditions, meaning that the
model is no longer reliable. Therefore, we should expect
that ξ ≈ L near µc.
The value of µ that maximizes dρ/dµ in this model is

µ ≈ 1.316, which is close to the true value of µc ≈ 1.3340.
A more sophisticated method to estimate µc can be used
from the correlation length. Since the lattice gas has no
characteristic scale at µ = µc, ξ(µc) can only depend on
L. Thus, we should expect ξ(µc)/L to approach a fixed
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value as L→∞ [8]. Setting ξL=18(µ)/18 = ξL=20(µ)/20,
we find µ ≈ 1.3343, which is off by less than 10−3 from
the true value.

V. CONCLUSION

In this paper, we have considered the hard-core lattice
gas, a model, which like the Ising model, is very simple to
describe and yet has a phase transition. While the Ising
model describes the alignment of discrete magnetic spins
via nearest-neighbor interactions, in the hard-core lattice
gas particles “crystallize” from a disordered state into well-
defined sublattices that permit greater packing densities.
The fact that these two models have the same critical
behavior is a reflection of the ubiquity of universality in
the theory of phase transitions.
Although the critical behavior of the hard-core gas is

crucial information, it does not tell us how to actually
compute properties of the gas. In this paper, we imple-

mented two different models to approximate this. First,
we considered a mean-field theory, where a particle in-
teracted with the aggregate of all sites of the opposite
parity, instead of its immediate neighbors. In effect, we
removed short-range order from the system. In this case,
we observed a phase change that reproduced the criti-
cal behavior of the saddle point approximation to the
Landau-Ginzburg Hamiltonian. This mean-field theory
was reasonably accurate in determining ρ for large and
small µ. However, the critical point predicted by the
mean field model, µc = −0.046, was very inaccurate.
Better results were achieved by making one of the di-

mensions of the lattice periodic of length L, allowing
transfer matrices to be applied. Here, we saw evidence of
a phase change near the theoretical value, with a notice-
able spike in the heat capacity and a divergence of the
correlation length. By comparing correlation lengths for
different values of L, it is possible to improve estimates of
µc to be within one part in a thousand of the theoretical
value.
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