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We investigate the dimensionless critical temperature of the 2D five state Potts model using Monte
Carlo simulations and using a neural network. We obtained Tc = 0.848±0.007 from the Monte Carlo
approach and Tc = 0.82 ± 0.04 from the neural network. Both are consistent with the theoretical
result.

I. INTRODUCTION

In statistical mechanics, phase transitions - abrupt
changes in the physical state of matter induced by vari-
ations in external parameters - play a pivotal role in un-
derstanding a diverse range of physical phenomena, from
boiling water to magnetization in ferromagnetic materi-
als. At the heart of understanding phase transitions lies
the concept of critical temperature, the distinct temper-
ature at which a substance transitions between different
phases. There are only few systems where the exact criti-
cal temperature can be derived analytically, which is why
numerical methods are often used to estimate it.

Monte Carlo simulations serve as one of the most
prevalent numerical methods for studying phase transi-
tions and estimating critical temperatures in such sys-
tems. They offer a probabilistic technique for generating
samples in complex multi-dimensional spaces, thereby
enabling a statistical examination of the model’s behavior
under varied conditions. Monte Carlo simulations have
been extensively used to study systems such as the Ising
model and Potts model, yielding valuable insights into
the nature of phase transitions. Despite their efficacy,
these simulations can be computationally expensive, es-
pecially for higher-dimensional or more complex models.

Another approach that has been under investigation
recently is the utilization in machine learning and neural
networks to find the critical temperature. As demon-
strated in this paper, a simple neural network can be
trained to accurately classify spin configurations of the
Ising model yielding an accurate estimate for the critical
temperature and the critical exponent ν. One issue with
this approach is that training the network requires prior
knowledge of the critical temperature in order to assign
labels to the training data.

In this paper, we use a Monte Carlo simulation to find
the critical temperature of the two-dimensional five-state
Potts model. We also follow the approach outlined in
this paper[1] to train a neural network to classify config-
urations of the Potts model and obtain the critical tem-
perature. The advantage of this approach is that train-
ing is only done using the theoretical ground states of
the model being studied, which means no prior knowl-
edge of the theoretical critical temperature is needed.
This also means that the training data can be obtained
very cheaply, especially for systems with simple ground

states. We compare the results obtained from these two
approached with the analytical critical temperature of
the Potts model.

II. THE POTTS MODEL

The model we study in this paper is the Potts model,
which is a generalization of the famous Ising model. The
Potts model has the following Hamiltonian:

βH = −J
∑
<i,j>

δsi,sj (1)

Where β = 1/kbT is the inverse temperature, < i, j >
indicates that the sum is over nearest neighbors, δ is the
Kronecker-delta function, and si are the Potts spin vari-
ables which take integer values in {0, 1, 2, ..., q − 1}.

It’s well known that the dimensionless critical tempera-
ture for the two-dimensional q-state Potts model is given
by: Tc = 1

ln (1+
√
q) in the thermodynamic limit [2]. For

the five-state model we study in this paper, Tc ≈ 0.852.
We choose to study the Potts model because the theoret-
ical critical temperature is known exactly, which makes
it possible to check our results.

III. MONTE CARLO APPROACH

In this paper, we study lattices with dimensions L ×
L where L ∈ {8, 12, 16, 20, 24, 28, 32}. We simulate the
lattices at 100 equally spaced temperatures in the range
[0.5, 1.1]. We generated 30000 configurations using the
Swendsen-Wang algorithm as follows [5]:

1. Start with a configuration of the spins in the Potts
model. In the q-state Potts model, each spin can
be in one of q different states.

2. Form clusters of neighboring spins that are in the
same state. The rule for whether or not to connect
two neighboring spins into the same cluster is as
follows: If the spins are in the same state, connect
them with a probability p = 1 − exp (−1/T ). If
the spins are not in the same state, do not connect
them.
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FIG. 1: Susceptibility as a function of temperature for differ-
ent lattice sizes. Error bars are obtained by statistical boot-
strap resampling

3. Once the clusters are formed, choose a new state
at random for all the spins in each cluster. This
change is done all at once, not spin by spin.

4. Repeat steps 2 and 3 for a large number of times.
This allows the system to sample configurations
from the correct distribution.

We allow the system to reach an equilibrium state by
running the algorithm for 5000 steps before we start
recording the configurations. Since the configurations
generated this way are highly correlated, we only use one
in every 100 generated configurations. The total number
of generated configurations is 30000.

We use the fact that the magnetic susceptibility di-
verges at the critical temperature to estimate the critical
temperature by recording the temperature at which the
magnetic susceptibility is maximized for each lattice di-
mension. The magnetic susceptibility is given by

χ =
N(⟨M2⟩ − ⟨M⟩2)

T
(2)

Where N is the number of spins and M is the magne-
tization. The magnetization for the Potts model can be
defined in multiple ways. We chose the following defini-
tion:

M = | 1
L2

∑
j

exp (i
2πsi
q

)| (3)

Plots for the susceptibility as a function of tempera-
ture for various lattice sizes are shown in figure 1. We
confirm that the susceptibility spikes up at the transition
temperature.

Since our simulations are on a finite lattice, our results
for transition temperatures are larger than the true crit-
ical temperature. To find the critical temperature, we
make use of finite scaling and make a least squares fit of
our results to the equation:

T (L) = Tc(1 + (x0/L)
1/ν) (4)

Doing so, we get Tc = 0.848±0.007, which is consistent
with the theoretical result. Note that in principle, the
critical exponent ν can also be found this way, but our
data is insufficient to make an accurate determination.
This is possibly because of the narrow range of lattice
sizes we consider.

IV. NEURAL NETWORK APPROACH

We follow the approach outlined in these two papers[1]
[4]. We train the network to classify the q different the-
oretical ground states of the Potts model. The classifi-
cation is given as q-long vector where each component
represents the probability that the given configuration
is in the corresponding state. The training is done using
number of copies (200 in our case) of each of the q ground
states.
The ides behind this approach is that configurations

below t he critical temperature will be similar to one of
the q ground states, and hence the magnitude of the out-
put vector will be close to 1. However, configurations
above the critical temperature consist of spins in ran-
dom states, which leads the network to predict a more
or less equal likelihood to being in all q classes. So the
magnitude of the output vector will drop down to 1√

q as

illustrated in figure 2. In the figure, The first lattice is
in the first ground state so only the first component of
the output is large. The second lattice is close to the
second ground state so the second component in the out-
put vector is large. The third lattice is above the critical
temperature so the components of the output vector are
almost equal.
We use TensorFlow and Keras to build and train our

neural network[6][7]. Our neural network consists of an
input layer, followed by a hidden layer with 512 nodes,
followed by an output layer as illustrated in figure 3. The
activation function of the hidden layer is ReLU and the
for the output layer is softmax. We use the minibatch
algorithm and the Adam [8] optimizer to train the net-
work. Our loss function is categorical cross entropy. We
also use L2 regularization to avoid overfitting to training
data. Since there is no intrinsic ordering to the states,
we use a one-hot encoding to map each spin variable to
a q-dimensional vector.
After training, we run the model on configurations

generated using the same Swendsen-Wang algorithm de-
scribed in the previous section. Due to memory and time
limitations, we had to use a smaller data set for this ap-
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FIG. 2: Matrices on the left represent the lattice configura-
tions and the vectors on the right represent the output of the
neural network.

FIG. 3: Schematic of the neural network we use. The first
layer has L2 nodes, the hidden layer has 512 nodes, and the
output layer has q = 5 nodes.

proach. We use the same values for lattice size and tem-
peratures as in the Monte Carlo simulation, but We only
generated 3000 configurations for each (T, L) pair and
we used one in every 10 configurations. We calculate
the norm of the output vector for each configuration and
we plot the average of these norms (denoted as R) as a
function of temperature for each lattice size L in figure
4.

Compared to the plots in the cited papers, our data is
considerably more noisy which is likely due to our smaller
data set. We smoothed out the plots above by applying
a savgol filter on the data.

We define the transition temperature in this approach
as the temperature that maximize the absolute value of
the derivative dR

dT calculated numerically using the for-
mula:

|dR
dT

| = |R(T + δT )−R(T − δT )

2δT
| (5)

Similarly to the Monte Carlo approach, we fit our re-
sults to equation (4) and we obtain Tc = 0.82±0.04. This
also consistent with the theoretical result, but the uncer-
tainty is significantly larger. This is once again likely due
to the smaller data set. This approach also allows us in
principle to obtain ν, but more data is needed to get an
accurate estimate.

FIG. 4: Plot of R as a function of T for various lattice sizes.
Both the raw data and the smoothed data are included.

V. CONCLUSIONS

We estimated the critical temperature of the 2D five-
state Potts model using Monte Carlo simulations and us-
ing neural networks. We found that both approaches can
be used to obtain reasonably accurate results even for a
relatively small data set. We also demonstrated the ef-
fectiveness of training the network using ground states
only, which provides a numerically efficient way of find-
ing the critical temperature. More research is needed to
determine the efficacy of the neural network approach to
determine critical exponents.
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