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The square lattice Ising model is a famous model from statistical mechanics that both has a
nontrivial phase transition and can be exactly solved. In this paper, we provide a self-contained
derivation of the Kac-Ward combinatorial solution to general planar Ising models, discuss general
features shared by all planar models such as their solvability in polynomial time, frustration, and
dualities, and then close by computing the exact partition functions and critical temperatures of
the triangular and hexagonal lattice Ising models.

I. INTRODUCTION

The Ising model is a simple model of magnetism,
where two-valued spins σi = ±1 live on the vertices of
a graph and interact through the graph’s edges with en-
ergy −Jijσiσj . Although it is impossible to compute
the partition function of arbitrary Ising models due to
the exponentially large number of configurations, certain
special cases are exactly solvable. In particular, for pla-
nar Ising models (embedabble in the plane without self-
intersection), Kac and Ward developed a way to sum
the high-temperature expansion exactly and express the
partition function as the determinant of a matrix with
dimension equal to twice the number of bonds in the
model. With the help of the exact solution, we examine
a number of striking properties of Ising models, such as
phase transitions, frustration, and duality.

II. COMBINATORIAL SOLUTION

Our solution for general planar models largely follows
the solution of the square lattice presented by M. Kardar
in his graduate text, but we take additional care to han-
dle vertices of degree exceeding four and to work with
nonuniform couplings. The partition function is:

Z =
∑
{σi}

exp (β
∑
⟨i,j⟩

Jijσiσj) =
∑
{σi}

∏
⟨i,j⟩

exp (βJijσiσj),

(1)

where the spins σi take values ±1, ⟨i, j⟩ denotes summa-
tion over all of the model’s bonds, and Jij is bond ij’s
coupling strength. Additionally, let Ns and Nb denote
the number of spins and bonds in the model respectively.
Because σiσj only takes values ±1, we have the identity:

exp (βJijσiσj) = coshβJij + σiσj sinhβJij

= coshβJij(1 + σiσj tanhβJij).
(2)

Substituting Eq. 2 into Eq. 1 yields:

Z = (
∏
⟨i,j⟩

coshβJij)
∑
{σi}

∏
⟨i,j⟩

(1 + σiσj tanhβJij). (3)

The hyperbolic cosine prefactor is analytical even in
the thermodynamic limit, so any phase transition must

be encoded in the second product with the hyperbolic
tangents. To calculate this, we can perform a high-
temperature expansion in powers of tanhβJij ≡ tij . In
expanding the product over bonds of (1 + σiσjtij), each
bond can either contribute 1 or tij , yielding a total of
2Nb terms. We represent these terms diagrammatically
by drawing the Ising model as a graph where the spins
are vertices and the bonds are edges and highlighting the
bonds that contribute tij . If a spin σi has ni bonds high-
lighted, then the term will have a factor of σni

i . After
summing over σi = ±1, σni

i becomes 2 if ni is even or 0
if ni is odd. Therefore, the only nonzero terms are those
where each vertex has an even number of bonds high-
lighted, which are represented by closed diagrams. The
partition function is:

Z = Z0

∑
closed G

∏
⟨i,j⟩∈G

tij

Z0 = 2Ns

∏
⟨i,j⟩

coshβJij .
(4)

Because closed diagrams look like combinations of
loops, one may naively factorize Z/Z0 as the exponential
of all one-loop diagrams. However, there are ambiguities
in interpreting how many loops a diagram is composed of,
and some loops or combinations of loops do not form le-
gitimate closed diagrams, leading to overcounting in the
naive factorization. These all arise from cases where a
vertex has more than two bonds highlighted. For exam-
ple, the three ways to interpret a figure-eight diagram as
a combination of loops are shown in Fig. 1. This issue
can be corrected by assigning a negative or positive sign
to all possible ways of splitting a diagram into a combi-
nation of loops and then summing over all splittings. For

FIG. 1: The figure eight diagram can be split in three ways:
as a single loop without self-intersection, as a single loop that
intersects itself, and as two non-intersecting loops. By as-
signing a factor of (−1) to the crossing in the second case and
summing over splittings, all but one diagram is cancelled, cor-
recting the overcounting.
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a particular splitting, we assign a factor of (−1) to every
intersection of two lines, whether the lines belong to the
same loop or not. Note that two lines touching at a cor-
ner, such as in the third splitting drawn in Fig. 1, does
not count as an intersection. To prove that this corrects
the overcounting, it is sufficient to show inductively that
our scheme corrects the overcounting at a single vertex.
Consider a vertex in our closed graph with 2n highlighted
bonds. The base case is n = 2, where our analysis of the
figure-eight diagram demonstrates that our scheme is cor-
rect. There are three splittings, two of them do not get
a sign, and one does. This yields the correct total of 1,
which is consistent with the fact that there is only one
closed graph.

FIG. 2: Splitting a vertex with 2n bonds is equivalent to
grouping the bonds into n pairs. Our proof that our scheme
is correct uses casework; once we choose the first two bonds
to pair, drawn in red above, the problem is reduced to pairing
the remaining 2(n−1) bonds. The figure above is an example
for n = 3, where there are 2n− 1 = 5 cases to consider.

For the inductive step, consider a vertex with 2n > 4
bonds as drawn in Fig. 2, and label the bonds clock-
wise as {1, 2, . . . , 2n}. Splitting this vertex is equiva-
lent to grouping the bonds into n pairs. Let the sum
over all splittings, with each intersection contributing
(−1), be S(n). We do casework on how bond 1 is
paired. If we pair 1 with k ∈ {2, 3, . . . , 2n}, then we
must pair {2, 3, . . . , 2n}/k amongst themselves. For a
particular choice of pairing, the total number of inter-
sections is equal to the number of intersections among
{2, 3, . . . , 2n}/k, plus the number of intersections con-
tributed by 1 and k. Bonds 1 and k form a wall between
bonds {2, 3, . . . , k − 1} and bonds {k + 1, . . . , 2n}, so if
bonds {2, 3, . . . , k− 1} form p pairs amongst themselves,
the remaining k− 2− 2p bonds must cross the 1k line to
pair with bonds {k+1, . . . , 2n}. However, k− 2− 2p has
the same parity as k, so (−1)k−2−2p = (−1)k does not
depend on p, and the sum of all splittings where 1 pairs
with k is just (−1)kS(n− 1) = (−1)k. Summing over all

k yields S(n) =
∑2n

k=2(−1)k = (n)−(n−1) = 1. Because
S(1) = 1, S(n) = 1 for all n, and the overcounting is cor-
rected. In Fig. 3, we have explicitly drawn all 15 ways to
split a six-bond vertex to more concretely demonstrate
the overcounting correction.

There are two more potential issues with factorizing
the sum of all closed diagrams into the exponential of

FIG. 3: All 15 = 5 · 3 ways to split a vertex with six bonds
into loops, with connected bonds drawn in the same color and
intersections marked by a black dot. We can explicitly see
that assigning (−1) to each intersection produces the correct
total of 1 after all splittings are summed over.

one-loop diagrams. In forming a single loop or joining
two or more loops, it is possible to create a situation
in which the same bond is traversed twice. This cre-
ates vertices with an odd number of bonds and a final
diagram that is not closed. Assigning (−1) per intersec-
tion actually fixes this issue, as long as we exclude loops
with U-turns. When a bond is traversed by two walk-
ers (we could imagine that a little ant is walking on the
Ising model and marking its path), the two walkers can
traverse the bond without crossing to make an “equals-
sign”, or they can traverse the bond and switch to form a
“cross”. These two cases differ by a single intersection, so
they cancel, eliminating the invalid diagram. This fails
only for U-turns, where the two cases are exactly the
same walk, so they must be explicitly avoided. Avoiding
U-turns is a local constraint and hence easy to imple-
ment, so this is not a big deal. Finally, in constructing

FIG. 4: Because it has vertices with three bonds, the black
diagram it not closed. Such problematic bonds can be formed
either by the touching of two loops or by a singe loop returning
to an already-traversed bond, but the (−1) per intersection
cancels such diagrams.

closed diagrams by combining multiple loops, we need to
account for intersections between different loops, which
at first glance is an “interaction” between loops and spoils
our factorization. Luckily, mathematicians have proved
the intuitively true fact that two loops in the plane can
only intersect an even number of times, so intersections
between different loops wash out. The only exception
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to this statement is a situation where two loops are tan-
gent or meet at a corner, but we don’t count these as
intersections anyways.

Therefore, with all the potential sources of overcount-
ing corrected for, we can write:∑

closed G

∏
⟨i,j⟩∈G

tij = exp
[ ∑
loops G′

(−1)nc

∏
⟨i,j⟩∈G′

tij
]
, (5)

where the prime in G′ reminds us that G′ should not con-
tain U-turns, and nc is the number of self-intersections
that the loop has. With this, the partition function be-
comes:

lnZ = lnZ0 +
∑

loops G′

(−1)nc

∏
⟨i,j⟩∈G′

tij . (6)

All we need is a way to sum over U-turn-free loops with
their respective signs and factors of tij . In two dimen-
sions only, we can use Whitney’s theorem to compute
(−1)nc locally by integrating the loop’s turn angle:

(−1)nc = −eiθ/2, (7)

where θ is the total angle that the tangent vector of the
loop winds through. With this, all the loops G′ con-
tributing to the partition function and their phases can
be efficiently computed by viewing the loops as Marko-
vian random walks. The typical derivation of the square-
lattice Ising model considers a walker hopping from ver-
tex to vertex and keeps track of the walker’s direction to
compute the turn angle. It is slightly easier to instead
regard the walker as living on the directed edges of the
Ising model and hopping from edge to edge through the
vertices. Let the pair ji denote the directed edge from
vertex i to vertex j, and assign to it the orthonormal
unit vector |ji⟩. Additionally, let θji be the heading of
directed edge ji with respect to some reference, such as
the horizontal. For all allowed hops ji → lk, we define
the hopping matrix W (β) through its matrix element (all
other matrix elements of W (β) are zero):

⟨lk|W (β)|ji⟩ = exp (
i

2
(θlk − θji))

√
tlktji, (8)

where the square root needs to be taken with a grain
of salt due to its multivalued nature. We take the root
with argument 0 (positive real) when both tlk and tji
are positive, the root with argument π/2 (positive imag-
inary) when one is positive and one is negative, and the
root with argument π (negative real) when both are neg-
ative. The square root gives the correct factors of t in
a symmetric way, and the complex exponential records
the winding of the tangent vector. With this matrix, the
sum of all closed loops of l steps including the coupling-
strength factors is easily expressed as − 1

2l TrW (β)l. The
factor of 2 in the denominator cancels overcounting from
considering the loops as oriented, and the factor of l can-
cels overcounting from forming the same loop by starting
in multiple places. Summing over loops of all possible

lengths, applying the power series expansion of the loga-
rithm, and using the matrix identity Tr lnM = ln detM
yields the final expression:

lnZ = lnZ0 +
1

2
ln det (1−W (β)). (9)

III. HOPPING EIGENVALUES

This compact expression gives the partition function
of any planar Ising model, and its derivatives generate
all bulk thermodynamic quantities. We can already see
a number of features that all planar Ising models share.
We know from graph theory that a planar graph of Ns

vertices has less than 3Ns undirected edges, or in other
words planar graphs have average degree strictly less
than 6. This is intuitively true, as the triangular lat-
tice has coordination number 6 and is the most efficient
way to pack circles in the plane. Furthermore, planarity
strongly restricts the Ising model from being highly con-
nected, meaning that 1 − W (β) is very sparse and on
average has only a couple of nonzero entries per row and
column. For arbitrary matrices of dimension N , the de-
terminant’s complexity is O(N3) using Gaussian elimina-
tion, although one can do significantly better than this in
our case by exploiting 1−W (β)’s sparsity through tech-
niques such as sparse LU factorization. From this, we
conclude the remarkable result that the partition func-
tion and all other bulk thermodynamic quantities of pla-
nar Ising models have complexity at most O(N3

s ).

We can also express the partition function in terms of
W (β)’s eigenvalues. From the fact that the determinant
is equal to the product of the eigenvalues, we have:

lnZ = lnZ0 +
1

2

∑
λ

ln (1− λ(β)),

Z = Z0

√∏
λ

(1− λ(β)),
(10)

where the eigenvalues λ(β) are implicitly functions of β.
Although it is clearly not Hermitian, the hopping matrix
does have an interesting symmetry:

⟨lk|W (β)|ji⟩ = ⟨ij|W (β)|kl⟩∗. (11)

This is because if the walker can hop from |ji⟩ to |lk⟩,
then the walker must also be able to hop from |kl⟩ to
|ij⟩. Everything about these two hops is identical, ex-
cept for the changes in turn angle which are opposites,
so the matrix elements are related by complex conjuga-
tion. Define the matrix S through its action on the basis
S|ij⟩ = |ji⟩. By inspection, S2 = I, and S is diago-
nal in the basis |ij⟩± = 1√

2
(|ij⟩ ± |ji⟩) with eigenvalues

S|ij⟩± = ±1|ij⟩±. Therefore, S is real, symmetric, and
idempotent. Our previous identity can be expressed us-
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ing S as:

⟨lk|W (β)|ji⟩ = ⟨ij|W (β)∗|kl⟩
= ⟨kl|W (β)†|ij⟩
= ⟨lk|SW (β)†S|ji⟩.

(12)

Since S−1 = S, this implies that W (β) = S−1W (β)†S.
Thus, W (β) has the same eigenvalues as S−1W (β)†S,
which has the same eigenvalues as W (β)† since similarity
transforms do not change a matrix’s spectrum. Because
W (β)†’s spectrum is the complex conjugate of W (β)’s
spectrum, W (β)’s eigenvalues must come in complex con-
jugate pairs. Because ln z∗ = (ln z)∗ except for negative
real z, the fact that the eigenvalues come in complex con-
jugate pairs guarantees that the free energy is real, as it
should be.
Another interesting question to consider is whether an

Ising model will have the same partition function when
all its couplings are flipped in sign through Jij → −Jij ,
which can just be thought of as keeping all the couplings
the same but making the coldness negative. This is rele-
vant to determining whether a non-frustrated antiferro-
magnetic state can exist in a model or not. In general,
the closed graphs of planar Ising models are unions of pla-
quettes. Suppose that all plaquettes have an even num-
ber of edges, and consider constructing a closed diagram
recursively by repeatedly merging it with additional pla-
quettes. At the first step in the recursion, we start with a
single plaquette, which by assumption has an even num-
ber of edges. Suppose we add a plaquette with p edges
to the existing graph. We gain p − 2s edges, where s is
the number of edges that the new plaquette shares with
the existing graph. p − 2s is even since p is even, so
by induction all closed graphs have an even number of
edges. Therefore, because each edge picks up a sign un-
der β → −β, but there are always an even number of
edges in a closed diagram, lnZ is a symmetric function
of β. Since the zeros of lnZ are defined through the hop-
ping eigenvalues, this actually allows us to conclude that
for Ising models made of plaquettes with an even number
of edges, if λ is an eigenvalue so is −λ, granting us an ad-
ditional symmetry. The converse is also true: if an Ising
model has even a single plaquette with an odd number
of edges, the lnZ cannot be symmetric under β → −β.

IV. PHASE TRANSITIONS

The partition function can be considerably simplified if
all bonds have the same strength Jij = ±1. In this case,
a factor of tanhβ can be pulled out of the hopping matrix
to yield W (β) = W tanhβ, where W depends only on the
Ising model’s connectivity and not on β. In this section,
we develop an intuitive understanding for the mechanism
of the phase transition by considering W ’s spectrum in
the complex plane. Although we have specialized to the
case where all bond strengths are equal in magnitude,
the basic ideas in this section are still general. With this

FIG. 5: If a planar Ising model can be drawn by joining poly-
gons with an even number of sides, then all closed diagrams
have an even number of bonds. This can be proved by re-
cursively constructing closed diagrams through the merger of
plaquettes. For example, here we have constructed a closed di-
agram by merging the red, blue, green, and purple plaquettes
in that order. As a result, the partition function is symmet-
ric in β, and the spectrum of its hopping matrix is invariant
under λ → −λ.

simplification, the partition function can be re-written
as:

lnZ = lnZ0 +
1

2

∑
λ

ln (1− λ tanhβ), (13)

where λ is now a β-independent eigenvalue of W . Note
that if we treat Eq. 13 simply as the definition of a func-
tion Z, then the values of β such that β = artanh(1/λ)
are the zeros of Z. Of course, the partition function for
real β is always positive, but its analytic continuation to
complex β can be zero. As β ranges from 0 to ∞, tanhβ
ranges from 0 to 1, so it is the eigenvalues near the inter-
val of the real line (1,∞) that strongly affect the behavior
of lnZ. Because the partition function of a finite system
is analytic and positive for all real β, the eigenvalues can-
not lie exactly on (1,∞), but they are allowed to lie close
with a small imaginary part (eigenvalues can accumulate
at exactly 1, because tanh(β) = 1 is only attained at infi-
nite β). As the size of the system approaches infinity, the
eigenvalues accumulate closer and closer to the real line
until they are infinitesimally close in the thermodynamic
limit, and the partition function becomes nonanalytic as
tanhβ passes through these eigenvalues. For example, a
plot of the hopping eigenvalues for a finite 40×40 square
lattice Ising model are shown in Fig. 6.

It is also possible for an Ising model to be critical at
zero temperature due to frustration. The signature of
such behavior is the accumulation of eigenvalues at ex-
actly 1 (or −1 for the model with opposite couplings).
Although we would need to calculate the spin-spin cor-
relation functions and show that they have algebraic
decay to rigorously justify criticality at zero tempera-
ture, our eigenvalue picture can still provide some in-
sight. Keeping the above assumptions that all couplings
have equal magnitude, we can calculate the internal en-
ergy U =

〈
−

∑
⟨i,j⟩ Jijσiσj

〉
by differentiating the free
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FIG. 6: The hopping eigenvalues for a 40× 40 ferromagnetic
square lattice. There are no eigenvalues exactly on the real
intervals (1,+∞) and (−∞,−1), but as the system grows
larger eigenvalues can accumulate close to those intervals and
eventually touch the real line in the thermodynamic limit,
providing a mechanism for nonanalytic behaviour. At this
finite size, we already see eigenvalues accumulating near

√
2+

1 ≈ 2.41, which corresponds to the exact critical temperature
of ln (

√
2 + 1)/2.

energy:

−∂ lnZ

∂β
= −Nb tanhβ +

1

2

∑
λ

λ(1− tanh2 β)

1− λ tanhβ
. (14)

In the low temperature limit, tanhβ → 1, so the first
term is simply Nb. The limit of the summand is a little
subtle. If λ ̸= 1, even by a tiny amount, the limit as
β → ∞ is λ(1− 12)/(1−λ) = 0. However, if λ is exactly
1, then the limit must be evaluated using L’Hôpital’s
rule and turns out to be 2. Therefore, letting N(1) be
the number of eigenvalues that are exactly 1, the internal
energy at zero temperature is:

U = −Nb +N(1). (15)

If there were no eigenvalues at 1, the internal energy
would just be −Nb, indicating that all bonds are satis-
fied and the system is not frustrated. Because each frus-
trated bond incurs an energetic penalty of 2, the number
of frustrated bonds is N(1)/2. To measure the ground
state degeneracy, we can compute the limit of the entropy
as β → ∞. The entropy is given through the partition
function as:

S = lnZ − β
∂ lnZ

∂β
(16)

Substituting our expression for ∂ lnZ/∂β yields:

S = Ns ln (2) +Nb(ln coshβ − β tanhβ)

+
1

2

∑
λ

[
ln (1− λ tanhβ) +

βλ(1− tanh2 β)

1− λ tanhβ

]
.

(17)

The limit as β → ∞ of (ln coshβ − β tanhβ) is − ln 2.
If λ ̸= 1, the limit of the summand is just ln (1− λ).
However, if λ is exactly 1, the limit of the summand must

be evaluated using L’Hôpital’s rule and is ln 2. Therefore,
the entropy at zero temperature is:

S = (Ns −Nb +
N(1)

2
) ln 2 +

1

2

∑
λ ̸=1

[
ln (1− λ)

]
. (18)

Unfortunately, we cannot say anything more than this
in general because the eigenvalues λ are unknown. The
problem is that a nonzero residual entropy is not nec-
essarily an indication of frustration. For example, a
fully ferromagnetic Ising model could have C mutually-
disconnected fragments. One can flip the spin of each
component without changing the total energy, leading to
a nonzero residual entropy of C ln 2, despite the lack of
frustration and hence zero N(1).

V. DUALITY

The dual Ḡ of a planar graph G is constructed by con-
verting all plaquettes of the original graph into vertices
and connecting two vertices if their corresponding pla-
quettes shared an edge. For example, the square lattice
is dual to itself, and the triangular and hexagonal lattices
are dual to each other as shown in the Fig. 7. Closed dia-

FIG. 7: The triangular lattice (solid line) and hexagonal lat-
tice (dashed line) are dual to each other. A a closed diagram
on the triangular lattice (red line) is the boundary of an island
on the hexagonal lattice (blue dots), and a closed diagram on
the hexagonal lattice (blue line) is the boundary of an island
on the triangular lattice (red dots).

grams on G form the boundaries of islands of spins on Ḡ,
and the boundaries of islands of spins on G form closed
diagrams on Ḡ. By thinking of these islands of spins
as being flipped relative to a ground state background,
G’s high-temperature expansion can be mapped to Ḡ’s
low-temperature expansion, which can be constructed by
perturbing around the ground state (for a ferromagnetic
model, this would be the fully spin-polarized state). The
energy cost of an island of flipped spin in Ḡ is:

∆H =
∑

⟨īj⟩∈ boundary

2|Jīj |, (19)
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where dual bond īj being on the boundary means that it
connects a flipped spin in the island with a non-flipped
spin in the background. Every bond ij in G is associated
with the unique bond īj in the dual Ḡ that crosses it, so
the bond strengths of the dual model are given by:

exp (−2βJīj) = tanh (βJij). (20)

One may already see a problem with this duality. The
LHS of Eq. 20 is positive, but the RHS can be negative,
so there may be difficulties in constructing the dual of an
Ising model with antiferromagnetic bonds. More gener-
ally, the low-temperature expansion assumes that there is
a unique ground state to perturb around, and all terms in
the expansion go as exp (−β∆Hisland) > 0. At low tem-
peratures, frustrated models lack a unique ground state
to perturb around, making it impossible to match terms
with a high temperature expansion which always starts
with 1 + O(t). At high temperatures, the expansion in
powers of t for models with antiferromagnetic couplings
can have terms of negative sign, which are never be found
in a low-temperature expansion in islands of flipped spin.
Thus, the Kramers-Wannier duality of the square lattice
Ising model can be generalized to general planar Ising
models, but only if all their bonds are ferromagnetic.

VI. SOME PERIODIC MODELS

We conclude our discussion by applying the formalism
that we’ve developed to two important periodic lattices.
For all periodic models, the directed edges can be indexed
as |x, y, µ⟩, where x and y give the edge’s unit cell and µ
denotes the particular type of edge inside the cell. For a
model with Nx by Ny unit cells, we can Fourier transform
over the x and y indices to block-diagonalize the hopping
matrix:

lnZ = lnZ0 +
1

2

∑
q

ln det (1−W (q) tanhβ), (21)

where the summation runs over all q = ( 2πnx

Nx
,
2πny

Ny
) for

n1,2 = 0, . . . , N1,2−1. The matrix W (q) is defined in the
same way as in Eq. 8, but there is an additional factor
of exp (−i∆nxqx − i∆nyqy) when the hopping changes
the unit cell by ∆nx and ∆ny. The procedure here is
very similar to diagonalizing tight-binding Hamiltonians
in condensed matter theory. Imposing periodic boundary
conditions as we have done is technically wrong because it
breaks planarity, but this issue washes out when we take
thermodynamic limit and replace sum with integral.

For the triangular lattice, with the assignment of edges

FIG. 8: Our choice of lattice vectors and labelling scheme for
the directed edges in the triangular lattice Ising model.

and lattice vectors given by Fig. 8, W (q) is:

W (q) =



1 e−
iπ
6 e−

iπ
3 0 e+

iπ
3 e+

iπ
6

e+
iπ
6 1 e−

iπ
6 e−

iπ
3 0 e+

iπ
3

e+
iπ
3 e+

iπ
6 1 e−

iπ
6 e−

iπ
3 0

0 e+
iπ
3 e+

iπ
6 1 e−

iπ
6 e−

iπ
3

e−
iπ
3 0 e+

iπ
3 e+

iπ
6 1 e−

iπ
6

e−
iπ
6 e−

iπ
3 0 e+

iπ
3 e+

iπ
6 1


D(q),

D(q) = diag(e−iqx , e−iqy , ei(qx−qy), eiqx , eiqy , ei(−qx+qy)),
(22)

where we have split W (q) into a part contributed by
the winding of the tangent vector and a part coming
from the Fourier transform. W (q)’s spectrum can be
found analytically through a computer algebra system
(CAS). For any value of q, two eigenvalues are always at
−1, and the other 4 are elsewhere in the complex plane.
The other four eigenvalues depend on q in a very compli-
cated way, so we have omitted their explicit expressions.
Nevertheless, the fact that there are 2N eigenvalues at
−1 for a model with N unit cells allows us to conclude
that one out of every three bonds in the antiferromag-
netic ground state is frustrated. The triangular lattice
has one spin per and three bonds per unit cell, so for
a model of N unit cells the trivial part of the free en-
ergy is merely lnZ0/N = ln 2 + 3 ln coshβ. Computing
ln det (1−W (q) tanhβ) is best left to a CAS, and the
density of wavevectors for a model with N unit cells is
N/(2π)2, so the final partition function for the triangular
lattice is given by Eq. 24 (the equation spans the whole
page, so we have placed it at the end to avoid disrupting
the formatting), where t = tanhβ for brevity. This in-
tegral over wavevectors has singular behavior when the
quantity inside the logarithm is zero, which occurs in
two cases. Firstly, for all values of q, the quantity in-
side the logarithm is 0 as tanhβ → −∞, indicating yet
again that the antiferromagnetic Ising model is critical at
zero temperature. Secondly, although not obvious from
its messy expression, the argument of the logarithm is
also zero at t = 2 −

√
3 and q = 0, indicating that

the ferromagnetic Ising model’s critical temperature is
1/artanh(2−

√
3) = 4/ ln 3.
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FIG. 9: Our choice of lattice vectors and labelling scheme for
the directed edges in the hexagonal lattice Ising model.

For the hexagonal lattice, with the assignment of edges
and lattice vectors given by Fig. 9, W (q) is:

W (q) =



0 0 0 e+
iπ
6 e−

iπ
6 0

0 0 e−
iπ
6 0 e+

iπ
6 0

0 e+
iπ
6 0 0 0 e−

iπ
6

e−
iπ
6 0 0 0 0 e+

iπ
6

e+
iπ
6 e−

iπ
6 0 0 0 0

0 0 e+
iπ
6 e−

iπ
6 0 0


D(q),

D(q) = diag(e−iqy , ei(qx−qy), eiqy , ei(−qx+qy), 1, 1),
(23)

where we have again split W (q) into a part contributed
by the winding of the tangent vector and a part com-
ing from the hopping between different cells. Similarly
to the triangular lattice, W (q)’s spectrum can be found
analytically through a CAS, although again the expres-
sions are complicated enough to make them not worth
including explicitly. The hexagonal lattice has two spins
and three bonds per unit cell, so for a model of N
unit cells the partition function is Eq. 25 (the equa-

tion spans the whole page, so we have placed it at the
end to avoid disrupting the formatting), where as be-
fore t = ± tanhβ. The argument of the logarithm be-
comes zero when q = 0 and t = 1/

√
3, indicating that

the hexagonal lattice Ising model’s critical temperature
is 1/artanh(1/

√
3) = 2/ ln (2 +

√
3) (the ferromagnetic

model and antiferromagnetic models are equivelent be-
cause the hexagon has six sides). In both the triangular
and hexagonal lattices, the partition function has a sim-
ilar behavior as we approach the critical point, demon-
strating the universality of the transition.

VII. CONCLUSION

In this paper, we derived the exact combinatorial solu-
tion to general planar Ising models. Using the exact so-
lution, we demonstrated that bulk thermodynamic quan-
tities of planar models have polynomial complexity, ex-
amined the mechanism for phase transitions in the ther-
modynamic limit, and explored frustration and duality.
Finally, we closed off our analysis by computing the parti-
tion functions and critical temperatures of the triangular
and hexagonal lattice Ising models.
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Supplementary Equations

The partition functions for the triangular and hexagonal latices are given below.

lnZ

N
= ln (2 cosh3 β)+

1

2

∫
d2q

(2π)2
ln

[
(t+ 1)2

(
1− 2t+ 6t2 − 2t3 + t4 − 2t(−1 + t)2(cos (qx) + cos (qx − qy) + cos (qy))

)] (24)

lnZ

N
= ln (22 cosh3 β) +

1

2

∫
d2q

(2π)2
ln

[
1 + 3t4 + 2t2(−1 + t2)(cosx+ cos (x− y) + cos (y))

]
(25)


