
8.334: Statistical Mechanics II Spring 2024 Problem Set #1 Review

Problems & Solutions

1. The binary alloy: A binary alloy (as in β brass) consists of NA atoms of type A, and

NB atoms of type B. The atoms form a simple cubic lattice, each interacting only with its

six nearest neighbors. Assume an attractive energy of −J (J > 0) between like neighbors

A−A and B −B, but a repulsive energy of +J for an A−B pair.

(a) What is the minimum energy configuration, or the state of the system at zero temper-

ature?

• The minimum energy configuration has as little A-B bonds as possible. Thus, at zero

temperature atoms A and B phase separate, e.g. as indicated below.

A B

(b) Estimate the total interaction energy assuming that the atoms are randomly distributed

among the N sites; i.e. each site is occupied independently with probabilities pA = NA/N

and pB = NB/N .

• In a mixed state, the average energy is obtained from

E = (number of bonds) × (average bond energy)

= 3N ·
(

−Jp2A − Jp2B + 2JpApB
)

= −3JN

(

NA −NB

N

)2

.

(c) Estimate the mixing entropy of the alloy with the same approximation. Assume

NA, NB ≫ 1.

• From the number of ways of randomly mixing NA and NB particles, we obtain the

mixing entropy of

S = kB ln

(

N !

NA!NB!

)

.

Using Stirling’s approximation for large N (lnN ! ≈ N lnN−N), the above expression can

be written as

S ≈ kB (N lnN −NA lnNA −NB lnNB) = −NkB (pA ln pA + pB ln pB) .
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(d) Using the above, obtain a free energy function F (x), where x = (NA−NB)/N . Expand

F (x) to the fourth order in x, and show that the requirement of convexity of F breaks

down below a critical temperature Tc. For the remainder of this problem use the expansion

obtained in (d) in place of the full function F (x).

• In terms of x = pA − pB , the free energy can be written as

F = E − TS

= −3JNx2 +NkBT

{(

1 + x

2

)

ln

(

1 + x

2

)

+

(

1− x

2

)

ln

(

1− x

2

)}

.

Expanding about x = 0 to fourth order, gives

F ≃ −NkBT ln 2 +N

(

kBT

2
− 3J

)

x2 +
NkBT

12
x4.

Clearly, the second derivative of F ,

∂2F

∂x2
= N (kBT − 6J) +NkBTx

2,

becomes negative for T small enough. Upon decreasing the temperature, F becomes

concave first at x = 0, at a critical temperature Tc = 6J/kB.

(e) Sketch F (x) for T > Tc, T = Tc, and T < Tc. For T < Tc there is a range of

compositions x < |xsp(T )| where F (x) is not convex and hence the composition is locally

unstable. Find xsp(T ).

• The function F (x) is concave if ∂2F/∂x2 < 0, i.e. if

x2 <

(

6J

kBT
− 1

)

.

This occurs for T < Tc, at the spinodal line given by

xsp (T ) =

√

6J

kBT
− 1,

as indicated by the dashed line in the figure below.

(f) The alloy globally minimizes its free energy by separating into A rich and B rich phases

of compositions ±xeq(T ), where xeq(T ) minimizes the function F (x). Find xeq(T ).

• Setting the first derivative of dF (x) /dx = Nx
{

(kBT − 6J) + kBTx
2/3
}

, to zero yields

the equilibrium value of

xeq (T ) =











±
√
3

√

6J

kBT
− 1 for T < Tc

0 for T > Tc

.
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T>Tc

T=Tc

T<Tc

T=0

F(x)/NJ

x
+1-1

xsp(T)

(g) In the (T, x) plane sketch the phase separation boundary ±xeq(T ); and the so called

spinodal line ±xsp(T ). (The spinodal line indicates onset of metastability and hysteresis

effects.)

• The spinodal and equilibrium curves are indicated in the figure above. In the interval

between the two curves, the system is locally stable, but globally unstable. The formation

of ordered regions in this regime requires nucleation, and is very slow. The dashed area is

locally unstable, and the system easily phase separates to regions rich in A and B.

x1ÿ1

T

Tc

xeq(T)

x sp(T)

unstable

meta-
stable

meta-
stable

********
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2. The Ising model of magnetism: The local environment of an electron in a crystal

sometimes forces its spin to stay parallel or anti-parallel to a given lattice direction. As

a model of magnetism in such materials we denote the direction of the spin by a single

variable σi = ±1 (an Ising spin). The energy of a configuration {σi} of spins is then given

by

H =
1

2

N
∑

i,j=1

Jijσiσj − h
∑

i

σi ;

where h is an external magnetic field, and Jij is the interaction energy between spins at

sites i and j.

(a) For N spins we make the drastic approximation that the interaction between all spins is

the same, and Jij = −J/N (the equivalent neighbor model). Show that the energy can now

be written as E(M,h) = −N [Jm2/2+hm], with a magnetizationm =
∑N

i=1
σi/N = M/N .

• For Jij = −J/N , the energy of each configuration is only a function of m =
∑

i σi/N ,

given by

E (M,h) = − J

2N

N
∑

i,j=1

σiσj − h

N
∑

i=1

σi

= −N
J

2

(

N
∑

i=1

σi/N

)





N
∑

j=1

σj/N



−Nh

(

N
∑

i=1

σi/N

)

= −N

(

J

2
m2 + hm

)

.

(b) Show that the partition function Z(h, T ) =
∑

{σi}
exp(−βH) can be re-written as

Z =
∑

M exp[−βF (m, h)]; with F (m, h) easily calculated by analogy to problem (1). For

the remainder of the problem work only with F (m, h) expanded to 4th order in m.

• Since the energy depends only on the number of up spins N+, and not on their config-
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uration, we have

Z (h, T ) =
∑

{σi}

exp (−βH)

=

N
∑

N+=0

(number of configurations with N+ fixed) · exp [−βE (M,h)]

=

N
∑

N+=0

[

N !

N+! (N −N+)!

]

exp [−βE (M,h)]

=
N
∑

N+=0

exp

{

−β

[

E (M,h)− kBT ln

(

N !

N+! (N −N+)!

)]}

=
∑

M

exp [−βF (m, h)] .

By analogy to the previous problem (N+ ↔ NA, m ↔ x, J/2 ↔ 3J),

F (m, h)

N
= −kBT ln 2− hm+

1

2
(kBT − J)m2 +

kBT

12
m4 +O

(

m5
)

.

(c) By saddle point integration show that the actual free energy F (h, T ) = −kT lnZ(h, T )

is given by F (h, T ) = min[F (m, h)]m. When is the saddle point method valid? Note that

F (m, h) is an analytic function but not convex for T < Tc, while the true free energy

F (h, T ) is convex but becomes non-analytic due to the minimization.

• Let m∗ (h, T ) minimize F (m, h), i.e. min [F (m, h)]m = F (m∗, h). Since there are N

terms in the sum for Z, we have the bounds

exp (−βF (m∗, h)) ≤ Z ≤ N exp (−βF (m∗, h)) ,

or, taking the logarithm and dividing by −βN ,

F (m∗, h)

N
≥ F (h, T )

N
≥ F (m∗, h)

N
+

lnN

N
.

Since F is extensive, we have therefore

F (m∗, h)

N
=

F (h, T )

N

in the N → ∞ limit.

(d) For h = 0 find the critical temperature Tc below which spontaneous magnetization

appears; and calculate the magnetization m(T ) in the low temperature phase.
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• From the definition of the actual free energy, the magnetization is given by

m = − 1

N

∂F (h, T )

∂h
,

i.e.

m = − 1

N

dF (m, h)

dh
= − 1

N

{

∂F (m, h)

∂h
+

∂F (m, h)

∂m

∂m

∂h

}

.

Thus, if m∗ minimizes F (m, h), i.e. if ∂F (m, h)/∂m|m∗ = 0, then

m = − 1

N

∂F (m, h)

∂h

∣

∣

∣

∣

m∗

= m∗.

For h = 0,

m∗2 =
3 (J − kBT )

kBT
,

yielding

Tc =
J

kB
,

and

m =











±
√

3 (J − kBT )

kBT
if T < Tc

0 if T > Tc

.

(e) Calculate the singular (non-analytic) behavior of the response functions

C =
∂E

∂T

∣

∣

∣

∣

h=0

, and χ =
∂m

∂h

∣

∣

∣

∣

h=0

.

• The hear capacity is given by

C =
∂E

∂T

∣

∣

∣

∣

h=0,m=m∗

= −NJ

2

∂m∗2

∂T
=







3NJTc

2T 2
if T < Tc

0 if T > Tc

,

i.e. α = 0, indicating a discontinuity. To calculate the susceptibility, we use

h = (kBT − J)m+
kBT

3
m3.

Taking a derivative with respect to h,

1 =
(

kBT − J + kBTm
2
) ∂m

∂h
,
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which gives

χ =
∂m

∂h

∣

∣

∣

∣

h=0

=















1

2kB (Tc − T )
if T < Tc

1

kB (T − Tc)
if T > Tc

.

From the above expression we obtain γ± = 1, and A+/A− = 2.

********

3. The lattice–gas model: Consider a gas of particles subject to a Hamiltonian

H =
N
∑

i=1

~pi
2

2m
+

1

2

∑

i,j

V(~ri − ~rj), in a volume V.

(a) Show that the grand partition function Ξ can be written as

Ξ =
∞
∑

N=0

1

N !

(

eβµ

λ3

)N ∫ N
∏

i=1

d3~ri exp



−β

2

∑

i,j

V(~ri − ~rj)



 .

• The grand partition function is calculated as

Ξ =
∞
∑

N=0

eNβµ

N !
ZN

=
∞
∑

N=0

eNβµ

N !

∫ N
∏

i=1

d3pid
3ri

h3
e−βH

=
∞
∑

N=0

eNβµ

N !

(

N
∏

i=1

∫

d3pi
h3

e−βp2
i /2m

)

∫ N
∏

i=1

d3ri exp



−β

2

∑

i,j

Vij





=

∞
∑

N=0

1

N !

(

eNβ

λ3

)N ∫ N
∏

i=1

d3ri exp



−β

2

∑

i,j

Vij



 ,

where λ−1 =
√
2πmkBT/h.

(b) The volume V is now subdivided into N = V/a3 cells of volume a3, with the spacing a

chosen small enough so that each cell α is either empty or occupied by one particle; i.e. the

cell occupation number nα is restricted to 0 or 1 (α = 1, 2, · · · ,N ). After approximating

the integrals
∫

d3~r by sums a3
∑N

α=1
, show that

Ξ ≈
∑

{nα=0,1}

(

eβµa3

λ3

)

∑

α
nα

exp



−β

2

N
∑

α,β=1

nαnβV(~rα − ~rβ)



 .
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• Since

∫ N
∏

i=1

d3ri exp



−β

2

∑

i,j

Vij



 ≈ a3N
′
∑

exp







−β

2

N
∑

α,β=1

nαnβV (~rα − ~rβ)







·N !,

where the primed sum is over the configurations {nα = 0, 1} with fixed N , and

N =

N
∑

α=1

nα,

we have

Ξ ≈
∑

{nα=0,1}

(

eβµa3

λ3

)

∑

α
nα

exp







−β

2

N
∑

α,β=1

nαnβV (~rα − ~rβ)







.

(c) By setting nα = (1 + σα)/2 and approximating the potential by V(~rα − ~rβ) = −J/N ,

show that this model is identical to the one studied in problem (2). What does this imply

about the behavior of this imperfect gas?

• With nα = (1 + σα) /2, and V (~rα − ~rβ) = −J/N ,

Ξ =
∑

{nα=0,1}

exp







(

βµ+ 3 ln
a

λ

)

N
∑

α=1

(

1 + σα

2

)

+
βJ

2N
N
∑

α,β=1

(

1 + σα

2

)(

1 + σβ

2

)







.

Setting m ≡ ∑

α σα/N , h′ = 1

2

(

µ+ 3

β
ln a

λ
+ J

2

)

, and J ′ = J/4, the grand partition

function is written

Ξ = const.
∑

{nα=0,1}

exp
{

Nβ
(

J ′m2/2 + h′m
)}

.

The phase diagram of the lattice-gas can thus be mapped onto the phase diagram of the

Ising model of problem 2. In particular, at a chemical potential µ such that h′ = 0, there

is a continuous “condensation” transition at a critical temperature Tc = J/4kB. (Note

that

m =
∑

α

σα/N =
∑

α

(2nα − 1) /N = 2a3ρ− 1,

where ρ = N/V is the density of the gas.)

• The manifest equivalence between these three systems is a straightforward consequence

of their mapping onto the same (Ising) Hamiltonian. However, there is a more subtle

equivalence relating the critical behavior of systems that cannot be so easily mapped onto

each other due to the Universality Principle.
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********

4. Cubic invariants: When the order parameter m, goes to zero discontinuously, the

phase transition is said to be first order (discontinuous). A common example occurs in

systems where symmetry considerations do not exclude a cubic term in the Landau free

energy, as in

βH =

∫

ddx

[

K

2
(∇m)2 +

t

2
m2 + cm3 + um4

]

(K, c, u > 0).

(a) By plotting the energy density Ψ(m), for uniform m at various values of t, show that

as t is reduced there is a discontinuous jump to m 6= 0 for a positive t in the saddle–point

approximation.

• To simplify the algebra, let us rewrite the energy density Ψ(m), for uniform m, in terms

of the rescaled quantity

mr =
u

c
m.

In this way, we can eliminate the constant parameters c, and u, to get the expression of

the energy density as

Ψr(mr) =
1

2
trm

2
r +m3

r +m4
r,

where we have defined

Ψr =

(

c4

u3

)

Ψ, and tr =
( u

c2

)

t.

To obtain the extrema of Ψr, we set the first derivative with respect to mr to zero, i.e.

dΨr(mr)

dmr
= mr

(

tr + 3mr + 4m2
r

)

= 0.

The trivial solution of this equation is m∗
r = 0. But if tr ≤ 9/16, the derivative vanishes

also at m∗
r = (−3 ± √

9− 16tr)/8. Provided that tr > 0, m∗
r = 0 is a minimum of the

function Ψr(mr). In addition, if tr < 9/16, Ψr(mr) has another minimum at

m∗
r = −3 +

√
9− 16tr
8

,

and a maximum, located in between the two minima, at

m∗
r =

−3 +
√
9− 16tr
8

.
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The accompanying figure depicts the behavior of Ψr(mr) for different values of tr.

1. For tr > 9/16, there is only one minimum m∗
r = 0 .

2. For 0 < tr < tr < 9/16, there are two minima, but Ψr(m
∗
r) > Ψr(0) = 0.

3. For 0 < tr = tr, Ψr(m
∗
r) = Ψr(0) = 0.

4. For 0 < tr < tr, Ψr(m
∗
r) < Ψr(0) = 0.

The discontinuous transition occurs when the local minimum at m∗
r < 0 becomes the

absolute minimum. There is a corresponding jump of mr, from m∗
r = 0 to m∗

r = mr, where

mr = m∗
r(tr = tr).

(b) By writing down the two conditions that m and t must satisfy at the transition, solve

for m and t.

• To determine mr and tr, we have to simultaneously solve the equations

dΨr(mr)

dmr
= 0, and Ψr(mr) = Ψr(0) = 0.

Excluding the trivial solution m∗
r = 0, from







tr + 3mr + 4m2
r = 0

tr
2
+mr +m2

r = 0
,

we obtain tr = −mr = 1/2, or in the original units,

t =
c2

2u
, and m = − c

2u
.
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ξ

ξ max

(c) Recall that the correlation length ξ is related to the curvature of Ψ(m) at its minimum

by Kξ−2 = ∂2Ψ/∂m2|eq.. Plot ξ as a function of t.

•
Likewise, the equilibrium value of m = meq in the original units equals to

meq =















0 for t > t =
c2

2u
,

−
( c

u

) 3 +
√

9− 16ut/c2

8
for t < t.

The correlation length ξ, is related to the curvature of Ψ(m) at its equilibrium minimum

by

Kξ−2 =
∂2Ψ

∂m2

∣

∣

∣

∣

meq

= t+ 6cmeq + 12um2
eq,

which is equal to

ξ =



















(

K

t

)1/2

if t > t,

(

− K

2t+ 3cmeq

)1/2

if t < t.

(To arrive to the last expression, we have useddΨ(m)/dm|m=meq
= 0.)

ξmax = ξ(t) =

√
2Ku

c
.

A plot of ξ as a function of t is presented here. Note that the correlation length ξ, is finite

at the discontinuous phase transition, attaining a maximum value of
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********

5. Tricritical point: By tuning an additional parameter, a second order transition can be

made first order. The special point separating the two types of transitions is known as a

tricritical point, and can be studied by examining the Landau–Ginzburg Hamiltonian

βH =

∫

ddx

[

K

2
(∇m)2 +

t

2
m2 + um4 + vm6 − hm

]

,

where u can be positive or negative. For u < 0, a positive v is necessary to ensure stability.

(a) By sketching the energy density Ψ(m), for various t, show that in the saddle–point

approximation there is a first-order transition for u < 0 and h = 0.

• If we consider h = 0, the energy density Ψ(m), for uniform m, is

Ψ(m) =
t

2
m2 + um4 + vm6.

As in the previous problem, to obtain the extrema of Ψ, let us set the first derivative with

respect to m to zero. Again, provided that t > 0, Ψ(m) has a minimum at m∗ = 0. But

the derivative also vanishes for other nonzero values of m as long as certain conditions are

satisfied. In order to find them, we have to solve the following equation

t+ 4um2 + 6vm4 = 0,

from which,

m∗2 = − u

3v
±

√
4u2 − 6tv

6v
.

Thus, we have real and positive solutions provided that

u < 0, and t <
2u2

3v
.

Under these conditions Ψ(m) has another two minima at

m∗2 =
|u|
3v

+

√
4u2 − 6tv

6v
,

and two maxima at

m∗2 =
|u|
3v

−
√
4u2 − 6tv

6v
,

as depicted in the accompanying figure.

The different behaviors of the function Ψ(m) are as follows:

1. For t > 2u2/3v, there is only one minimum m∗ = 0.

2. For 0 < t < t < 2u2/3v, there are three minima, but Ψ(±m∗) > Ψ(0) = 0.
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3. For 0 < t = t, Ψ(±m∗) = Ψ(0) = 0.

4. For 0 < t < t, Ψ(±m∗) < Ψ(0) = 0.

There is a thus discontinuous phase transition for u < 0, and t = t(u).

(b) Calculate t and the discontinuity m at this transition.

• To determine t, and m = m∗(t = t), we again have to simultaneously solve the equations

dΨ(m)

dm2
= 0, and Ψ(m2) = Ψ(0) = 0,

or equivalently,










t

2
+ 2um2 + 3vm4 = 0

t

2
+ um2 + vm4 = 0

,

from which we obtain

t =
u2

2v
, and m2 = − u

2v
=

|u|
2v

.

(c) For h = 0 and v > 0, plot the phase boundary in the (u, t) plane, identifying the phases,

and order of the phase transitions.

• In the (u, t) plane, the line t = u2/2v for u < 0, is a first-order phase transition

boundary. In addition, the line t = 0 for u > 0, defines a second-order phase transition

boundary, as indicated in the accompanying figure.
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boundary

disordered
phase

tricritical
point

ordered

phase

first order
boundary

t

u

(d) The special point u = t = 0, separating first– and second–order phase boundaries, is

a tricritical point. For u = 0, calculate the tricritical exponents β, δ, γ, and α, governing

the singularities in magnetization, susceptibility, and heat capacity. (Recall: C ∝ t−α;

m(h = 0) ∝ tβ ; χ ∝ t−γ ; and m(t = 0) ∝ h1/δ.)

• For u = 0, let us calculate the tricritical exponents α, β, γ, and δ. In order to calculate

α and β, we set h = 0, so that

Ψ(m) =
t

2
m2 + vm6.

Thus from
∂Ψ

∂m

∣

∣

∣

∣

m

= m
(

t+ 6vm4
)

= 0,

we obtain,

m =











0 for t > t = 0,
(

− t

6v

)1/4

for t < 0
,

resulting in,

m(h = 0) ∝ tβ , with β =
1

4
.

The corresponding free energy density scales as

Ψ(m) ∼ m 6 ∝ (−t)3/2.
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The tricritical exponent α characterizes the non-analytic behavior of the heat capacity

C ∼ (∂2Ψ/∂T 2)|h=0,m, and since t ∝ (T − Tc),

C ∼ ∂2Ψ

∂t2

∣

∣

∣

∣

h=0,m

∝ t−α, with α =
1

2
.

To calculate the tricritical exponent δ, we set t = 0 while keeping h 6= 0, so that

Ψ(m) = vm6 − hm.

Thus from
∂Ψ

∂m

∣

∣

∣

∣

m

= 6vm5 − h = 0,

we obtain,

m ∝ h1/δ, with δ = 5.

Finally, for h 6= 0 and t 6= 0,

∂Ψ

∂m

∣

∣

∣

∣

m

= tm+ 6vm5 − h = 0,

so that the susceptibility scales as

χ =
∂m

∂h

∣

∣

∣

∣

h=0

∝ |t|−1, for both t < 0 and t > 0,

i.e. with the exponents γ± = 1.

********

6. Transverse susceptibility: An n–component magnetization field ~m(x) is coupled to an

external field ~h through a term −
∫

ddx ~h · ~m(x) in the Hamiltonian βH. If βH for ~h = 0

is invariant under rotations of ~m(x); then the free energy density (f = − lnZ/V ) only

depends on the absolute value of ~h; i.e. f(~h) = f(h), where h = |~h|.
(a) Show that mα = 〈

∫

ddxmα(x)〉/V = −hαf
′(h)/h.

• The magnetic work is the product of the magnetic field and the magnetization density,

and appears as the argument of the exponential weight in the (Gibbs) canonical ensemble.

We can thus can “lower” the magnetization M =
∫

ddxmα (x) “inside the average” by

taking derivatives of the (Gibbs) partition function with respect to hα, as

mα =
1

V

〈
∫

ddxmα (x)

〉

=
1

V

∫

Dm (x)
(∫

ddx′mα (x′)
)

e−βH

∫

Dm (x) e−βH

=
1

V

1

Z

1

β

∂

∂hα

∫

Dm (x) e−βH =
1

βV

∂

∂hα
lnZ = − ∂f

∂hα
.
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For an otherwise rotationally symmetric system, the (Gibbs) free energy depends only on

the magnitude of h, and using

∂h

∂hα
=

∂
√

hβhβ

∂hα
=

1

2

2δαβhβ
√

hβhβ

=
hα

h
,

we obtain

mα = − ∂f

∂hα
= − df

dh

∂h

∂hα
= −f ′hα

h
.

(b) Relate the susceptibility tensor χαβ = ∂mα/∂hβ , to f ′′(h), ~m, and ~h.

• The susceptibility tensor is now obtained as

χαβ =
∂mα

∂hβ
=

∂

∂hβ

(

−hα

h
f ′ (h)

)

= −∂hα

∂hβ

1

h
f ′ − ∂h−1

∂hβ
hαf

′ − hα

h

∂f ′

∂hβ

= −
(

δαβ − hαhβ

h2

)

f ′

h
− hαhβ

h2
f ′′.

In order to express f ′ in terms of the magnetization, we take the magnitude of the result

of part (a),

m = |f ′ (h)| = −f ′ (h) ,

from which we obtain

χαβ =

(

δαβ − hαhβ

h2

)

m

h
+

hαhβ

h2

dm

dh
.

(c) Show that the transverse and longitudinal susceptibilities are given by χt = m/h and

χℓ = −f ′′(h); where m is the magnitude of ~m.

• Since the matrix
(

δαβ − hαhβ/h
2
)

removes the projection of any vector along the mag-

netic field, we conclude










χℓ = −f ′′ (h) =
dm

dh

χt =
m

h

.

Alternatively, we can choose the coordinate system such that hi = hδi1 (i = 1, . . . , d), to

get














χℓ = χ11 =

(

δ11 −
h1h1

h2

)

m

h
− h1h1

h2
f ′′ (h) =

dm

dh

χt = χ22 =

(

δ22 −
h2h2

h2

)

m

h
− h2h2

h2
f ′′ (h) =

m

h

.

(d) Conclude that χt diverges as ~h → 0, whenever there is a spontaneous magnetization.

Is there any similar a priori reason for χℓ to diverge?
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• Provided that limh→0 m 6= 0, the transverse susceptibility clearly diverges for h → 0.

There is no similar reason, on the other hand, for the longitudinal susceptibility to diverge.

In the saddle point approximation of the Landau–Ginzburg model, for example, we have

tm+ 4um3 + h = 0,

implying (since 4um2 = −t at h = 0, for t < 0) that

χℓ|h=0
=

(

dh

dm

)−1
∣

∣

∣

∣

∣

h=0

= (t− 3t)
−1

, i .e. χℓ =
1

2 |t| ,

at zero magnetic field, in the ordered phase (t < 0).

NOTE: Another, more pictorial approach to this problem is as follows. Since the Hamil-

tonian is invariant under rotations about h, m must be parallel to h, i.e.

mα =
hα

h
ϕ (h) ,

where ϕ is some function of the magnitude of the magnetic field. For simplicity, let h = he1,

with e1 a unit vector, implying that

m = me1 = ϕ (h) e1.

The longitudinal susceptibility is then calculated as

χℓ =
∂m1

∂h1

∣

∣

∣

∣

h=he1

=
dm

dh
= ϕ′ (h) .

To find the transverse susceptibility, we first note that if the system is perturbed by a

small external magnetic field δhe2, the change in m1 is, by symmetry, the same for δh > 0

and δh < 0, implying

m1 (he1 + δhe2) = m1 (he1) +O
(

δh2
)

.

Hence
∂m1

∂h2

∣

∣

∣

∣

h=he1

= 0.

Furthermore, since m and h are parallel,

m1 (he1 + δhe2)

h
=

m2 (he1 + δhe2)

δh
,

from which

m2 (he1 + δhe2) =
m1 (he1)

h
δh+O

(

δh3
)

,

yielding

χt =
∂m2

∂h2

∣

∣

∣

∣

h=he1

=
m

h
.

********
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