
8.334: Statistical Mechanics II Spring 2024 Problem Set #2 Review

Problems & Solutions

1. Spin waves: In the XY model of n = 2 magnetism, a unit vector ~s = (sx, sy) (with

s2x + s2y = 1) is placed on each site of a d–dimensional lattice. There is an interaction that

tends to keep nearest–neighbors parallel, i.e. a Hamiltonian

−βH = K
∑

<ij>

~si · ~sj .

The notation < ij > is conventionally used to indicate summing over all nearest–neighbor

pairs (i, j).

(a) Rewrite the partition function Z =
∫
∏

i d~si exp(−βH), as an integral over the set of

angles {θi} between the spins {~si} and some arbitrary axis.

• The partition function is

Z =

∫

∏

i

d2~si exp



K
∑

〈ij〉

~si · ~sj



 δ
(

~si
2 − 1

)

.

Since ~si · ~sj = cos (θi − θj), and d2~si = dsidθisi = dθi, we obtain

Z =

∫

∏

i

dθi exp



K
∑

〈ij〉

cos (θi − θj)



 .

(b) At low temperatures (K ≫ 1), the angles {θi} vary slowly from site to site. In this

case expand −βH to get a quadratic form in {θi}.
• Expanding the cosines to quadratic order gives

Z = eNbK

∫

∏

i

dθi exp



−K

2

∑

〈ij〉

(θi − θj)
2



 ,

where Nb is the total number of bonds. Higher order terms in the expansion may be

neglected for large K, since the integral is dominated by |θi − θj | ≈
√

2/K.

(c) For d = 1, consider L sites with periodic boundary conditions (i.e. forming a closed

chain). Find the normal modes θq that diagonalize the quadratic form (by Fourier trans-

formation), and the corresponding eigenvalues K(q). Pay careful attention to whether the

modes are real or complex, and to the allowed values of q.
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• For a chain of L sites, we can change to Fourier modes by setting

θj =
∑

q

θ (q)
eiqj√
L
.

Since θj are real numbers, we must have

θ (−q) = θ (q)
∗
,

and the allowed q values are restricted, for periodic boundary conditions, by the require-

ment of

θj+L = θj , ⇒ qL = 2πn, with n = 0,±1,±2, . . . ,±L

2
.

Using

θj − θj−1 =
∑

q

θ (q)
eiqj√
L

(

1− e−iq
)

,

the one dimensional Hamiltonian, βH = K
2

∑

j (θj − θj−1)
2
, can be rewritten in terms of

Fourier components as

βH =
K

2

∑

q,q′

θ (q) θ (q′)
∑

j

ei(q+q′)j

L

(

1− e−iq
)

(

1− e−iq′

)

.

Using the identity
∑

j e
i(q+q′)j = Lδq,−q′, we obtain

βH = K
∑

q

|θ (q)|2 [1− cos (q)] .

(d) Generalize the results from the previous part to a d–dimensional simple cubic lattice

with periodic boundary conditions.

• In the case of a d dimensional system, the index j is replaced by a vector

j 7→ j = (j1, . . . , jd) ,

which describes the lattice. We can then write

βH =
K

2

∑

j

∑

α

(

θj − θj+eα

)2
,

where eα’s are unit vectors {e1 = (1, 0, · · · , 0) , · · · , ed = (0, · · · , 0, 1)}, generalizing the one

dimensional result to

βH =
K

2

∑

q,q′

θ (q) θ (q′)
∑

α

∑

j

ei(q+q′)·j

Ld

(

1− e−iq·eα

)

(

1− e−iq′·eα

)

.
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Again, summation over j constrains q and −q′ to be equal, and

βH = K
∑

q

|θ (q)|2
∑

α

[1− cos (qα)] .

(e) Calculate the contribution of these modes to the free energy and heat capacity. (Eval-

uate the classical partition function, i.e. do not quantize the modes.)

• With K (q) ≡ 2K
∑

α [1− cos (qα)],

Z =

∫

∏

q

dθ (q) exp

[

−1

2
K (q) |θ (q)|2

]

=
∏

q

√

2π

K (q)
,

and the corresponding free energy is

F = −kBT lnZ = −kBT

[

constant − 1

2

∑

q

lnK (q)

]

,

or, in the continuum limit (using the fact that the density of states in q space is (L/2π)
d
),

F = −kBT

[

constant +
1

2
Ld

∫

ddq

(2π)
d
lnK (q)

]

.

As K ∼ 1/T , we can write

F = −kBT

[

constant′ − 1

2
Ld lnT

]

,

and the heat capacity per site is given by

C = −T
∂2F

∂T 2
· 1

Ld
=

kB
2
.

This is because there is one degree of freedom (the angle) per site that can store potential

energy. Of course, at sufficiently high temperatures the replacement of cosines by the

quadratic form is no longer valid.

(f) Find an expression for 〈~s0 · ~sx〉 = ℜ〈exp[iθx − iθ0]〉 by adding contributions from

different Fourier modes. Convince yourself that for |x| → ∞, only q → 0 modes contribute

appreciably to this expression, and hence calculate the asymptotic limit.

• We have

θx − θ0 =
∑

q

θ (q)
eiq·x − 1

Ld/2
,
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and by completing the square for the argument of the exponential in
〈

ei(θx−θ0)
〉

, i.e. for

−1

2
K (q) |θ (q)|2 + iθ (q)

eiq·x − 1

Ld/2
,

it follows immediately that

〈

ei(θx−θ0)
〉

= exp

{

− 1

Ld

∑

q

∣

∣eiq·x − 1
∣

∣

2

2K (q)

}

= exp

{

−
∫

ddq

(2π)
d

1− cos (q · x)
K (q)

}

.

For x larger than 1, the integrand has a peak of height ∼ x2/2K at q = 0 (as it is

seen by expanding the cosines for small argument). Furthermore, the integrand has a first

node, as q increases, at q ∼ 1/x. From these considerations, we can obtain the leading

behavior for large x:

• In d = 1, we have to integrate ∼ x2/2K over a length ∼ 1/x, and thus

〈

ei(θx−θ0)
〉

∼ exp

(

− |x|
2K

)

.

• In d = 2, we have to integrate ∼ x2/2K over an area ∼ (1/x)
2
. A better approximation,

at large x, than merely taking the height of the peak, is given by

∫

ddq

(2π)
d

1− cos (q · x)
K (q)

≈
∫

dqdϕq

(2π)
2

1− cos (qx cosϕ)

Kq2

=

∫

dqdϕ

(2π)
2

1

Kq
−
∫

dqdϕ

(2π)
2

cos (qx cosϕ)

Kq
,

or, doing the angular integration in the first term,

∫

ddq

(2π)
d

1− cos (q · x)
K (q)

≈
∫ 1/|x| dq

2π

1

Kq
+ subleading in x,

resulting in
〈

ei(θx−θ0)
〉

∼ exp

(

− ln |x|
2πK

)

= |x|−
1

2πK , as x → ∞.

• In d ≥ 3, we have to integrate ∼ x2/2K over a volume ∼ (1/x)
3
. Thus, as x → ∞, the

x dependence of the integral is removed, and

〈

ei(θx−θ0)
〉

→ constant,

implying that correlations don’t disappear at large x.
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The results can also be obtained by noting that the fluctuations are important only for

small q. Using the expansion of K(q) ≈ Kq2/2, then reduces the problem to calculation

of the Coulomb Kernel
∫

ddqeiq·x/q2, as described in the preceding chapter.

(g) Calculate the transverse susceptibility from χt ∝
∫

ddx〈~s0 · ~sx〉c. How does it depend

on the system size L?

• We have
〈

ei(θx−θ0)
〉

= exp

{

−
∫

ddq

(2π)
d

1− cos (q · x)
K (q)

}

,

and, similarly,

〈

eiθx
〉

= exp

{

−
∫

ddq

(2π)
d

1

2K (q)

}

.

Hence the connected correlation function

〈~sx · ~s0〉c =
〈

ei(θx−θ0)
〉

c
=

〈

ei(θx−θ0)
〉

−
〈

eiθx
〉 〈

eiθ0
〉

,

is given by

〈~sx · ~s0〉c = e
−
∫

ddq

(2π)d
1

K(q)

{

exp

[

∫

ddq

(2π)
d

cos (q · x)
K (q)

]

− 1

}

.

In d ≥ 3, the x dependent integral vanishes at x → ∞. We can thus expand its exponential,

for large x, obtaining

〈~sx · ~s0〉c ∼
∫

ddq

(2π)
d

cos (q · x)
K (q)

≈
∫

ddq

(2π)
d

cos (q · x)
Kq2

=
1

K
Cd(x) ∼

1

K |x|d−2
.

Thus, the transverse susceptibility diverges as

χt ∝
∫

ddx 〈~sx · ~s0〉c ∼
L2

K
.

(h) In d = 2, show that χt only diverges for K larger than a critical value Kc = 1/(4π).

• In d = 2, there is no long range order, 〈~sx〉 = 0, and

〈~sx · ~s0〉c = 〈~sx · ~s0〉 ∼ |x|−1/(2πK)
.

The susceptibility

χt ∼
∫ L

d2x |x|−1/(2πK)
,
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thus converges for 1/(2πK) > 2, for K below Kc = 1/(4π). For K > Kc, the susceptibility

diverges as

χt ∼ L2−2Kc/K .

********

2. Capillary waves: A reasonably flat surface in d–dimensions can be described by its

height h, as a function of the remaining (d − 1) coordinates x = (x1, ...xd−1). Convince

yourself that the generalized “area” is given by A =
∫

dd−1x
√

1 + (∇h)2. With a surface

tension σ, the Hamiltonian is simply H = σA.

(a) At sufficiently low temperatures, there are only slow variations in h. Expand the energy

to quadratic order, and write down the partition function as a functional integral.

• For a surface parametrized by the height function

xd = h (x1, . . . , xd−1) ,

an area element can be calculated as

dA =
1

cosα
dx1 · · ·dxd−1,

where α is the angle between the dth direction and the normal

~n =
1

√

1 + (∇h)
2

(

− ∂h

∂x1
, . . . ,− ∂h

∂xd−1
, 1

)

to the surface (n2 = 1). Since, cosα = nd =
[

1 + (∇h)
2
]−1/2

≈ 1− 1
2 (∇h)

2
, we obtain

H = σA ≈ σ

∫

dd−1x

{

1 +
1

2
(∇h)

2

}

,

and, dropping a multiplicative constant,

Z =

∫

Dh (x) exp

{

−β
σ

2

∫

dd−1x (∇h)
2

}

.

(b) Use Fourier transformation to diagonalize the quadratic Hamiltonian into its normal

modes {hq} (capillary waves).

• After changing variables to the Fourier modes,

h (x) =

∫

dd−1q

(2π)
d−1

h (q) eiq·x,
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the partition function is given by

Z =

∫

Dh (q) exp

{

−β
σ

2

∫

dd−1q

(2π)
d−1

q2 |h (q)|2
}

.

(c) What symmetry breaking is responsible for these Goldstone modes?

• By selecting a particular height, the ground state breaks the translation symmetry in

the dth direction. The transformation h (x) → h (x) + ξ (x) leaves the energy unchanged

if ξ (x) is constant. By continuity, we can have an arbitrarily small change in the energy

by varying ξ (x) arbitrarily slowly.

(d) Calculate the height–height correlations 〈
(

h(x)− h(x′)
)2〉.

• From

h (x)− h (x′) =

∫

dd−1q

(2π)
d−1

h (q)
(

eiq·x − eiq·x
′

)

,

we obtain

〈

(h (x) − h (x′))
2
〉

=

∫

dd−1q

(2π)
d−1

dd−1q′

(2π)
d−1

〈h (q) h (q′)〉
(

eiq·x − eiq·x
′

)(

eiq
′·x − eiq

′·x′

)

.

The height-height correlations thus behave as

G (x− x′) ≡
〈

(h (x) − h (x′))
2
〉

=
2

βσ

∫

dd−1q

(2π)
d−1

1− cos [q · (x− x′)]

q2
=

2

βσ
Cd−1 (x− x′) .

(e) Comment on the form of the result (d) in dimensions d = 4, 3, 2, and 1.

• We can now discuss the asymptotic behavior of the Coulomb Kernel for large |x− x′|,
either using the results from problem 1(f), or the exact form given in lectures.

• In d ≥ 4, G (x− x′) → constant, and the surface is flat.

• In d = 3, G (x− x′) ∼ ln |x− x′|, and we come to the surprising conclusion that there

are no asymptotically flat surfaces in three dimensions. While this is technically correct,

since the logarithm grows slowly, very large surfaces are needed to detect appreciable

fluctuations.

• In d = 2, G (x− x′) ∼ |x− x′|. This is easy to comprehend, once we realize that the

interface h(x) is similar to the path x(t) of a random walker, and has similar (x ∼
√
t)

fluctuations.

• In d = 1, G (x− x′) ∼ |x− x′|2. The transverse fluctuation of the ‘point’ interface are

very big, and the approximations break down as discussed next.
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(f) By estimating typical values of ∇h, comment on when it is justified to ignore higher

order terms in the expansion for A.

• We can estimate (∇h)
2
as

〈

(h (x)− h (x′))
2
〉

(x− x′)
2 ∝ |x− x′|1−d

.

For dimensions d ≥ dℓ = 1, the typical size of the gradient decreases upon coarse-graining.

The gradient expansion of the area used before is then justified. For dimensions d ≤ dℓ,

the whole idea of the gradient expansion fails to be sensible.

********

3. Gauge fluctuations in superconductors: The Landau–Ginzburg model of supercon-

ductivity describes a complex superconducting order parameter Ψ(x) = Ψ1(x) + iΨ2(x),

and the electromagnetic vector potential ~A(x), which are subject to a Hamiltonian

βH =

∫

d3x

[

t

2
|Ψ|2 + u|Ψ|4 + K

2
DµΨD∗

µΨ
∗ +

L

2
(∇× A)

2

]

.

The gauge-invariant derivative Dµ ≡ ∂µ − ieAµ(x), introduces the coupling between the

two fields. (In terms of Cooper pair parameters, e = e∗c/h̄, K = h̄2/2m∗.)

(a) Show that the above Hamiltonian is invariant under the local gauge symmetry:

Ψ(x) 7→ Ψ(x) exp (iθ(x)) , and Aµ(x) 7→ Aµ(x) +
1

e
∂µθ.

• Under a local gauge transformation, βH 7−→
∫

d3x

{

t

2
|Ψ|2 + u |Ψ|4 +K

2

[

(∂µ − ieAµ − i∂µθ)Ψeiθ
] [

(∂µ + ieAµ + i∂µθ)Ψ
∗e−iθ

]

+
L

2

(

∇× ~A+∇× 1

e
∇θ

)2
}

.

But this is none other than βH again, since

(∂µ − ieAµ − i∂µθ)Ψeiθ = eiθ (∂µ − ieAµ)Ψ = eiθDµΨ,

and

∇× 1

e
∇θ = 0.
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(b) Show that there is a saddle point solution of the form Ψ(x) = Ψ, and ~A(x) = 0, and

find Ψ for t > 0 and t < 0.

• The saddle point solutions are obtained from

δH
δΨ∗

= 0, =⇒ t

2
Ψ + 2uΨ |Ψ|2 − K

2
DµD

∗
µΨ = 0,

and
δH
δAµ

= 0, =⇒ K

2

(

−ieΨD∗
µΨ

∗ + ieΨ∗DµΨ
)

− Lǫαβµǫαγδ∂β∂γAδ = 0.

The ansatz Ψ (x) = Ψ, ~A = 0, clearly solves these equations. The first equation then

becomes

tΨ+ 4uΨ
∣

∣Ψ
∣

∣

2
= 0,

yielding (for u > 0) Ψ = 0 for t > 0, whereas
∣

∣Ψ
∣

∣

2
= −t/4u for t < 0.

(c) For t < 0, calculate the cost of fluctuations by setting

{

Ψ(x) =
(

Ψ+ φ(x)
)

exp (iθ(x)) ,

Aµ(x) = aµ(x), (with ∂µaµ = 0 in the Coulomb gauge)

and expanding βH to quadratic order in φ, θ, and ~a.

• For simplicity, let us choose Ψ to be real. From the Hamiltonian term

DµΨD∗
µΨ

∗ =
[

(∂µ − ieaµ)
(

Ψ+ φ
)

eiθ
] [

(∂µ + ieaµ)
(

Ψ+ φ
)

e−iθ
]

,

we get the following quadratic contribution

Ψ
2
(∇θ)

2
+ (∇φ)

2 − 2eΨ
2
aµ∂µθ + e2Ψ

2 |~a|2 .

The third term in the above expression integrates to zero (as it can be seen by integrating

by parts and invoking the Coulomb gauge condition ∂µaµ = 0). Thus, the quadratic terms

read

βH(2) =

∫

d3x

{

(

t

2
+ 6uΨ

2
)

φ2 +
K

2
(∇φ)

2
+

K

2
Ψ

2
(∇θ)

2

+
K

2
e2Ψ

2 |~a|2 + L

2
(∇× ~a)

2

}

.

(d) Perform a Fourier transformation, and calculate the expectation values of
〈

|φ(q)|2
〉

,
〈

|θ(q)|2
〉

, and
〈

|~a(q)|2
〉

.
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• In terms of Fourier transforms, we obtain

βH(2) =
∑

q

{

(

t

2
+ 6uΨ

2
+

K

2
q2
)

|φ (q)|2 +K

2
Ψ

2
q2 |θ (q)|2

+
K

2
e2Ψ

2 |~a (q)|2 + L

2
(q× ~a)

2

}

.

In the Coulomb gauge, q ⊥ ~a (q), and so [q× ~a (q)]
2
= q2 |~a (q)|2. This diagonal form

then yields immediately (for t < 0)

〈

|φ (q)|2
〉

=
(

t+ 12uΨ
2
+Kq2

)−1

=
1

Kq2 − 2t
,

〈

|θ (q)|2
〉

=
(

KΨ
2
q2
)−1

= − 4u

Ktq2
,

〈

|~a (q)|2
〉

= 2
(

Ke2Ψ
2
+ Lq2

)−1

=
2

Lq2 −Ke2t/4u
(~a has 2 components).

Note that the gauge field, “mass-less” in the original theory, acquires a “mass” Ke2t/4u

through its coupling to the order parameter. This is known as the Higgs mechanism.

********

4. Fluctuations around a tricritical point: As shown in a previous problem, the Hamilto-

nian

βH =

∫

ddx

[

K

2
(∇m)2 +

t

2
m2 + um4 + vm6

]

,

with u = 0 and v > 0 describes a tricritical point.

(a) Calculate the heat capacity singularity as t → 0 by the saddle point approximation.

• As already calculated in a previous problem, the saddle point minimum of the free

energy ~m = mêℓ, can be obtained from

∂Ψ

∂m

∣

∣

∣

∣

m

= m
(

t+ 6vm 4
)

= 0,

yielding,

m =











0 for t > t = 0
(

− t

6v

)1/4

for t < 0
.

The corresponding free energy density equals to

Ψ(m) =
t

2
m 2 + vm 6 =











0 for t > 0

−1

3

(−t)3/2

(6v)1/2
for t < 0

.
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Therefore, the singular behavior of the heat capacity is given by

C = Cs.p. ∼ −Tc
∂2Ψ

∂t2

∣

∣

∣

∣

m

=







0 for t > 0

Tc

4
(−6vt)−1/2 for t < 0

,

as sketched in the figure below.

t

C

(b) Include both longitudinal and transverse fluctuations by setting

~m(x) =
(

m+ φℓ(x)
)

êℓ +
n
∑

α=2

φα
t (x)êα,

and expanding βH to quadratic order in φ.

• Let us now include both longitudinal and transversal fluctuations by setting

~m(x) = (m+ φℓ(x))êℓ +
n
∑

α=2

φα
t (x)êα,

where êℓ and êα form an orthonormal set of n vectors. Consequently, the free energy βH
is a function of φℓ and φt. Since mêℓ is a minimum, there are no linear terms in the

expansion of βH in φ. The contributions of each factor in the free energy to the quadratic

term in the expansion are

(∇~m)2 =⇒ (∇φℓ)
2 +

n
∑

α=2

(∇φα
t )

2,

(~m)2 =⇒ (φℓ)
2 +

n
∑

α=2

(φα
t )

2,

(~m)6 = ((~m)2)3 = (m2 + 2mφℓ + φ2
ℓ +

n
∑

α=2

(φα
t )

2)3 =⇒ 15m 4(φℓ)
2 + 3m 4

n
∑

α=2

(φα
t )

2.
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The expansion of βH to second order now gives

βH(φℓ, φ
α
t ) = βH(0, 0) +

∫

ddx

{[

K

2
(∇φℓ)

2 +
φ2
ℓ

2

(

t+ 30vm4
)

]

+

n
∑

α=2

[

K

2
(∇φα

t )
2 +

(φα
t )

2

2

(

t+ 6vm4
)

]

}

.

We can formally rewrite it as

βH(φℓ, φ
α
t ) = βH(0, 0) + βHℓ(φℓ) +

n
∑

α=2

βHtα(φ
α
t ),

where βHi(φi), with i = ℓ, tα, is in general given by

βHi(φi) =
K

2

∫

ddx

[

(∇φi)
2 +

φ2
i

ξ2i

]

,

with the inverse correlation lengths

ξ−2
ℓ =











t

K
for t > 0

−4t

K
for t < 0

,

and

ξ−2
tα =







t

K
for t > 0

0 for t < 0
.

As shown in the lectures for the critical point of a magnet, for t > 0 there is no difference

between longitudinal and transverse components, whereas for t < 0, there is no restoring

force for the Goldstone modes φα
t due to the rotational symmetry of the ordered state.

(c) Calculate the longitudinal and transverse correlation functions.

• Since in the harmonic approximation βH turns out to be a sum of the Hamiltonians

of the different fluctuating components φℓ, φ
α
t , these quantities are independent of each

other, i.e.

〈φℓφ
α
t 〉 = 0, and 〈φγ

t φ
α
t 〉 = 0 for α 6= γ.

To determine the longitudinal and transverse correlation functions, we first express the

free energy in terms of Fourier modes, so that the probability of a particular fluctuation

configuration is given by

P({φℓ, φ
α
t }) ∝

∏

q,α

exp

{

−K

2

(

q2 + ξ−2
ℓ

)

|φℓ,q|2
}

· exp
{

−K

2

(

q2 + ξ−2
tα

)

|φα
t,q|

2

}

.
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Thus, as it was also shown in the lectures, the correlation function is

〈φα(x)φβ(0)〉 =
δα,β
V K

∑

q

eiq·x
(

q2 + ξ−2
α

) = −δα,β
K

Id(x, ξα),

therefore,

〈φℓ(x)φℓ(0)〉 = − 1

K
Id(x, ξℓ),

and

〈φα
t (x)φ

β
t (0)〉 = −δα,β

K
Id(x, ξtα).

(d) Compute the first correction to the saddle point free energy from fluctuations.

• Let us calculate the first correction to the saddle point free energy from fluctuations.

The partition function is

Z = e−βH(0,0)

∫

Dφ(x) exp

{

−K

2

∫

ddx
[

(∇φ)2 + ξ−2φ2
]

}

= e−βH(0,0)

∫

∏

q

dφq exp

{

−K

2

∑

q

(

q2 + ξ−2
)

φqφ
∗
q

}

=
∏

q

[

K
(

q2 + ξ−2
)]−1/2

= exp

{

−1

2

∑

q

ln
(

Kq2 +Kξ−2
)

}

,

and the free energy density equals to

βf =
βH(0, 0)

V
+



















n

2

∫

ddq

(2π)d
ln

(

Kq2 + t
)

for t > 0

1

2

∫

ddq

(2π)d
ln

(

Kq2 − 4t
)

+
n− 1

2

∫

ddq

(2π)d
ln
(

Kq2
)

for t < 0

.

Note that the first term is the saddle point free energy, and that there are n contributions

to the free energy from fluctuations.

(e) Find the fluctuation correction to the heat capacity.

• As C = −T (d2f/dT 2), the fluctuation corrections to the heat capacity are given by

C − Cs.p. ∝



















n

2

∫

ddq

(2π)d
(

Kq2 + t
)−2

for t > 0

16

2

∫

ddq

(2π)d
(

Kq2 − 4t
)−2

for t < 0

.

These integrals change behavior at d = 4. For d > 4, the integrals diverge at large q,

and are dominated by the upper cutoff ∆ ≃ 1/a. That is why fluctuation corrections to

13



the heat capacity add just a constant term on each side of the transition, and the saddle

point solution keeps its qualitative form. On the other hand, for d < 4, the integrals are

proportional to the corresponding correlation length ξ4−d. Due to the divergence of ξ, the

fluctuation corrections diverge as

Cfl. = C − Cs.p. ∝ K−d/2|t|d/2−2.

(f) By comparing the results from parts (a) and (e) for t < 0 obtain a Ginzburg criterion,

and the upper critical dimension for validity of mean–field theory at a tricritical point.

• To obtain a Ginzburg criterion, let us consider t < 0. In this region, the saddle point

contribution already diverges as Cs.p. ∝ (−vt)−1/2, so that

Cfl.

Cs.p.
∝ (−t)

d−3
2

( v

Kd

)1/2

.

Therefore at t < 0, the saddle point contribution dominates the behavior of this ratio

provided that d > 3. For d < 3, the mean field result will continue being dominant far

enough from the critical point, i.e. if

(−t)d−3 ≫
(

Kd

v

)

, or |t| ≫
(

Kd

v

)1/(d−3)

.

Otherwise, i.e. if

|t| <
(

Kd

v

)1/(d−3)

,

the fluctuation contribution to the heat capacity becomes dominant. The upper critical

dimension for the tricritical point is then d = 3.

(g) A generalized multicritical point is described by replacing the term vm6 with u2nm
2n.

Use simple power counting to find the upper critical dimension of this multicritical point.

• If instead of the term vm6 we have a general factor of the form u2nm
2n, we can easily

generalize our results to

m ∝ (−t)1/(2n−2), Ψ(m) ∝ (−t)n/(n−1), Cs.p. ∝ (−t)n/(n−1)−2.

Moreover, the fluctuation correction to the heat capacity for any value of n is the same as

before

Cfl. ∝ (−t)d/2−2.

Hence the upper critical dimension is, in general, determined by the equation

d

2
− 2 =

n

n− 1
− 2, or du =

2n

n− 1
.

********
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