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We start by discussing the different properties of two basic network models: the ER random model and the BA scale-free model. While the BA model is good to explain most non-biological real networks, the gene duplication model has to be integrated to give a better description of the biological networks. Based on these backgrounds, we investigate the extended models and some sequence analyses for the protein evolution, which gave conflict conclusions. A new study about the motifs in such biological networks might suggest thinking evolution modularly.
I. Introduction

The last few years have witnessed a tremendous activity devoted to the characterization and understanding of complex networks [1, 2, 3], which arise in a vast number of natural and artificial systems, such as Internet, the WWW, social networks, food webs, biological interacting networks and so forth. 

In system biology, network analysis is increasingly recognized as a powerful approach to understanding biological organization and the function of cellular components. We are especially interested in how the network models can help us to understand the principles driving the evolution of living organisms, which in this paper is the evolution of the protein-protein interaction.
We start with two basic models that had a direct impact on our understanding of biological networks [4]: 
Random model 

The ER random model constructs a random network by starting from an initial condition of N nodes and no edges and then adding K edges between pairs of randomly selected node. Under the assumption of K<<
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, it shows a Poisson degree distribution.
Scale-free model
The BA scale-free model starts building the scale-free network from an initial condition of a few nodes and then, for each time step, adds a new node that is connected to an already existing node I with probability
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FIG.1.(Aa)The exponential network is homogeneous (Ab)The node degrees follow a Poisson distribution (Ba)The scale-free network is inhomogeneous (Bb) The network that is generated by the growth process has a power-law degree distribution that is characterized by the degree exponent 
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Error and attack tolerance comparison
An important property to differentiate the real network from the random network is that the real network displays a surprising degree of tolerance against errors but seems vulnerable to the attack [5].
To understand the underling mechanisms of the phenomena, we’d like to review the method provided by P.Crucitti et.al. [13]  for investigating the responses of the two kinds of networks 
By error or failure it means the removal of randomly selected nodes. While by attack, it means the targeted removal of the most important nodes. P.Crucitti et.al. [13] came up with the three different criteria to determine the importance of each node:
1) Degree, i.e., the number of edges the node has;

2)Betweenness, or load of the node, i.e., the number of shortest paths (over all pairs of nodes of the network) that pass through the node, evaluated before any removal is performed;

3)Recalculated betweenness, or recalculated load, i.e., the same quantity as the previous one except that shortest paths are recalculated every time a node is removed.

They also used the global efficiency to evaluate how well a system works before and after the removal of a set of nodes. The idea is the following: The network is described by an adjacency matrix whose entry 
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 is 1 if there is an edge joining vertex i to j, and 
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otherwise. 
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 can be considered as the time it takes to send a unit packet of information along the edge between i and j. 
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is the time it takes to send a unit packet of information through the fastest path.

The global efficiency of the network is defined as the average of the efficiency 
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 over all couples of nodes:                  
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The efficiency E has shown to be a well-defined quantity also for non-connected graphs.

Below is the plot of efficiency for the BA scale-free model and for the ER random graph (with N=2000 nodes and K=10000 edges) as functions of the percentage p of removed nodes. 
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FIG.2. Error and attack tolerance of BA scale-free graphs and ER random graphs. The BA model shows highly different behavior with respect to attacks and errors and the ER graph shows slightly difference to attacks and errors.

Here we can see ER random networks, due to their homogeneity, exhibits a similar tolerance with respect to errors and attacks, while BA scale-free networks, due to their heterogeneity, are very robust to errors, but very vulnerable to attacks.
II. Protein evolution in network
The scale-free model has succeeded in modeling many man-made real networks. For example, the model assumptions seem self-evident for social networks [6]. However, it is not good enough to model the real biological networks, such as the protein interaction network or the genome network.
So now we want to shed a light on the extended models developed for understanding the evolution of such networks. 

“Evolution by duplication” and its contribution to the graph model 

  The evolutionary theory, “evolution by duplication”, originally proposed by Susumu Ohno in 1970 is regarded as one of the few “dogmas” at the core of biological sciences [7].

  The theory suggests a generic evolutionary dynamic with positive feedback. In this case, if the target fragment of every duplication is uniformly randomly chosen from the genome, then the fragments that are already over-represented in the genome will have a higher probability of getting duplicated again. On the other hand, the under-represented fragments will be further suppressed. This also calls “rich gets richer”.    
  Based on this theory and the scale free model, a graph model was developed by Yi Zhou and Bud Mishra[7], in which the evolution of a genome is modeled as a stochastic evolution process of the graph that goes through multiple iterations.
In each process, the target node (see the red point in FIG.3) is chosen with preference for nodes with larger degrees: If the i-th node has degree
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In the following figure, we can see: For deletion (A), one incoming edge and one outgoing edge of the target node are randomly chosen (red), and deleted from the graph. A new forward edge (green) is added from the root node of the deleted incoming edge to the head node of the deleted outgoing edge. For duplication (B), an edge is randomly selected from the graph (red), and deleted. Two forward edges (green) are added from the root node of the deleted edge to the target node, and from the target node to the head node of the deleted edge, respectively. For substitution (C), besides the target node as the substituted node, another node (indicated by red boundary) is randomly chosen from the graph uniformly as the substituting node. One incoming and one outgoing edge of the target node are randomly selected (red), and rewired to the selected substituting node (green). Note that all the processes during graph evolution keep the out-degree and in-degree of a node identical.
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FIG.3.The three processes during graph evolution: deletion, duplication, and substitution. 
Analytical models for protein evolution and their conflicting conclusions 
  One argument about the protein evolution by Wilson, Carlson, and White [8] was that proteins that differ in dispensability are subject to different levels of purifying selection and will evolve at different rates. Although this argument was presented over twenty years ago, and is fundamental to many applications of evolutionary theory, it has proved hard to confirm. Actually, there have been conflicting conclusions from different studies. For example, Hurst and Smith [9] found in 1999 that the rate of non-synonymous substitution in a gene is not correlated with the severity of the knockout phenotype. While Jordan et al.[10] found in 2002 that essential bacterial genes have been better conserved than nonessential genes in three bacterial species. And Hirsh and Fraser [11] also found a support result for Wilson’s prediction from their analysis in 2001.
  For completeness, we would like to investigate the basic idea of the last paper’s analytical method. The objective of the paper is to test the relationship between the protein dispensability and the rate of evolution.
To get the protein dispensability, they use the high-throughput method to measure the growth rate of each yeast strain containing a distinct single-gene deletion. And define the deleted gene’s fitness effect,
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 is the growth rate of the strain with gene i knocked out, and 
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is the maximal growth rate in the batch culture.
To get the rate of yeast proteins’ evolution, the paper chooses an orthologous sequence in nematode worm. So they can find reciprocal best hits (or RBHs) by using search tool WU-BLASTP and estimate an evolutionary distance for each pair which is denoted as 
[image: image20.wmf]i

d

 and defined as the number of substitutions per amino acid site.
They obtain linear regression as a result (see figure 4) which suggests that a significant negative correlation between evolutionary rate and fitness effect of gene deletion when the fitness effect was restricted to the range from 0 to 0.4.
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  FIG.4. The relationship between a protein’s contribution to fitness in yeast and its rate of evolution as estimated by the evolutionary distance to the protein’s reciprocal best hit in worm.(Results from A. Hirsh and H. Fraser)
Motifs study might solve the discrepancy 
  The above conflicts might not be a real problem as long as we investigate the networks in another way. We notice that both the genome network and the protein interaction network have shown differences with the original scale-free network. They are more likely to generate modules, which contain lots of functionally related nodes. Thus, we should call such network as hierarchical network. And the hierarchical model [4] is to integrate a scale-free topology with an inherent modular structure by generating a network that has a power-law degree distribution with degree exponent 
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 = 1+ln4/ln3.

  Here is an image of protein interaction network from Memorial Sloan-Kettering Cancer Center:
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  FIG.5 A protein-protein interaction network.
Just because we have lots of building blocks in such interaction networks, we could imagine groups of interacting proteins defining functional modules actually govern a cell’s activity. And we have to consider the relationship of rate of evolution and protein dispensability under the background of modules. Also, Wuchty et al.[12]have recently obtained quantitative evidence that proteins belonging to specific topological motifs in the protein interaction networks seem to be highly conserved across species during evolution.

   III. Conclusion
 In this paper, we first compare the two original models which start all the later researches on networks and obtain the properties of the real network and the biological network. Then we focus on the protein interaction network which gives more interesting points about the evolution rate. By investigating some seemly conflicting analytical results, we would like to say the motifs in the hierarchical network might need to be considered when investigate the protein revolution.
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