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We explore the totally asymmetric simple exclusion process (TASEP) as a possible generic model
of molecular motor movement along a filament. In addition to the usual asymmetric particle hopping
dynamics of the TASEP, we propose to allow the motors to switch between two parallel filaments
and to randomly attach and detach from the lattice (Langmuir kinetics). We allow for variability
in the rates at which the molecular motors move along the filament and analyze the response of our
model to single-site defects. Both Monte Carlo simulations and mean field solutions to the model
are computed. We find that each of the additional processes qualitatively impacts the distribution
of molecular motors along the filament, resulting in new phases and effects not present in the
original TASEP model. The addition of switching between the two filaments minimizes the effect
of defects. Asymmetric switching and moving rates add greater variability to the possible motor
density distributions and responses to a defect. We relate our results to biological systems and
propose various additional experimental tests of our model.

PACS numbers:

I. INTRODUCTION

The TASEP was first introduced as a lattice model for
the motion of a ribosome along a piece of mRNA during
translation [1]. In its most basic form, the model consists
of N lattice sites in one dimension. Particles are added
at the left boundary of the lattice at some rate α and re-
moved from the right boundary with rate β. In between,
a particle at a site i will have a probability p of hopping
to the right (hence, the model is asymmetric), i.e. to the
i + 1-th site, provided that the site is not occupied (i.e.
the particles exclude each other from occupying the same
site). Typically, we set p = 1. This kind of toy model
serves as a description of a ribosome moving from codon
to codon on an mRNA strand. Namely, we can think
about each particle on the lattice as a ribosome. Just
as the particle, the ribosome will attach to the mRNA
at the start codon (i.e. the left boundary of the lattice).
Then, the ribosome will move along the mRNA strand in
the 5’ to 3’ direction, translating one codon in the mRNA
at a time. This naturally corresponds to the asymmet-
ric nature of the TASEP dynamics. Finally, the TASEP
captures the most basic ribosome-ribosome interaction
by not allowing two ribosomes to occupy the same codon
(lattice site). The simplicity of this model allows it to be
expanded far beyond its first indended use. Since its first
incarnation, extensions of the TASEP have been used to
model a variety of biological systems, such as molecular
motor movement along a microtubule, ant-trail dynam-
ics, and even the process of sequence matching [2, 3].

Since its first appearance in the literature, the origi-
nal TASEP model has been augmented with various pro-
cesses to make it a more realistic model. An important

∗Electronic address: mlavrent@fas.harvard.edu

modification that is relevant to the study of molecular
motors is the addition of Langmuir kinetics. These ki-
netics allow for the addition and removal of particles at
each lattice site with some probability rates b and a. This
is particularly relevant for molecular motors since they
are able to attach and detach from their associated fil-
aments, or “tracks”. In fact, there is a high variability
in the rate at which this association/dissociation occurs.
For example, kinesin-1 movement along a microtubule is
highly processive and the motor rarely detaches from its
track. Conversely, myosin II does not stay attached to
an actin filament for too long in a muscle cell in order
to prevent different myosin motors from interfering with
each other [4]. Thus, variability in attachment and de-
tachment rates is connected to the biological function of
the motor. Moreover, the cell sometimes actively par-
ticipates in the regulation of these rates. For example,
studies of kinesin and dynein motors have shown that the
cell can regulate the attachment and detachment rates a
and b directly via a microtubule binding protein called
tau [5]. Another effect that can be added to the TASEP
model is the use of multiple, coupled one dimensional lat-
tices. In particular, we can couple two TASEP “lanes”
together by allowing particles to hop back and forth be-
tween the lanes with some characteristic rates s1 and s2.
Such a process is biologically relevant because molecu-
lar motors, such as kinesin, move along a set of parallel
tracks. In particular, it is known that microtubulin con-
sists of about 13 protofilaments which twist together in
a helical structure. Kinesin and dynein motors run along
these individual protofilaments and are able to switch
to adjacent filaments to avoid colliding with each other.
In particular, studies suggest that kinesin motors, being
more tightly bound to a protofilament, are able to “push”
a dynein motor out of the way to an adjacent protofil-
ament [6]. Lane switching dynamics are also particu-
larly relevant in the description of the microtubule and
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actin cytoskeleton network present in neuronal cells. In
these cells, single molecular motors are able to move be-
tween different tracks consisting of microtubulin or actin.
Goode et al. suggest that it is possible that motors of var-
ious types form “heteromotor” complexes that allow the
transport of single objects along two different cytoskele-
tal tracks [7].

Even the simplest TASEP dynamics are complicated
by the fact that they already move beyond the realm
of equilibrium statistical mechanics. This is because the
TASEP violates detailed balance. Namely, consider any
configuration C = {ni | i = 1, 2, . . . N } of the lattice,
where ni = 1 if the i-th site is occupied and 0 other-
wise. Then, let Pt(C) be the probability that at time t
we have a configuration C. This probability will satisfy a
master equation which describes its time evolution. The
equation is given by

∂

∂t
Pt(C) =

∑

C′
[WC′→CPt(C′)−WC→C′Pt(C)] , (1)

where WC→C′ is a probability rate of transitioning from
configuration C to configuration C′. For an equilibrium
system, we know that for large times t, we approach
a steady-state Boltzmann distribution, which necessarily
satisfies the detailed balance condition

WC′→CPt(C′) = WC→C′Pt(C). (2)

This condition is guaranteed by the usual Boltzmann re-
lation from statistical mechanics

Pt(C)
Pt(C′) = eβ[H(C′)−H(C)], (3)

where H(C) is the energy of configuration C [9]. When
a system satisfies detailed balance, we can use powerful
tools from equilibrium statistical mechanics, such as var-
ious thermodynamic relations, fluctuation-dissipations
theorems, and so on. We can write down a partition
and entropy function, and have a complete statistical de-
scription of the system. However, biological processes
are often very far from equilibrium. Indeed, these sys-
tems are open and are constantly driven by various en-
ergy sources (e.g. ATP to ADP transitions). Thus, we
need to go back to a basic microscopic description of these
systems in order to derive various statistical behaviors.
To this day, a systematic formulation of non-equilibrium
processes remains an open problem. TASEP models and
their relatives, like the Ising model in equilibrium statisti-
cal mechanics, attempt to highlight the generic statistical
rules which govern these open systems. By analyzing a
variant of the TASEP model, we hope to say something
about molecular motor movement, which, being a type
of active transport, is a non-equilibrium process.

To highlight the difference between TASEP and other
statistical models, it is useful to consider the hopping
model for molecular motor movement proposed by Fisher
and Kolomeisky [8]. In that model, a molecular motor

moves along a one-dimensional lattice by transitioning
through N internal states at each lattice point. Namely,
after the motor transitions through N internal states, it
moves on to the adjacent lattice site. These transitions
are characterized by asymmetric forward and backward
rates which push the motor preferentially along one direc-
tion on the lattice. Although this particular model does
not satisfy detailed balance explicitly, it is sufficiently
close that the authors are able to use various relations,
such as the Einstein relation µ = kBT/D. This equation
relates the diffusion constant D to the mobility µ and
temperature T , which allows one to calculate a friction
force F = µv (for an average motor velocity v) that is
interpreted as the driving force of the molecular motor.
This relation, however, is only valid close to equilibrium
and the authors of the model acknowledge that it may
not always be applicable [8]. Conversely, in the analysis
of a TASEP model, we are not able to make use of these
powerful relations and are mostly constrained to looking
at Monte Carlo simulations of the microscopic dynamics
or solving mean field equations derived from the Master
Equation (Eq. 1). Indeed, even the concept of a single
temperature is not useful in these far-from-equilibrium
models because often the steady state solution of the
model (the ∂tPt(C) = 0 solution in Eq. 1) includes a
macroscopic flux of particles mediated by a temperature
gradient [9]. The advantage of a TASEP model is that
it includes additional processes, such as motor-motor in-
teractions, which are not present in the hopping model.
Also, being an explicitly non-equilibrium model, we ex-
pect that the TASEP provides a better generic and con-
ceptual description of molecular motor movement since it
does not rely on proximity to equilibrium to get relevant
results.

II. THE MODEL

In this study, we modify the model introduced by
Parmeggiani et al. by introducing an additional lane and
defects. The introduction of a second lane was done re-
cently by Wang et al. [14]. We propose combining both
Langmuir kinetics, a two-lane TASEP, and defects. As
discussed in the previous section, these additional pro-
cesses have important biological consequences. So, we
include both the different rates p1 and p2 with which the
particles move along the two different lanes in the model
and switching rates s1 and s2 between the two lanes. We
were not able to find a model which included all of these
effects in the literature. The diagrammatic description of
the proposed model is given in Fig. 1. The model is im-
plemented using a Monte Carlo simulation and random-
sequential updates. The latter refers to picking a random
site on the lattice (both lanes), and applying an “update
rule.” In our model, if the site that is chosen during the
random update is not a boundary site and is empty, then
we add a particle to the site with probability a. If the
site is filled, we remove a particle with probability b. If
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FIG. 1: The proposed molecular motor model has motors
attaching to one end of a filament at rate α and leaving from
the other end with rate β. The motors detach and attach
to the filament with rates b and a, respectively. The motors
move along the filament with rate p1,2 and with rate q in
the defects. The motors switch lanes with rates s1 and s2,
depending on which lane the motor is in.

neither of these things occur, then, if the site is filled,
we move the particle to the right if the adjacent site is
empty (with probability p1 or p2 depending on the lane).
Otherwise, we move the particle to the other lane (if the
corresponding site is open) with probability s. If we hit
a boundary site during our random sequential updates,
for the left (right) boundary, we add (remove) a particle
with probability α (β) if the site is empty (full). Also,
in the left boundary sites, if the site is filled and the ad-
jacent site is empty, we move the particle to the right
with probability p1 or p2. If none of these things can
happen, i.e. if there is a “traffic block” in both lanes,
then we simply move on to the next random lattice site.
An important aspect of Monte Carlo simulations using
random-sequential updating is the fact that the rates a
and b must be rescaled relative to α and β. We recognize
that a and b must be both divided by N − 2 because
we apply the update rule with a and b to N − 2 sites
while the α and β rates are only applied at the left and
right boundary. Also, since transient solutions are typi-
cally difficult to characterize, we only analyze the steady
state behavior of the model. This is done by allowing the
Monte Carlo simulation to run through many time steps
(about 105N) and achieve a single steady state before we
extract any data from the simulation.

To test the model, we first try to replicate the results of
Parmeggiani et al. In that study, a phase was discovered
in which the competing Langmuir (a and b rates) and
boundary dynamics (α and β rates) induce a coexisting
high and low density phase with a sharp boundary [10].
We were able to find this phase using the suggested values
α = 0.2, β = 0.6, a = 0.3/(N − 2), and b = 0.1/(N − 2)
from that study, where N = 800 is the number of lat-
tice sites used in the simulation. In Fig. 2, we see that
we indeed get this interesting phase. The two coexist-
ing phases in Fig. 2 can be understood by appealing to
previous analytic results for the particular values of the
parameters we used. Namely, from the complete ana-
lytic solution to the TASEP master equation, we know
that the density of particles in the basic TASEP, away
from the boundary, is given by ρ(i) = α = 0.2 in the so-

FIG. 2: The average particle density at each lattice site i for
N = 800 sites. The parameter values used for regime with
two coexisting phases were p1 = p2 = 1, α = 0.2, β = 0.6, a =
0.3/(N − 2), and b = 0.1/(N − 2). The “pure Langmuir” line
both a and b were increased N−2-fold. For the “no Langmuir”
regime, we had a = b = 0. No defects were introduced.

called “low density phase,” for which α ≤ min{β, 1/2}
[11]. Thus, we see that the left side of the lattice is
dominated by the boundary TASEP dynamics due to α.
This is confirmed by the “no Langmuir”-labeled line in
Fig. 2. Conversely, on the right side, we see the effects
of the Langmuir dynamics. Namely, we know that for
pure Langmuir dynamics, the density of the particles on
the lattice is given by the expression ρ(i) = K/(1 + K),
where K ≡ a/b [10]. In our case, we have that K = 3.
Thus, the density we expect to get from the Langmuir
dynamics is ρ(i) = 3/4. This is confirmed by the “pure
Langmuir”-labeled line in Fig. 2.

These results have a biological interpretation. Namely,
our model suggests that the distribution of molecular mo-
tors along a filament can be regulated by varying the
rates associated with the dynamics of the motors. Since
these rates can be regulated by the cell through various
microtubule-associated proteins (MAPs) such as tau, the
various phases exhibited by our model may have impor-
tant analogues in biological systems [4]. For example,
several studies have shown that kinesin motors tend to
clump near the end of a microtubule toward which the
motors move. Moreover, a recent experiment by Nishi-
nari et al. suggests that domain walls, or “shocks”, be-
tween high and low concentrations of molecular motors
form along a microtubule [12, 13]. This kind of asym-
metric distribution of motors is qualitatively confirmed
by our model.

Although it is difficult to find an analytically tractable
solution to the master equation of our particular model,
it is possible to perform a mean field analysis. Namely,
we can consider the particle occupation number nj,i in
the j-th lane and i-th site on our N × 2 lattice. Then, if
we include all of the relevant processes of particle hopping
and association/disassociation, we find from the master
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equation that the average density satisfies

d 〈n1,i〉
dt

= p1 〈n1,i−1(1− n1,i)〉 − p1 〈n1,i(1− n1,i−1)〉
+s2 〈n2,in2,i+1(1− n1,i)〉+ a 〈1− n1,i〉
−d 〈n1,i〉 − s1 〈n1,in1,i+1(1− n2,i)〉 , (4)

with an identical equation for 〈n2,i〉 except with the
exchange of the 1 and 2 labels [14]. Eq. 4 is diffi-
cult to solve exactly, because it requires us to compute
two point correlation functions, which in turn depend
on three point correlation functions, and so on. This
forms an infinite set of equations called the BBGKY
hierarchy. So, to avoid this messy hierarchy, we move
to the mean field and assume that we have no correla-
tions between different lattice sites. This allows us to
expand our averages and approximate that, for example,
〈n1,in1,i+1(1− n2,i)〉 ≈ 〈n1,i〉 〈n1,i+1〉 〈1− n2,i〉. We can
also move to the continuum limit and let nj,i → ρj(x, t)
represent the coarse-grained density at lattice point i and
lane j, where we define the rescaled, continuous variable
x = i/N , which ranges from 0 to 1. Using this coarse
graining, we can use a Taylor series to expand nj,i±1 →
ρj(x, t)±N−1∂xρj(x, t) + (2N2)−1∂2

xρj(x, t) +O(N−3).
Then, since we are interested in the steady state behav-
ior of the system, we let the time derivative term vanish
to get the solution ρj(x, t → ∞) = ρ∗j (x) that is inde-
pendent of time. The resulting differential equation for
p∗j (x) is given by

0 =
p1ε

2
d2ρ∗1
dx2

+ p1
dρ∗1
dx

(2ρ∗1(x)− 1)

+s2(ρ∗2(x))2(1− ρ∗1(x)) + a(1− ρ∗1(x))
−dρ∗1(x)− s1(ρ∗1(x))2(1− ρ∗2(x)), (5)

where ε = 1/N is the spacing between adjacent values of
x = i/N which we took to zero in the continuum limit
[14]. Thus, formally, we have that ε → 0. Also, we
technically have two more differential equations which
describe the particle entry and exit at the left and right
boundaries. However, for simplicity, we shall approxi-
mate that N is sufficiently large that we can implement
the boundary equations by just specifying the conditions
p∗1,2(0) = α and p∗1,2(1) = 1− β to take into account the
particle incoming/outgoing rates at the boundary. No-
tice that we require ε to be non-zero to get a second order
equation in each lane. This is necessary if we are to apply
two boundary conditions per lane, as explained below.

We can test our mean field theory by again finding
the coexisting phase regime. To make things more inter-
esting, we also make use of the asymmetric lane switch-
ing rates. Namely, we will let one of the lanes have a
high lane-switching rate s2 = 1 and the other one have
a slower rate s1 = 0.01. We see in Fig. 3 that the asym-
metric rates pushes the boundary between the high and
low density phases to the left for the s1 = 0.01 lane. This
makes physical sense because we expect that particles are
more likely to get jammed in this lane due to the slower

FIG. 3: A comparison of the solution to the mean field equa-
tions and a Monte Carlo simulation result with no lane switch-
ing. The mean field equations were also solved for asym-
metric lane switching rates. We used a = 0.3/(N − 2) and
b = 0.1/(N − 2) and the other parameter values from Fig. 2.
The mean field equations were integrated numerically with
Mathematica 7.0.

lane switching rate. Also, in the s2 = 1 lane, we see that
the fast switching eliminates the two coexisting phases
and pushes the system into a low density state.

In Fig. 3, we see that the simulation solution does not
exactly match the mean field. This is not surprising be-
cause our Monte Carlo simulations were run on limited
computer resources which prevented us from getting the
best statistics. Also, in general, it is difficult to integrate
the mean field equations due to the non-linear terms and
the small value of ε. Specifically, we know that ε is typi-
cally very small and in the thermodynamic limit we have
to take N → ∞ and ε → 0, correspondingly. This turns
our mean field equations (Eq. 5) into first order equa-
tions. But, since we have two initial conditions for each
of the lines, i.e. the rates α and β, the system becomes
over-determined. In this case, we have to integrate the
equations twice: once for the ρ1,2(0) = α boundary con-
ditions and once for the ρ1,2(1) = 1− β conditions. The
whole solution is then achieved by matching the two so-
lutions. In the case of our coexisting phases shown in
Fig. 2, for example, we will get a discontinuity at the
boundary between the phases. Such an infinitely sharp
boundary is often called a “shock”. It is the presence of
this sharp boundary that makes our mean field equations
difficult to integrate numerically. More powerful analytic
methods that treat the ε → 0 are mentioned in [10] and
are beyond the scope of this paper.

III. ADDING DEFECTS

We now want to add another aspect to our TASEP
model. Namely, we modify the dynamics by adding a sin-
gle “slow” lattice site in one of the lanes with a smaller
probability q of moving a particle to the right at that
site. Such a “defect” has biological significance in a cou-
ple of different systems. For example, it is known that
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FIG. 4: Introducing a defect in the 150th lattice site in lane
1 disrupts the two coexisting phases in the case where we do
not allow lane switching. The particle density in lane 1 is
shown. The lane switching preserves the robustness of the
phase and reduces the effects of the defect. In this case, we
used symmetric lane switching rates s1 = s2 = s.

strands of mRNA can contain rare codons which cause
the ribosome to lag during the translation process. These
“slow codons” often form localized clusters which serve
to regulate translation in many organisms. A recent
TASEP-like model developed by Tom Chou and Greg
Lakatos [15] shows that only a single localized region of
slow codons is necessary to reduce the ribosome current.
Thus, we are motivated to include such a single defect in
our model. Localized defects are also relevant for molec-
ular motor movement. A study by D. Chrétien et al.
showed that individual microtubules exhibit variation in
protofilament number along the length of the microtubule
[16]. The usual quoted number of 13 protofilaments per
microtubule is in fact variable. The filaments exhibit
sharp lattice defects which change the local protofilament
number and will thus influence the molecular motor dy-
namics. By adding single defects to our model, we hope
to make some qualitative predictions about the behavior
of the motors.

Keeping all of the parameter values used in Fig. 2, we
added a defect lattice site (with q = 0.0001) in one of the
lanes in the i = 150 position. Then, we see in Fig. 4 that
if we allow no lane switching (s1 = s2 = 0), this defects
disrupts the phase coexistence and introduces a domain
wall at the location of the defect in the lane. Conversely,
if we allow for lane switching to occur even at a small
rate, i.e. s = 0.1, we regain the interesting phase. So, we
see that lane switching adds a robustness to the balancing
act that occurs between TASEP and Langmuir dynamics
in this phase. Our model confirms the Chou et al. result
that a single defect, or localized cluster of defects, is suf-
ficient to significantly modify the global dynamics of the
motors if we have no lane switching. This makes sense
for ribosomes because they walk along just one strand of
mRNA. However, for molecular motors such as kinesin,

FIG. 5: A defect was added in the middle of the lattice at the
i = 400 site in lane 1. The resulting particle density in lane
1 is shown. The parameters used are q = 0.01, s1 = s2 = 0.1,
a = b = 0 (no Langmuir kinetics), α = 0.3, and β = 0.2. The
speeds of the two lanes were varied as shown which resulted
in drastic changes in the density profiles.

it is possible that the ability of the motor to detach from
its track and to switch lanes prevents the defects from
significantly modifying the overall rate of motor proces-
sion.

Finally, we studied the effects of having a defect cou-
pled with asymmetric processivity rates p1 and p2. As
seen in Fig. 5, our model predicts that even without
Langmuir kinetics, lane switching has the ability to elim-
inate effects of a defect, provided that the lane that does
not have the defect is faster than the lane with the defect
(p1 = 0.1 and p2 = 1.0 line in Fig. 5). Conversely, if the
lane without the defect is slow, then the defect in the fast
lane can effectively block the movement of motors in both
lanes, as shown in the p1 = 1.0 and p2 = 0.1 line in Fig. 5.
Also, for the case where we have equally fast lanes, we see
that the lane switching allows motors to “leak through”
the defect and eventually establish a high density phase
toward the right end of the microtubule (i.e. the right
side of the p1 = p2 = 1.0 line in Fig. 5). Interestingly,
to the left of the defect, the expected behavior of the
TASEP does not change for the p1 = p2 case! Specif-
ically, for our parameter values α = 0.3 and β = 0.2,
the exact solution to the basic TASEP tells us that we
should be in the high density phase, which is character-
ized by a uniform density ρ = 1− β in the bulk [11]. As
we see in Fig. 5, the density to the left of the defect in
the p1 = p2 = 1.0 case remains at 0.8. We suspect that
this is due to the “leakage” of the particles past the de-
fect, which lessens the jamming effect of the defect and
allows the system to settle into its natural high density
phase. Conversely, when the defect is in the fast lane, we
see that the jamming effect is more pronounced and the
density jumps to approximately 0.95.



6

IV. CONCLUSIONS

We have seen how the TASEP model can be used to
model the movement of molecular motors along a track.
The generality and simplicity of the model allows it to
be applied to a variety of biological systems, such as ki-
nesin, dyein, and myosin. The modified TASEP model
presented in this paper predicts that the processive dy-
namics of molecular motors coupled with particular at-
tachment and detachment rates can lead to a build-up
of proteins near one end of the microtubule or actin fila-
ment, resulting in a low and high density coexisting phase
regime, as discussed in [10]. We found that this phase is
stabilized with respect to localized defects with the ad-
dition of symmetric lane switching dynamics. Also, by
having asymmetric lane switching rates, we are able to
either destroy the coexisting phase or move its boundary
to the left or right. A subject of further study might
be the computation of molecular motor currents in the
model. We can measure the average speed of the mo-
tor to the right at a particular lattice site i in lane j by
computing Jj,i ≡ 〈nj,i(1− nj,i+1)〉, where the average
would be taken over many Monte Carlo simulation steps.
We could even compute the rate at which the motors
switch lanes, i.e. from lane 1 to lane 2, by calculating
K1,i ≡ 〈n1,i(1− n2,i)〉. These rates would allow us to
make some qualitative predictions of the rate at which
molecular motors move along a filament.

We were able to get more predictions by adding de-
fects to our model. Our simulations have shown that
lane-switching and Langmuir dynamics preserve the ro-
bustness of the bulk phase of the TASEP model and min-
imize the effects of localized defects. Given the available
biological data on defects in microtubules, the analysis
presented here suggests that an experiment measuring
the motor density profile around a defect in a microtubule
would be a good test of our model. Similarly, it would
be interesting to see how modifying the concentrations

of MAPs in a cell influences the motor density profiles
on microtubules. Our analysis suggests that by vary-
ing the expression of proteins such as tau, we should be
able to qualitatively change the distribution of molecular
motors. In particular, we should be able to see the tran-
sition between the phase with two coexisting high and
low density regimes and a single, homogeneous phase as
shown in Fig. 2. Moreover, with the addition of a defect,
we should be able to see the effects of lane switching
in preserving the motor density profile. In particular,
the model predicts that kinesin, which is more tightly
bound to protofilaments, should be more susceptible to
point-like defects, such as protofilament lattice disloca-
tions, than a less tightly bound motor such as dynein.

Our study of asymmetric processivity rates p1 and p2

combined with lane switching suggest that these rates
have a significant impact on the response of a system to
a defect. A good experimental test of our model would
be an analysis of the motion of heteromotor complexes
that are able to move over a diverse cytoskeletal struc-
ture, as discussed in [7]. Since the processivity of such
a complex will be different depending on the particular
kind of “track” it is moving on, our model might be able
to make qualitative predictions of how such structures re-
spond to structural defects in filaments and MAPs that
alter heteromotor binding rates. The results we pre-
sented on asymmetric lane switching rates also suggest
that molecular motor density profiles will depend on how
favorable a certain filament track is relative to another.
So, we should see the effects of these lane switching dy-
namics in the density profiles of heteromotor complexes.
Finally, we could enhance our model by including even
more lanes, or internal states for the particles. The lat-
ter would be particularly relevant to biological applica-
tions because we know that molecular motors have to go
through a series of internal states while moving along a
filament [8].
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