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Temperature dependence of the folding rate in a simple protein model:
Search for a ‘‘glass’’ transition

A. Gutin, A. Sali,a) V. Abkevich, M. Karplus, and E. I. Shakhnovich
Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street,
Cambridge, Massachusetts 02138

~Received 7 July 1997; accepted 16 January 1998!

Monte Carlo simulation of model proteins on a cubic lattice are used to study the thermodynamics
and kinetics of protein folding over a wide range of temperatures. Both random sequences and
sequences designed to have a pronounced minimum of energy are examined. There is no indication
in the kinetics of a ‘‘glass’’ transition at low temperature, i.e., below the temperature of the
equilibrium folding transition, the kinetics of folding is described by the Arrhenius law at all
temperatures that were examined. The folding kinetics is single-exponential in the whole range of
studied temperatures for random sequences. The general implications of the temperature
dependence of the folding rate are discussed and related to certain properties of the energy spectrum.
The results obtained in the simulations are in qualitative disagreement with the conclusions of a
theoretical analysis of protein folding kinetics based on certain kinetics assumptions introduced in
the Random Energy Model. The origins of the discrepancies are analyzed and a simple
phenomenological theory is presented to describe the temperature dependence of the folding time
for random sequences. ©1998 American Institute of Physics.@S0021-9606~98!52215-5#
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I. INTRODUCTION

The protein folding problem has both thermodynam
and kinetic aspects. The existence of a unique structure
each globular protein demonstrates that this structure is t
modynamically stable and kinetically accessible in a biolo
cally reasonable time under physiological conditions.1 The
kinetic aspect of the problem, which is the concern of
present paper, is often phrased in terms of the Levin
paradox; i.e., the difficulty of finding the unique native sta
by searching through the astronomically large number
conformations that exist for a polypeptide chain. It has be
realized that the original statement by Levinthal does
provide a full description of the problem. For example,
though the helix-coil transition also involves a very lar
number of conformations, rapid folding is a direct cons
quence of the fact that only local interactions are involved1,2

The long-range interactions, which lead to the coopera
folding transition, are an essential element in the difficulty
the search problem.1,3–5

The nature of the potential surface has to be conside
in any analysis of the folding reaction.1 If the potential sur-
face were a simple well~a ‘‘funnel’’ ! with an energy that
decreases rapidly enough to overcome the entropy reduc
associated with folding, there would be no Levinthal pa
dox. Various suggestions for resolving the paradox h
stressed the importance of local interactions. These inc
the introduction of specific structural entities~helixes, sheets
zippers!6–8 as well as more general constructs, such as
‘‘harmony principle’’9 and the ‘‘principle of minimum
frustration’’.10 The importance of nonlocal interactions fo

a!Present address: The Rockefeller University 1230 York Avenue N
York, NY 10021-6399.
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fast folding at the conditions when the native state is sta
has been pointed out.5,11,12

Recent theoretical studies based on heteropolymer la
simulations have introduced a new perspective on the pro
folding problem.1,13–15Because of the complexity of protein
and their folding reactions such simplified models can se
to obtain insights that are not yet available from experime
It has been demonstrated with heteropolymer models,
the thermodynamics of the protein folding transition can
studied analytically. The replica mean-field approach h
been used to investigate various models of infinite h
eropolymers, from the simplest case where the interac
energies between monomers were assumed random
uncorrelated16–18 to more realistic model treatments whe
heteropolymers were characterized by the monom
sequence.19–21 It was concluded16,19,21 that the thermody-
namic behavior of such heteropolymers can be adequa
described by the Random Energy Model~REM! of
Derrida.22 This led to important analytic results, some
which have been applied to the thermodynamics of prot
folding.

Garel and Orland17 called these results into questio
when they concluded that the REM is a good approximat
for random heteropolymers only in high-dimensional spa
(d>4), while in three dimensions the thermodynamics
heteropolymers cannot be described by the REM. Th
analysis was based on a simplified model where the poly
bonds were not treated explicitly; i.e., monomers were po
tioned on a simplex.17 The analysis of microscopic models
where polymer bonds were taken into accou
explicitly,16,19,21 indicates that the REM is a good approx
mation for the thermodynamics of three-dimensional h
eropolymers. Further, analytic results for this model ha

w

6 © 1998 American Institute of Physics

 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



et
a
re

is
e

h
tru
ro
ig

ab

tic
n
m
is

ul

ct
e

fo
od
g
ul

pe
s

se

d
v

m
rg
an
er
w

f t
e

th
er
ov
la
y
c

th
th

la

a
n
av
co

i

iv

al
-

ue

BW
-
d
-

state
on

an

of
ve
3

he

e-

in a
m-

ng
in
e-
se-
re-
to
ergy

BW.
es

tial
de-

urve
ture
era-
her

sure

ifi-

ing

at
hey
as

0
his
on-

6467J. Chem. Phys., Vol. 108, No. 15, 15 April 1998 Gutin et al.
been confirmed by lattice simulations of relatively short h
eropolymer chains~e.g., a 27-mer on a three-dimension
cubic lattice23 and a 16-mer on a two-dimensional squa
lattice24!.

Of particular interest for the protein folding problem
the conclusion from the random energy model that there
ists a critical temperature (Tc) below which a sequence wit
sufficient heterogeneity has a stable, essentially unique s
ture. This satisfies the thermodynamic requirement for p
tein folding. Lattice simulations have suggested that a s
nificant fraction of random sequences have such a st
unique structure belowTc .25 Further, full enumeration of the
16-mer conformations on a two-dimensional square lat
has demonstrated that the phase diagram as a functio
temperature and the average attraction between mono
consists of an extended coil region, a homopolymer-like d
organized globule region and an organized frozen glob
which corresponds to the lowest energy~native! conforma-
tion and is stable belowTc . The phase diagram from exa
enumeration agrees well with analytical heteropolym
theory.16

These and other results from heteropolymer theory
protein thermodynamics suggest that a corresponding m
should be useful for studying the kinetics of protein foldin
However, it has not been possible to obtain analytic res
for the kinetics. Bryngelson and Wolynes~BW!26 introduced
assumptions not inherent in the random energy model to
mit an approximate analytic treatment of folding kinetic
They assumed that the kinetics can be deduced by the u
a Metropolis Monte-Carlo~MC! algorithm in ‘‘energy
space.’’ Since the phenomenological random energy mo
does not have geometric features, the Monte-Carlo mo
could not be based on geometric properties of the poly
chain, i.e., there is no connection in the random ene
model between geometric properties of a conformation
its energy. Consequently, an additional assumption conc
ing the possible energy changes associated with a move
required. BW assumed that at each MC step the energy o
‘‘attempted’’ conformation is statistically independent of th
energy of the existing conformation. This means that
kinetic scheme used by them in extending the random en
model permitted any change of energy in an attempted m
with equal probability. For standard Monte-Carlo simu
tions in real space, small energy changes are most likel
each step because the ‘‘attempted’’ and ‘‘existing’’ stru
tures are geometrically similar.

An important conclusion from the theory of BW26 was
that two temperatures play a key role in determining
folding properties of a heteropolymer sequence. One is
critical temperature,Tc , already discussed. They denoteTc

by Tg because they suggest that it corresponds to the g
transition temperature for the heteropolymer; we useTc in
what follows. The BW model leads to the conclusion th
below Tc the heteropolymer is frozen into one of many ra
dom low-energy conformation because it does not h
enough energy to overcome the barrier separating such
formations. The other significant temperature introduced
BW is the folding temperature,Tf , which corresponds to the
midpoint of the thermodynamic transition between the nat
Downloaded 02 Apr 2003 to 18.55.0.94. Redistribution subject to AIP
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and denatured state; it is the same asTm in the protein lit-
erature. BW concluded thatTf must be higher thanTc for
folding to occur on a reasonable time scale; belowTc , the
time required for folding was stated to be equal to Levinth
‘‘time’’ ~i.e., the effectively infinite time required for an un
biased random search of all significant conformations!.

Since the thermodynamic criterion for a stable uniq
ground state in the random energy model requiresTf,Tc ,
as indicated above, random sequences cannot fold in the
model; i.e., the temperature,Tf at which such random se
quences can fold (Tf.Tc) would lead to an unstable groun
state.27 To overcome this difficulty, BW proposed that pro
tein sequences have specific biases toward the native
that make folding possible. The existence of such biases
the entire potential energy surface, which would result in
energy ‘‘funnel’’ leading toward the native state,28 is re-
ferred to as ‘‘the principle of minimum frustration,’’ which
is closely related to the consistency or harmony principle
Go et al.29 Other kinetics treatments based on the REM ha
been proposed.30–33 The kinetic assumptions in Refs. 31–3
were similar in spirit to the ones used by BW26 and the
results of Refs. 32,33 were qualitatively in accord with t
ones obtained by BW.

Lattice Monte Carlo simulations of a 27-mer on a thre
dimensional cubic lattice with random interactions34,35

showed that only a subset of random sequences fold
reasonable time in the neighborhood of the transition te
peratureTf ; out of a total of 200 sequences whose foldi
was studied, only 30 folded rapidly as defined by cutoff
the number of Monte-Carlo steps. The only difference b
tween random sequences and the subset of total folding
quences was that the latter satisfied the thermodynamic
quirement for protein folding at a higher temperature due
the presence of a large energy gap between the lowest en
~native! state and the low-energy excited states~not similar
structurally to the ground state!. This led to a folding tem-
perature (Tf) above the critical temperature (Tc) for these
selected sequences, in agreement with the conclusion of
An analysis of the kinetics of folding for these sequenc
showed that the distribution of folding times was exponen
over a wide temperature range, but that the temperature
pendence was not Arrhenius-like; instead a bell-shaped c
for the logarithm of the rate versus the inverse tempera
was obtained; i.e., although the rate increased with temp
ture at low temperature, it decreased again at hig
temperatures36,3 Because of strong (2kT) average attraction
between monomers, which had been introduced to en
that the native state is fully compact~i.e., belongs to the
enumerated set of conformations in a 33333 cube!, the
folding rate was too slow to examine what happens sign
cantly belowTc .35,36

Other lattice simulations have shown a correspond
temperature dependence for the folding rate.37,3 Socci and
Onuchic37 made a study of folding kinetics of the 27-mer
different temperatures and looked for a glass transition. T
introduced an ‘‘operational’’ glass transition temperature
the temperature at which the folding ‘‘time’’ exceeds 19

Monte-Carlo steps and found slow folding that satisfied t
criterion at low temperatures. However, they did not dem
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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6468 J. Chem. Phys., Vol. 108, No. 15, 15 April 1998 Gutin et al.
strate that folding was significantly slower than that expec
from the Arrhenius equation at any temperature. In the st
of folding kinetics of lattice model proteins Pandeet al.38

observed Arrhenius dependence of folding rate on temp
ture. Chan and Dill39 numerically solved the master equatio
describing transitions among all the conformations of a sh
chain on a square lattice. This allowed them to obtain
folding time even for very low temperatures, and perfe
Arrhenius-like behavior was still observed. There was
indication of a kinetic glass transition. An Arrhenius-like b
havior was also observed for off-lattice folding of a he
eropolymer model.40 The question of whether the low
temperature kinetics of 27-mer lattice model can be fitted
Arrhenius or non-Arrhenius law was also discussed in a
cent publication.41 The authors of Ref. 41 noted that the ‘‘dy
namic ruggedness’’ of the energy landscape is much
than can be expected from the kinetic REM model. Howev
the temperature range at which kinetics were studied in R
41 was not sufficiently broad to allow a detailed analysis
the low-temperature behavior and its implications for t
concept of kinetic glass transition in protein models. T
kinetic glass transition was defined in Ref. 41 as tempera
at which folding is significantly slower than fastest observ
rate. Such definition of kinetic glass transition makes it d
ficult to search for specific features that distinguish ‘‘glass
behavior from obvious slowing down of folding at low tem
perature which can be predicted from Arrhenius law a
which is a feature of any dynamics that involve energe
barrier crossing.

To explore further the question of the existence o
kinetic glass transition in heteropolymer lattice models, it
necessary to have faster folding sequences that can be
ied significantly belowTc . In the present paper, this is ob
tained by elimination of the strong overall attraction betwe
the monomers. As a result the native states for random
quences are not fully compact. To make sure of the gene
ity of the results we also studied one sequence for whic
moderate average attraction ('kT) between monomers wa
introduced, in order to obtain a maximally compact nat
conformation. Both sequences selected at random and
signed sequences are examined. Rather than using ran
pairwise interactions as in the original 27-mer studies,42,34,35

the Miyazawa-Jernigan amino acid parameters
employed43 in specifying the sequences and the interactio
between residue pairs. Analysis of the thermodynamic
havior of these sequences allows us to determineTc . By
doing simulations belowTc , we are able to make a direc
test of the theoretical predictions concerning ‘‘glassy’’ fol
ing dynamics belowTc .

It is found that even at very low temperatures (T,Tc),
the folding rate obeys the Arrhenius equation. As pointed
by Angell in his comprehensive review of glass formin
liquids,44 ‘‘The almost universal departure from the familia
Arrhenius law is perhaps the most important canonical f
ture of glass forming liquids.’’ In addition he pointed to no
exponential relaxation as another attribute of a glass. S
neither of those are evident in the presented folding sim
tion, there is clearly no evidence for a kinetic glass transit
at or belowTc . Further, the folding time at or belowTc is
Downloaded 02 Apr 2003 to 18.55.0.94. Redistribution subject to AIP
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much shorter than the Levinthal time. This suggests tha
modifications of the BW model based on REM is required
apply it to the kinetics of heteropolymer and protein foldin
In this paper a simple phenomenological model is propo
to describe the temperature dependence of the folding ki
ics of random sequences. The simulation results and
model are used as a basis for a general analysis of the
perature dependence of the rate of protein folding.

II. THE MODEL

The model which we used was described in detail
previous publications.42,45,3 A protein is modeled by a self
avoiding heteropolymer chain on a cubic lattice. A monom
corresponds to an amino acid residue of a protein, as in
Miyazawa-Jernigan model. A monomer can occupy any
of the lattice; two or more monomers cannot occupy
same site. Monomers connected by a bond occupy nea
neighbor sites.

The energy of a conformation is given by

E5 (
1< i , j <N

U~j i ,j j !D i j , ~1!

where the sum is taken over all pairs of monomers;D i j 51 if
monomersi and j are in contact with each other, andD i j

50 otherwise. The energyU(j i ,j j ) of a pairwise contact
depends on the identities of monomersi and j . The values of
U(j i ,j j ) are taken from Table VI of Ref. 43.

The motion of a chain is simulated by the standa
Monte-Carlo technique with the move set including corn
flips and crankshaft moves by 90 and 180 degrees.46 At each
step a monomer is picked randomly and its possible mo
~corner flip or crankshaft in a random direction! are at-
tempted. The directions of crankshaft moves are chosen
domly with equal probability.

III. NUMERICAL RESULTS

A. Nondesigned sequences

We generated ten random amino acid sequences o
residues. All sequences have the same composition, w
was chosen arbitrarily. The sequences are listed in Table

The relative energy of the native conformationErel is
defined as47,48

Erel5
Enat2Eav

s
, ~2!

where Eav is the average energy of non-native conform
tions. To estimate this value, we first compute the energie
all topologically possible contacts between all monom
pairs. From this we calculate the average energyeav of a
contact, and then estimate the average energy of non-na
conformation asEav5C•eav, whereC is the number of con-
tacts in the native conformation. In Table I we give the no
malized valueerel5Erel /C. This value serves as a measure
the ‘‘energy gap.’’
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 02
TABLE I. Random sequences of 27 monomers. Energy of the native conformationEnat, the relative energy of
the native conformationErel /C ~normalized by the number of contacts!, the number of contactsC in the native
conformation, and the MFPT atT50.16 in Monte-Carlo steps are given for each sequence, except sequen

# Sequence Enat Erel /C C MFPT

1 DCSATYNFVPAGLSQHMRTEIEGWVKL 25.92 21.15 22 5.4•105

2 ENHKGLTVDAPIASYWLQTEVRGMFCS 26.50 21.12 22 3.9•105

3 PALETMDSFQWRCISVYGAHVLGNTKE 26.45 21.11 21 3.7•105

4 VKAMRLAVPLFESESNYCWGHIQTDTG 26.32 21.34 18 8.6•105

5 a EVPSLNMHESQAFGYLRTDCGTIKVWA 213.67 20.73 28 6.6•106

6 PGALKDIFNYVQSGRECTEHVTMWASL 25.61 21.18 20 1.8•106

7 b LQIVADTSNHGERMVTCAPWFSKELGY 25.80 21.12 20 1.1•108

8 GSRPGAFNIVMQKCDTVLWEYASTHLE 25.68 21.09 21 3.0•105

9 NKECIYLDPWHTGQRSTFALVGASVEM 25.55 21.13 21 6.5•106

10 LYSLTGTKSWQGAEEVMHCADRFINVP 27.22 21.30 20 4.8•105

aNonspecific attraction potential of20.3 is introduced to make the native state of this sequence maxim
compact. The folding rate for this sequence is quoted atT50.25.

bThis sequence has double degenerate native state hence its slower folding~see the text!.
tio
as
a

ha
om
4,
ha
se

th
ac
s
ed
f

ll

ir
he

ers
m-

ense

the
PT
0.

her
#7

the
y of
For each of the sequences one Monte-Carlo simula
of 109 steps starting from random coil conformations w
performed and the conformation with the lowest energy w
determined. This is identified as the native structure for t
sequence. Figure 1 shows the native conformations for s
of these sequences. Native states for sequences #1, #
shown in Fig. 1 have fewer contacts in the native state t
the 28 corresponding to a fully compact cube, while
quence #5 has fully compact native state shown in Fig. 1~d!.
To test that the putative native conformation is, in fact,
state of lowest energy, 25 runs were performed for e
chain until it first reaches that conformation. During the
runs, no conformations with lower energy were observ
This test suggests that the chosen native conformation
each sequence has the lowest energy, at least among a
netically accessible conformations. Relatively fast folding~in
 Apr 2003 to 18.55.0.94. Redistribution subject to AIP
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less than 109 steps! of all the random sequences to the
respective ‘‘native’’ conformations can be explained by t
absence of strong average attraction between monom
which makes the motion of the chain less constrained, co
pared to previous studies where fast collapse to a quite d
conformation preceded folding.35

From 25 Monte-Carlo runs at a temperatureT50.16,
whereT is in the same units as the MJ parameters (kB51
and is dimensionless!, the mean first passage time~MFPT!
for reaching the native conformation was estimated for
ten sequences. The results are given in Table I. The MF
values for this temperature vary by a factor of about 3
Sequence #7 folded significantly more slowly than the ot
sequences. The reason for the slow folding of sequence
turned out to be an almost exact double degeneracy of
native state: the lowest energy conformation has energ
FIG. 1. Native conformations that is conformations with the lowest energy for~a! sequence #1,~b! sequence #4, and~c! sequence #8.
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25.80 while there exists also a second conformation w
E525.75 ~i.e., only 0.3 kT higher thanEnat for that se-
quence!. At T50.16 sequence #7 folds fast, with MFPT
6.73106 steps to the conformation with energy25.75 and
then slowly~in 108 steps! interconverts to the native confor
mation. This phenomenon of ‘‘kinetic partitioning’’ is inter
esting as a possible simple model of prion behavior. T
temperature dependence of the folding rates into two gro
states of the ‘‘prion-like’’ sequence was studied in Ref.
and was found to be qualitatively similar to the temperat
dependence of folding rates of the ‘‘normal’’ sequences st
ied in this paper.

The prion-like behavior is atypical: Only one out of te
random sequences generated for the present study exh
such a behavior. Since our goal here is to study tempera
dependence of folding rates in typical random sequences
chose the following sequences for more detailed analy
sequences #1 and #4, which have intermediate folding ti
representative of the whole sample of random sequen
and, for comparison, sequence #8, which has the sho
folding time. To check whether our conclusions are sensi
to the degree of compactness of the native conformatio
fully compact sequence was studied; this was generated
sequence #5 by adding a nonspecific attraction of20.3 to
every pairwise interaction@see Fig. 1~d!#.

We find that all the qualitative features of the foldin
behavior of the sequence with the fastest folding rate a
function of temperature are the same as those of the o
sequences, including the one with a maximally comp
ground state. This suggests that for longer polymers m
randomly generated sequences will exhibit similar foldi
behavior. Consequently, we chose a fast-folding 48-mer
detailed study~see below! so as to be able to obtain satisfa
tory statistics for this system in a reasonable time. It is i
portant to emphasize that the present calculations are t
consuming which means that a limited number of sequen
can be studied in detail.

A study of the kinetic and thermodynamic behavior w
performed for sequences #1, #4, #8 and modified sequ
#5. ~Details are given in the figure captions!. Figure 2~a!
shows the inverse temperature dependence of the equilib
energyE obtained from long Monte Carlo simulations. Ac
cording to the REM22 ~also see Appendix A!, the average
energy decreases with temperature whenT.Tc ~the average
energy varies approximately linearly with 1/T) and becomes
constant close toEc at temperatures belowTc , correspond-
ing to the dominance of a few conformations with energ
Ec close to that (Enat) of the native state. The three s
quences exhibit similar behavior and 1/Tc is somewhere be
tween 8 and 10. The fact that the three sequences have
proximately similar values ofTc is expected becauseTc is a
self-averaging quantity in the sense that its value should
depend on a particular realization of a random sequenc22

This fact was confirmed in a lattice model study where c
formations of a small chain were exhaustively enumerate24

The probability of a large (;NTc) energy gap in a random
sequence is very low forN@1 ~whereN is the number of
monomers! ~see Ref. 34!. Therefore, for random sequenc
the energy of the native stateEnat is close toEc , the energy
Downloaded 02 Apr 2003 to 18.55.0.94. Redistribution subject to AIP
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at which the quasicontinuous part of the energy spectr
ends.25 This makes it possible to evaluateEc for each se-
quenceas the energy at which the dependence of E on
levels off. ~It should be also noted that the exact values ofEc

are not critical for the analysis.!
The inverse temperature dependence of the logarithm

the MFPT for sequences #1, #4, #8 is shown in Fig. 2~b!. For
all three sequences there is an optimal temperature at w
the rate is maximal. In the vicinity of the optimal temper
ture the dependence of the rate is parabolic. As was m
tioned in the Introduction, such a nonmonotonic depende
of the MFPT on temperature was found in a number of p
vious studies.50,37,3,36For the present analysis, it is the lo
temperature behavior which is of primary interest. At lo
temperatures the dependence of ln MFPT on 1/T becomes
linear which is characteristic of Arrhenius behavior. By com
paring Figs. 2~a! and 2~b! we see that the temperature
which the Arrhenius dependence appears is close to the
perature of the equilibrium transitionTc for random se-
quences. This implies that belowTc the activation energy
and entropy, as well as the equilibrium energy, do not
pend on temperature, i.e., the dependence of ln MFPT onT
is well approximated by straight line atT,Tc , which, ac-

FIG. 2. Inverse temperature dependences~a! of the equilibrium energyE
and~b! of the MFPT~circles! and the median time divided by ln 2~squares!
averaged over 100 runs for sequences #1~in black!, #4 ~in gray!, and #8~in
white!.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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6471J. Chem. Phys., Vol. 108, No. 15, 15 April 1998 Gutin et al.
cording to classical Arrhenius theory is a signature of te
perature independence of activation energy and entropy

Figures 3~a! and 3~b! show the thermodynamics and k
netics for the sequence #5 which has compact native con
mation. It clearly has temperature dependent behavior th
similar to that of the noncompact sequences. There is a p
bolic temperature dependence of MFPT atT.Tc and almost
perfect Arrhenius dependence atT,Tc ~in this caseTc

'0.22). Similar thermodynamic and kinetic properties
shown in Figs. 2 and 3 were obtained for the model use
Refs. 34,35, in which the native states were almost alw
compact and the interactions between residues were ch
to have independent random values~A.S., E.S. and M.K.,
unpublished results!.

Another qualitative feature of ‘‘glassy dynamics’’44 is
that the distribution of folding times belowTc is nonexpo-
nential with an enhanced probability of very slow foldin
events due to chain trapping in deep non-native states, i.
signature of the kinetic glass transition is a broad spect
of relaxation times due to the differences between molec
that are frozen in local minima belowTc .27,44Therefore it is
important to determine whether or not the folding kinet
~distribution of first passage folding times! are single-
exponential. To examine this point we show in Fig. 2~b! the
inverse temperature dependence of the median folding t
the time within which a chain finds its native conformatio
in half of the runs. If folding is a single-exponential proce

FIG. 3. Inverse temperature dependences~a! of the equilibrium energyE
and~b! of the MFPT~circles! and the median time divided by ln 2~squares!
averaged over 100 runs for sequence #5. The line in~a! represents the resul
of the histogram method calculation, while circles are actual datapoints.
consistency attests that equilibrium has been achieved in calculation.
line in ~b! is drawn to guide the eye.
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the median time is equal to MFPT multiplied by ln 2. If th
distribution of folding times is a sum of exponentials, th
median time is less than MFPT3 ln 2. This simple method is
useful because it compares two averaged quantities, eac
which can be reliably determined from a modest number
runs; at each temperature 100 runs were performed to
mate the average time and median time. It is seen from
2~b! that folding of the three random sequences at all te
peratures studied is not distinguishable from a sing
exponential by this criterion. The same conclusion, for a s
tem with random interresidue interactions was made in R
36. based on a plot of lnk vs time. It is also clear from Fig
3~b! that the kinetics are still single-exponential in the ca
when the native state is fully compact, as it is for seque
#5.

The most important aspect to be considered compa
our results with theory of BW ~and its subsequen
ramifications51!, is whether or not there is anyqualitative
signature of a kinetic glass transition atTc . It is clear from
Figs. 2~b!, and 3~b! that the dependence of folding time do
not exhibit any peculiar features~sigmoidal or a plateau or a
cusp! which may be expected in a finite system as a ma
festation of a transition. Instead, the dependence of MFPT
temperature is smooth, and Arrhenius behavior is obser
up to the lowest temperatures examined, considerably be
Tc . Further, we showed that for all studied random s
quences the kinetics are single-exponential at all temp
tures, which is not consistent with kinetic glass transition44

As regards the comparison of quantitative aspects of
BW theory with the simulation results, we should note th
their conclusion that folding time equals Levinthal time
T5Tc and stays unchanged at lower temperatures, is a c
sequence of averaging of folding rate over the ensemble
sequences. This way of determining folding rate is flaw
because at low temperature~below Tc) the major contribu-
tion to the average~over ensemble of sequences! rate is pro-
vided by a very small number of extremely improbable s
quences having exceptionally fast~barrier free! folding ~a
discussion of this issue is given in the Discussion section
more details are provided in Appendix B!. In fact, almost no
sequences in the BW model will fold in ‘‘Levinthal time’’ a
Tc . Rather, a vanishingly small fraction will fold extreme
fast and the vast majority will fold much more slowly tha
‘‘Levinthal time’’ in the BW model. Averaging the rate ove
the ensemble of sequences in that model yields ‘‘Levint
time’’ ~see below!. In contrast here we study folding of typi
cal random sequences. It is not appropriate to compare
results which pertain to several typical sequences with
prediction of BW which applies to the ensemble and is n
characteristic of any typical random sequence.

However, it is still instructive to compare the calculate
folding times with ‘‘Levinthal’’ time. To estimate the
Levinthal time for the present model, a naive approa
would be to assume that the Levinthal time is the tim
needed to search the total number of conformations, in
cord with original description of the Levinthal paradox.52

However, this is likely to be an overestimate because m
of the states may be inaccessible; e.g., the chain may
dergo a partial nonspecific collapse since completely o
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he
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conformations are thermodynamically unfavorable,53,54,35,55

so that the number of conformations is effectively reduced
the semi-compact states. Since it has been shown tha
statistics of the conformational energies in such an ensem
of semi-compact heteropolymer conformations follow t
REM,16 the number of thermodynamically relevant confo
mationsV can be estimated using the REM. The quantityV
is related to the experimentally measurable ‘‘freezing’’ te
peratureTc and freezing energyEc

22 ~see Fig. 2! by

V5expF2
Ec

2Tc
G , ~3!

i.e., the number of relevant conformations is between
number that are maximally compact and the number of
possible conformations.~See Appendix A for the derivation
of this result and further discussion.!

The number of relevant conformationsV given by Eq.
~3! is much smaller than the number of all possible conf
mationsG. The latter can be estimated asG'g (N21), where
g'4.6856 andN is the number of monomers in the chain; f
N527 we obtainG;1017. According to the REM the tem
perature dependence of the energy reaches plateau at the
iting value of energyEc at T5Tc . Therefore, we estimate
Ec as the energy at which the dependence ofE(T) in Figs.
2~a! and 3~a! reaches the plateau.SubstitutingEc'26 and
1/Tc'8.5 @see Fig. 2~a!# into Eq. ~3! we obtainV'1011.
This is close to the estimate 1010 given in Ref. 35 but some
what greater since in the present case the mean attractio
monomers is less than that in the earlier calculation. T
estimate can also be compared with the MFPT atTc from our
simulations, which is approximately 106. We see that folding
rate of random sequences with no average attraction betw
monomers atTc is much faster than the Levinthal time es
mated for that model.

Introduction of overall attraction makes the number
thermodynamically relevant conformations smaller~i.e., it
restricts the conformational ensemble to more or less c
pact conformations!. This factor decreases the appare
‘‘Levinthal time.’’ In fact, the same estimate for sequence
~for which the interaction potential includes an average n
specific attraction as described above! givesV;106. This is
less than MC folding time ('6.63106) even at the condi-
tions of fastest folding.@In making the estimate forEc from
Fig. 3~a! for sequence #5 one has to subtract total nonspe
attraction energy (28.4520.3* 28) from the low-
temperature plateau value in Fig. 3~a!, since theEc is esti-
mated as the difference between average energy and th
ergy obtained at low temperature.# That the Levinthal time
estimated this way can be less than the actual folding tim
due to the fact that stronger compaction constrains the c
moves ~i.e., very few MC trials are accepted! and slows
down motion toward the native state. This simple consid
ation shows that comparison of the folding time with t
‘‘Levinthal time’’ for any model is somewhat arbitrary. Thu
the comparison of the folding time with the ‘‘Levintha
time’’ may be not very instructive since it depends on t
details of a model and the definition of the ‘‘Levinthal time
~e.g., does one consider all conformations, or only comp
Downloaded 02 Apr 2003 to 18.55.0.94. Redistribution subject to AIP
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ones, etc.! and therefore does not reflect the essential phy
of the problem.

B. Designed sequences

It has been argued that protein sequences are not
dom; i.e., that their the native state stability is higher th
that of random sequences.10,57,35,58,42,59,60There has been als
a considerable interest in statistical analysis of real seque
to assess whether they are random or not.61–63 The question
of how to detect sequence nonrandomness is a delicate
The first simple tests did not reveal statistically significa
deviations of certain sequence characteristics, such as hy
phobicity pattern, from a random distribution.61,62 However,
recent more refined analysis indicates that the distribution
different amino acids in protein sequences are not rando63

It is important, therefore, to study the kinetics of foldin
of nonrandom sequences at different temperatures, in a
tion to the random sequences considered above. We ge
ated optimized sequences with a design algorithm simila
that described in Ref. 58. In the present work we did n
constrain the amino acid composition and minimized
relative value of the energy of the native conformationErel

@see Eq.~2!# rather than the native state energy itself, as w
done in Ref. 58. The choice ofErel @Eq. ~2!# as a parameter to
be optimized is motivated by computational convenien
since at each stepEav ands can be easily evaluated withou
running, after each mutation, a computationally expens
search in space of denatured states. Sequences were des
with low relative energy for the three native conformatio
that were used in the random sequence analysis~Fig. 1!.

The original MJ parameters were shifted and scaled
such a way to yield values forEav ands that were the same
as for corresponding random sequences. This is importan
comparison with random sequences and BW theory and
it provides a direct way of comparing the behavior of d
signed and random sequences having the same native
formations.

To demonstrate the effectiveness of the design pro
dure, we calculated the number of conformationn(E,Q)
with a given energyE and a given number of native contac
Q; the method for doing this is described in Refs. 35,4
Comparison ofErel for the random and designed sequenc
in Tables I and II show a pronounced decrease ofErel for the
designed sequences.

The detailed mapping of configurational space obtain
in the MC simulations allows us to assess the efficiency
the role of design. Comparison of the plotsn(E,Q) for ran-
dom and designed sequences~Fig. 4! indicates indeed tha
the design is effective. It is clear that low energy conform
tions with many non-native contacts are present in the na
sequences and are absent in the designed sequences.
over, we estimate the stability gap for the two sequences
stability gap we mean the energy difference between the
tive state and lowest energy conformations belonging to
denatured state. To identify denatured states on the diagr
in Fig. 4 we assume that they have approximately 5 na
contacts, i.e., denatured states have a degree of similari
the native state corresponding to the similarity of two ra
dom conformations. We use as an estimate forEunfolded the
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 02
TABLE II. Designed sequences of 27 monomers. Sequences #11, #14, and #18 are designed to minimErel

of the conformations~a!, ~b!, and~c! in Fig. 1, respectively. The energy of the native conformationEnat and its
relative valueErel , normalized by the number of native contactsC, are given for each sequence.

# Sequence Enat Erel /C

11 MEYYWKGLEMAYAPWWIFKGTGILAWK 210.11 21.80
14 IKEMKAALWGWEMTMWKMWKTSYGETY 210.14 22.01
18 WWWTATKLKLKMQWEKTEGPAWMKQGT 210.32 21.87
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lowest energy of conformations having 5 native contacts.
structure~a! in Fig. 1, the stability gap,DE5Enat2Eunfolded

is approximately 0.5 for random sequences and 4 for
signed sequence #11. This can be seen clearly in Fig. 4.
difference is of particular significance because the stand
variance of interactions,s, is the same for the random an
designed sequences.

It is worth emphasizing the importance of the definiti
of stability gap as the energy difference between the na
state and unfolded,structurally significantly differentconfor-
mations. Care has to be used to avoid incorrect definition
the energy gap.64 The use of the difference between the n
tive state and nearest to it in energy is valid only in the rea
of fully compactstates~e.g., 33333 cubes34! where native

FIG. 4. Number of conformations with a given number of the native c
tacts and a given energy~a! for a random sequence~#1! and ~b! for a
designed sequence~#11!.
 Apr 2003 to 18.55.0.94. Redistribution subject to AIP
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state and the first excited state have a high probability
differ significantly in structure. This is obviously incorrec
for non-compact conformations where the native and ‘‘fi
excited’’ state can differ by only small structural rearrang
ment ~displacement by only one bead!. The latter definition
was used in the recent paper of Klimov and Thirumalai64 and
resulted in a misrepresentation of earlier results34 which dealt
specifically with ‘‘energy gap’’ defined in a fully compac
ensemble of conformations. In a later paper by the sa
authors65 the qualitative correlation between folding rate a
energy gap infully compact ensemblewas shown~Fig. 22 of
Ref. 65!.

Figure 4 shows that the random and designed seque
are similar as far as energy gap between the native state
the first ‘‘excited state’’ which differs by one monomer flip
is concerned. In other words, the energy distribution
structures in the immediate vicinity of the native state
similar for the two noncompact sequences, which have p
nounced differences in their folding.

According to theory,57,58,5 the equilibrium transition be-
tween the native and the unfolded states for designed
quences is first order, as explained in Fig. 1 of Ref. 58!. In
the thermodynamic limit, a first order transition correspon
to a sudden change in energy as a function of temperat
For a finite system this temperature dependence beco
sigmoidal. Such behavior is observed@Fig. 5~a!# for the de-
signed sequences which have an inverse transition temp
ture 1/Tf at about 3.5. This should be contrasted with t
behavior of a typical random sequence for which the dep
denceE vs 1/T is much less sigmoidal~see Fig. 2!. Se-
quences selected for fast folding from the pool of 200 ra
dom sequences also showed more sigmoidal tempera
folding transition than the ones that did not fold fast.34 ~The
different parameter, which is the number of thermodynam
cally stable conformations was studied as a function of te
perature in Ref. 34. It was possible to do for the model st
ied in Ref. 34 because the thermodynamic quantities w
evaluated there for fully enumerated set of maximally co
pact conformations. In the present study this is not poss
since no average attraction is introduced and non-com
conformations contribute significantly. To this end we use
simpler parameter, average energyE to characterize transi
tions in random and designed sequences.!

These sequences were more thermostable than
folding ones, i.e., the selection for fast folding used in R
34 represents a simple, ‘‘design’’ procedure and leads to
sigmoidal transition for such sequences.

The inverse temperature dependence of the MFPT
the designed sequences is shown on Fig. 5~b!. The tempera-

-
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ture dependence is similar in form to that of the rand
sequences@see Fig. 2~b!#. In particular, there is a temperatu
Tk below which an Arrhenius-like behavior is observe
From Fig. 5~b! this temperature corresponds to 1/Tk'4.5.
An important feature which distinguishes designed
quences from random sequences is that atTk , the equilib-
rium folding transition for designed sequences@Fig. 5~a!# is
almost finished, and the chain is mainly in the native conf
mation; for random sequence, by contrast, at its respectivTk

(1/Tk'8) the equilibrium transition is far from complet
~see Fig. 2!. This difference becomes more striking fo
longer sequences, e.g., for 48-mers, as shown below.
suggests that designed sequences can fold fast at the c
tions when their native state is thermodynamically stable

The fact that the kinetics become Arrhenius-like at t
end of the equilibrium folding transition for the designe
sequences suggests that below this temperature the ene
and entropic contributions to the free energy barrier for fo
ing do not change with temperature. Such a behavior is
qualitative disagreement with the predictions of Ref. 26. A
cording to Ref. 26, the glass transition is predicted to oc
at Tc (Tg in their notation!, i.e., at the temperature at whic
freezing takes place for random sequences having the s
amino acid composition~i.e., sameEav and s) as the de-
signed sequences. The valueTc for the present systems wa
found to be in the range between 8 and 10~see Fig. 2!. No

FIG. 5. The same as Fig. 2 but for sequences #11, #14, and #18, re
tively.
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signature of a glass transition is seen in Fig. 5~b! at tempera-
tures close toTc . Instead, the kinetics of folding appears
be simply related to the thermodynamics in that it becom
Arrhenius-like at the end of equilibrium folding transition
Figure 5~b! also shows the inverse temperature depende
of the median time@squares in Fig. 5~b!#. Comparison of the
median time with MFPT@circles in Fig. 5~b!# suggests that
the median time is close to MFPT• ln 2 aboveTk . This
implies ~see above! that the folding kinetics can be esse
tially represented by a single exponential aboveTk . How-
ever, belowTk a strong deviation of the median time from
MFPT • ln 2 can be seen in Fig. 5~b!. The deviation from
one-exponential behavior can be seen on Fig. 4 at lowT as
circles ~representing MFPT• ln 2) which deviates from the
squares of the same color~different grayscale correspond t
different sequences on Figs. 2 and 5!. This shows that the
folding kinetics belowTk is nonexponential for the designe
sequences.3,66 Such behavior contrasts with the singl
exponential behavior of random sequences.36,66

C. 48-mer

The results discussed so far apply to chains of 27 mo
mers, which are rather short compared to real proteins.
test whether the behavior found above is general, we si
lated a 48-mer. The results obtained are more limited
cause the folding of longer chains takes more time. We g
erated ten random sequences for 48-mers and selecte
one of them which folded into the lowest energy conform
tion faster than the other sequences atT50.2. The sequence
and the lowest energy conformation are shown on Fig. 6

Figure 7 shows the inverse temperature dependenc
the equilibrium average energy and of the folding rate. A
though the average energy as a function of 1/T is essentially
noncooperative as for the random sequences shown in F
2 and 3 there exists a temperature below which the ave
energy and the energy barrier for folding~i.e., Arrhenius-like
behavior! do not change with temperature. This temperat
is equal to 1/Tc'5.5 from the folding rate and the value
consistent with the behavior of the average energy.

We also designed a sequence with a pronounced en
minimum for the conformation shown in Fig. 6. The resu
of simulations for this sequence are presented on Fig. 8
for the 27-mer, the thermodynamic transition is more coo
erative than for the random sequence. Again, the kinetics
directly related to the thermodynamics; i.e., neither the eq
librium energy nor the kinetic energy barrier change ess
tially below the temperatureTk , which can be estimated a
1/Tk'3.2 from the figure.

IV. PHENOMENOLOGICAL MODEL

Since the results of our simulations are inconsistent w
the predictions of the theory developed in Ref. 26, an al
native model is required. We have developed a simple p
nomenological model of the folding kinetics for the rando
sequences. It makes use of the fact that for random
quences the REM is adequate to treat thethermodynamic

ec-
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6475J. Chem. Phys., Vol. 108, No. 15, 15 April 1998 Gutin et al.
properties of the chains, as described in Ref. 1. However,
assumptions to obtain a kinetic model are different~see Dis-
cussion!.

According to the REM, the density of statesn(E) is
Gaussian;

n~E!5
V

~2pS2!1/2
expF2

~E2Eav!
2

2S2 G . ~4!

Here the average energy over all conformations is denote
Eav andS252Ns2 is the standard variance of the energy
the chain. From Eq.~4!, it follows that the entropy, (kB

51), is

S~E!5 ln n~E!5 ln V2
~E2Eav!

2

2S2
, ~5!

where we have omitted factors that are small in the therm
dynamic limit. At the energy,Ec , given by

Ec5Eav2S~2 ln V!1/2 ~6!

the entropy vanishes. This means that the energy spec
below Tc is sparse; i.e., there are only a few states and t
are separated significantly in energy from one another.
ground state energyEnat is only few Tc below Ec .34 Corre-
spondingly, (Ec2Enat)/Ec;1/N; i.e., the deviation ofEnat

from Ec presents a nonextensive correction so that it suffi
to use the approximationEc'Enat for all estimates of ther-
modynamic quantities. This can be seen clearly in Fig. 4~a!
which gives the density of states for random sequences;
Ec can be estimated from Fig. 4~a! as25.6 ~the lowest en-

FIG. 6. ~a! Random sequence of 48 amino acid,~b! the corresponding native
conformation, and~c! sequence designed to minimize relative energy of t
conformation.
Downloaded 02 Apr 2003 to 18.55.0.94. Redistribution subject to AIP
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ergy of conformations which are not structurally similar
the native state, defined as having only 10 native contac!.
The native state energy for the sequences whose densi
states is shown in Fig. 4~a! is 25.9.

If the temperature is high enough (T.Tc), the equilib-
rium average energyE can be determined from the thermo

dynamic identity
dS

dE
5

1
T

. From Eq.~5! we have

E5Eav2
S2

T
. ~7!

This result is valid until the temperature reachesTc given by

Tc5
S

~2 ln V!1/2
. ~8!

At T,Tc the entropy vanishes. The system reaches
energy value where the density of states is low, the f
energy is equal to the energy, and the standard thermo
namic relations involving the entropy are no longer val
From Eq. ~7! when the temperature approachesTc from
above, the average energyE reaches its minimal valueEc .
This means that, belowTc , E equals toEc and does not
change with temperature in the approximation which n
glects nonextensive deviation ofEnat from Ec ~see above!.

FIG. 7. Inverse temperature dependences~a! of the equilibrium energyE
and~b! of the MFPT averaged over 50 runs for random 48-mer@Fig. 6~a!#.
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To characterize the kinetics of folding of random sequen
we need to introduce kinetic postulates since the REM
model that describes the thermodynamics and not the ki
ics, as already stated in the Introduction. The postulates
derived from previous folding simulations and the
analysis.35 They are consistent with the three stage rand
search mechanism found in simulations for quasi-random
quences in Ref. 35. Since the kinetics of folding to the nat
conformation for random sequences is a single expone
process, as described above, it can be assumed that fo
involves overcoming a free energy barrier, which is the ra
limiting step for the reaction. In the folding simulations,
was found also35 that the number of conformations whic
participate in the transition state for folding is much smal
than the total number of semi-compact conformations.

Based on these findings for the folding of random
quences, we make two essential assumptions concernin
kinetics:

~i! The mean energy of the system relaxes relatively r
idly to the equilibrium value determined from the RE
given in Eq.~7! for T.Tc and toEc if T,Tc .

~ii ! On a slower time scale, the system searches for
of the transition state conformations from which it rapid
folds to the lowest energy~native! conformation. Conforma-
tions belonging to the transition state have energyE# and
their number isN # so that entropy of the transition state

FIG. 8. The same as Fig. 7 but for designed 48-mer@Fig. 6~c!#.
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S#5 log N #, which we assume to be temperatur
independent.

Postulate~i! which corresponds to the assumption tha
small subset of the entire configuration space can be rea
rapidly ~i.e., the collapsed globule! and that the subsequen
search is limited to conformations in this subset, was a
suggested in earlier publications.53,35,67 Postulate~ii ! of the
kinetic scheme is in the spirit of the kinetic REM discuss
in the context of spin glasses by Kopper and Hilhorst31 and
in our earlier publication,32 as well as in a more recen
paper.33 This postulate was shown to be satisfied for t
27-mer with random sequences~Sali, E.S., and M.K., to be
published!. It assumes that folding proceeds by an equil
rium mechanism, as do most chemical reactions. Here
give a quantitative phenomenological analysis of the con
quences of such a kinetic scheme.

Postulates~i! and ~ii ! are sufficient to obtain the tem
perature dependence of the MFPT. AtT.Tc the equilibrium
energy is given by Eq.~7!. Substitution of this equation into
Eq. ~5! gives the equilibrium entropy

S5 ln V2
S2

2T2
~9!

and the equilibrium free energyF5E2TS.
According to postulate~ii ! and the Arrhenius kinetic

law, the MFP folding time

k0t5expS F#2Feq

T D , ~10!

whereF#5E#2T log N # is the free energy barrier andk0

is the elementary transition rate~without a barrier!. It should
depend on a number of factors such as the ‘‘connectivity’’
the move set, i.e., how many conformations are connecte
one MC step and ‘‘internal viscosity’’ which may depend o
overall compactness of the chain and reflect steric constra
that may affect the acceptance probability of MC moves.k0

should be roughly close to the rate of nonspecific collapse
the chain and thus it reflects the nature of polymer dynam
~self-diffusion! of the chain.

Substituting~9! and ~7! into the expression~10! for the
folding time we obtain

ln k0t~T!52
EcTc

2 S 1

T
2

1

Tc
D 2

1
E*

T
2S#, ~11!

whereE* 5E#2Ec is the activation energy.
The entropy of transition state,S# represents a constan

~temperature independent! contribution to the folding time
Eq. ~11!; in our phenomenological theory all temperatur
independent terms can be adsorbed into the renormal
elementary rate constant, i.e., we definek0̃5k0 exp(S#) Eq.
~11! is valid for T.Tc . BelowTc the model is even simpler
We can again use Eq.~10! taking into account that belowTc

the entropy vanishes andE5Ec . We immediately obtain for
T,Tc

ln k̃0t~T!5
E*

T
. ~12!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Thus, the analysis predicts the Arrhenius behavior
served in the simulations at low temperatures (T,Tc).
Above Tc @Eq ~11!# there is a parabolic dependence of t
MFPT on the inverse temperature. At infinitely high tem
perature Eq.~11! gives

ln~ k̃0t)52
Ec

2Tc
5 ln V, ~13!

that is, the MFPT equals the corrected Levinthal time. T
result is as expected, because at infinitely high tempera
the search for the native conformation is completely rando

The MFPT as a function of temperature has a minim
at some temperatureTopt which can be determined from th
Eq. ~11!. The result is

Topt
215Tc

21S 11
E*

Ec
D ~14!

and the folding time at this temperature is

ln@ k̃0t~Topt!#5
E*

Tc
S 11

E*

2Ec
D . ~15!

This should be compared to the folding time atTc given
by

ln@ k̃0t~Tc!#5
E*

Tc
. ~16!

The fact thatTopt'Tc suggests thatE* !Ec . This im-
plies thatE#'Ec , i.e., transition state~s! are closer to the
bottom part of the energy spectrum.

The numerical data@Figs. 2~b! and 3~b!# for random se-
quences were fitted to Eqs.~11! and~12!. To do this, we first
fitted the Arrhenius portion (T,Tc) of the inverse tempera
ture dependence of the MFPT by a straight line@Eq. ~12!#.
This gives the values ofE* and k̃0. Then we fitted the high
temperature portion (T.Tc) by a parabola given by Eq.~11!
where Ec is taken to be equal to the lowest energy for
given sequence. Thus, for the high temperature behavio
have only one fitting parameter,Tc . The consistency of the
phenomenological theory may be evaluated by comparingTc

obtained as a results of fitting the kinetics withTc obtained
from thermodynamic analysis@Fig. 2~a!#. The results are
shown in Fig. 9. It is clear that the phenomenological the
describes the simulation data in a satisfactory manner. In
the fit is almost perfect for sequence #5@Fig. 3~b!# but there
is a discrepancy at high temperatures, for sequences #1
and #8 which do not include average attractive potent
This deviation is not unexpected because we used a Gau
density of states@Eq. ~4!# with the varianceS assumed in-
dependent of temperature in the derivation. In fact, the v
ance S is proportional to the number of contacts
equilibrium.16 The number of contacts is insensitive to t
temperature at low temperatures. However, for sequence
#4, #8 it decreases substantially at high temperatures~data
not shown! so that the varianceS also decreases at hig
temperatures. The decrease of the variance for these
quences slows down the folding reaction in this regime d
to the fact that the number of relevant unfolded conform
Downloaded 02 Apr 2003 to 18.55.0.94. Redistribution subject to AIP
-

s
re
.

e

y
ct

#4,
l.
ian

i-

#1,

se-
e
-

tions to be searched over increases as given by Eq.~5!, i.e.,
the entropic contribution to the free energy becomes imp
tant.

V. DISCUSSION

The factors which determine the rate of protein foldi
are of great interest.34,64,68,69Most discussions have been m
tivated by the ‘‘Levinthal paradox’’ and possible ways
resolve it. In the last few years, simulations~primarily with
lattice models, e.g., Ref. 35!, as well as theoretical analyse
have led to the realization that Levinthal paradox is not
ally a paradox because random search of all possible con
mations is not necessary. Instead, the variation in energ
the potential surface of the polypeptide chain plays cruc
role. It provides the bias necessary to restrict the search
that folding to the native state can occur in reasonable ti
This new perspective on the Levinthal paradox has rai
many questions concerning the details of the folding mec
nism. A fundamental question concerns the relation betw
stability, cooperativity and foldability in real proteins. It i
clear that the existence of a large energy gap between
native state and states that are significantly different in str
ture ~i.e., so different that the protein would not be active! is
a thermodynamic requirement for a stable protein that
perform its biological functions. The magnitude of the r
quired gap obviously depends on the temperature since
dominance of the lowest energy state is determined by
Boltzmann factor; for physiological temperatures a gap o
kcal/m leads to a native state population on the order 100
one. It was first shown in lattice simulations with a 27-m
chain and interactions derived from a random energy mo
that the existence of the energy gap is sufficient for the
istence of conditions at which protein molecules fold fa
into stable native conformation.34 This result, which supple-
ments and extends previous theoretical work57,58 has been
elaborated in a number of papers that used the energy ga
a criterion for designing fast folding stable sequences.70,71

The energy separation between the lowest and first exc
state can be used as the meaningful energy gap in a

FIG. 9. Fitting of the data from Fig. 2~b! by analytical Eqs.~11! and ~12!.
The parameters of the fitting are as follows: Sequence #1~black dots!:

Ec525.92, E* 51.19, ln k̃0524.2, 1/Tc58.60; Sequence #4~gray sym-

bols! Ec526.32, E* 50.99, ln k̃0526.1, 1/Tc58.04; Sequence #8~white

symbols! Ec525.68,E* 51.24, ln k̃0523.4, 1/Tc58.6.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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compact 33333 cube because the first excited state is g
erally very different in structure from the native state. F
structures that are not fully compact, there can be low ene
states that are similar to the native one and so a more ge
energy gap criterion is appropriate. The one used here@see
Eq. ~2!# corresponds to that used in matching real proteins
threading through a population of native states.47

In two recent papers, the energy gap criterion for f
folding has been called into question. One of these pape68

neglected the simultaneous requirement of stability and fo
ability and the other64 neglected the condition just stated f
using the energy difference between the ground and first
cited states as the energy gap. It is not our purpose to dis
these two papers here since they will be considered in s
rate publications. However, their publication makes cl
that the energy gap criterion is not understood by every
working in this field and deserves further discussion.

One important question in applying the energy gap c
terion is how to compare the folding rates of different s
quences. As has been shown here, as well as in a numb
previous studies,36,3,37the folding rate of a given sequence
very sensitive to the temperature and exhibits an overall
shaped curve when the logarithm of the rate is plotted ve
the inverse temperature. This might be taken to imply t
the folding rates of different sequences should be compa
at the optimum temperature~at which folding rate is the
fastest! for each. However, in considering the folding rate
a sequence as described by this curve, the stability mus
be neglected; i.e., in some cases optimum rate is achie
only at temperature at which sequence is not stable so
the results are not really meaningful as models for prote
From the present study, it is clear that temperatures co
sponding to fastest folding are different for random s
quences@with relatively small energy ‘‘gaps,’’ see Fig. 4~a!#
and designed sequences@with larger ‘‘energy gaps,’’ see Fig
4~b!#. In particular, the fastest folding for random sequen
is achieved at lower temperature than the fastest folding
designed sequences, in accord with the theoretical ana
presented in this paper. Indeed,Tc and Ec in Eq. ~14! are
self-averaging, i.e., their values do not depend on the part
lar sequence but rather on such averaged characteristi
the amino acid composition.70,3 The data in Table I and Fig
2 suggest that this is qualitatively correct; i.e., the value
Ec is constant within610% for various random sequenc
given in Table I. The value of the barrier energyE# ~and,
thus,E* 5E#2Ec) is different for random and designed s
quences. Indeed, since transition state conformations s
some structural properties with the native state it is reas
able to assume that their energies follow the Hammond p
tulate, i.e., transition state energies are lower for the desig
sequences. According to the Eq.~14!, lower E* ~character-
istic of designed sequences! corresponds to higherTopt,
which is exactly what is observed in the simulations~com-
pare Figs. 2 and 5!. Another feature predicted by the analy
cal theory is that designed sequences should haveTopt'Tc

@see Eq.~14!#, i.e., that linear part of the bell-curve shou
begin just below the temperature of fastest folding. Comp
son of Figs. 2 and 5~for 27-mer! and Figs. 7 and 8~for
48-mer! suggests that this prediction is qualitatively corre
Downloaded 02 Apr 2003 to 18.55.0.94. Redistribution subject to AIP
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Our simulations and analysis show that it is possible
find a temperature range at which random sequence f
faster than designed sequence; e.g., atT50.14 (1/T'7) the
designed 27-mer sequences studied here fold more slo
than random sequences@Compare Fig. 2~a! with Fig. 5~a!#.
However, at this high temperature the random sequences
not stable in their native conformations@see Fig. 2~a!#; i.e.,
although the first passage time is short, the sequences r
their native state and immediately leave it.

It is useful to compare folding rates of sequences un
the conditions where their native states are stable. For
random sequences that means that a considerably low
perature must be used than for the designed sequences
from Fig. 2~a! at the required temperature of 0.09 (1T
'11), the folding of the random sequences is about 2 ord
of magnitude slower than that of the designed sequence
the temperature 0.2 where they are still stable. Howeve
should be noted that atT50.09 the designed sequence fol
much more slowly than the random sequences. For the
mer the corresponding behavior is also observed with
designed sequences folding three orders of magnitude fa
at T50.35 (1/T'2.9) than random sequences atT50.15
(1/T'6.7).

The factor of stability was an essential element in t
original formulation of the energy gap criterion for fast fold
ing in Ref. 34 ~i.e., folding was studied at a temperatu
when the sequence is stable!. This requirement was ne
glected, as already mentioned, in a recent publication,68 so
that the conclusions made in this paper are not relevant to
earlier work.

Another way to compare folding rates for different s
quences is at the temperature of their respective fastest
ing. This was done in a recent paper71 for random and de-
signed sequences of different lengths in the range 20-
monomers. The result showed that in this case designed
quences, having a larger ‘‘energy gap,’’ on average, fold
faster than random sequences, which tend to have sm
energy gaps, This difference became more pronounced a
chain length increased.~The energy gap was defined in Re
71 in the same way as Eq.~2! of the present study!. How-
ever, in line with the above argument, it should be noted h
that condition of stability is not satisfied for random s
quences at the temperature of their fastest folding.

The study made here of the thermodynamics and kine
of folding over a wide range of temperatures makes it p
sible to obtain a deeper understanding of the relevance
different features of protein sequences for fast folding a
stability. This also enhances our ability to design sequen
which satisfy the requirements of fast folding at a selec
folding temperatureT. It is clearly advantageous for fas
folding to have sequences with the optimal folding tempe
ture Topt close to the actual folding temperatureT ~a tem-
perature at which sequence is stable!. If Topt

0 is the optimal
folding temperature of the initial random sequence, the
sign strategy to generate sequences which fold fast aT
.Topt

0 is to make theirTopt.Topt
0 . It is clear from Eq.~14!

that in this case sequences having higherS ~and thus higher
Tc and Ec) and, most importantly, a lower energy of th
native state~a greater energy gap and thus a smaller bar
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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E* , according to Hammond postulate! would emerge as fas
folders. Optimization of the energy gap by stabilizing t
native state may be also sufficient for stability, which is
important and nontrivial at highT requirement. This is in
accord with the original proposal concerning evolution
proteins in archaic high-temperature organisms.35 At lower
temperature, the energy gap requirement for stability is
laxed so that a larger fraction of the sequences have st
native states. Under such conditions fast folding becom
more important because folding rates tend to decrease
temperature as temperature is lowered into actual Arrhe
range. This suggests that additional optimization of
quences to achieve fast folding may be required; i.e.,
energy gap criterion by itself may be not sufficient for ge
erating sequences which fold fast at lower temperature.

The present results, as well as earlier studies,72 suggest
how the required optimization can be achieved so that
quences fold fast atT,Topt

0 . An optimal design strategy
would be to adjust sequences to makeTopt lower. This can be
achieved makingTc lower andEc higher@see Eq.~14!#. This
suggests that in this case optimization may concern fac
which determineEc and Tc , namely, the standard varianc
of the interaction energiesS and the average energy of in
teractionsEav. Thus, to increaseEc one can increase th
average interaction energy~i.e., make monomers more mu
tually repulsive or less attractive, on average! and/or de-
creaseS.

Recently, an evolution-like selection algorithm to gen
ate fast folding sequences was proposed and studied in
48. In this method sequences are mutated randomly such
only point mutations increasing the folding rate are accep
This algorithm proved to be efficient in generating fa
folding sequences over a range of temperatures. When it
applied to generate sequences which fold fast at low t
perature the resulting sequences had features in accord
the present analysis, i.e., they had a higher average co
energy and a lower dispersion of interaction energies48 than
in the original quasi-random sequences from which the
lection began.

Another sequence design algorithm was propo
recently72 which generated sequences having selected t
mal properties, i.e., ones that are stable in a specified t
perature range. The analysis presented in this paper sug
that there is a close connection between thermodyna
properties of sequences and kinetics. While the algorit
presented in Ref. 72 selected sequences which are stable
specified range of temperatures, these sequences had
fastest folding in the same temperature range, which is
line with the findings of the present work. Comparison
sequences generated to fold at high temperature with
ones generated for low temperature showed again that
feature of high-T sequences was that their native states
particularly low energy, i.e., this was effectively an ‘‘energ
gap’’ optimization. In contrast, sequences designed to f
and be stable at lowT had smaller dispersion of conta
interactions, also in accord with the presented analysis.

Although meaningful correlations have been obtain
from the above analysis and its applications the res
should be considered only as qualitative: A more comp
Downloaded 02 Apr 2003 to 18.55.0.94. Redistribution subject to AIP
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analysis of the relation between stability and fast folding a
function of temperature would require a detailed knowled
of factors affectingEc and the energy and entropy of th
transition state ensemble. In particular the presented p
nomenological theory cannot address, in its present form,
important question of chain length dependence of the pro
folding time.71 A consistent analytical theory explaining th
power law dependence of folding time on chain length, o
served in simulations71 and supported by qualitative
arguments73 is a matter of future research.

The results of the present simulations and analysis
also be compared with the predictions of the analyti
theory developed by Bryngelson and Wolynes26 as well as
more recent extensions and modifications.51,41,74,75 In this
comparison we focus primarily on qualitative aspects of
BW theory and our simulations since quantitative details
sensitive to the specific parameters used in the simulat
and analytical calculations and rather arbitrary definitions
‘‘Levinthal time’’ ~see above!. The BW theory predicts two
transitions for designed sequences. One transition is an e
librium folding transition at temperatureTf ; below Tf the
native state is thermodynamically stable. At a lower tempe
ture Tc (Tg in the notation of BW! a kinetic glass transition
is predicted. The qualitative features of the glass transition
proposed by BW26,51 are that as the temperature goes do
to Tg the folding times reaches a plateau value and no lon
changes with temperature and that the kinetics become m
edly nonexponential atTg and below.

Our results do not show two independent transitions.
stead, we observe that both the thermodynamics and kine
of folding are governed by the same temperature,Tk . This is
the temperature below which the equilibrium energy is clo
to the energy of the native conformation and does not cha
further with temperature. The simulations results stron
suggest that no qualitative changes in the system prope
are expected belowTk . The temperature dependence of t
MFPT, as well as of the median time, becomes Arrheni
like at Tk without any singularities or plateaus at lower tem
peratures. In this regard the criterion for fast folding, pr
posed in Ref. 57 can be clarified. It was argued that the r
‘‘ Tf /Tg’’ ~a measure of stability gap! could be viewed to
determine fast-folding sequences. From the present resu
follows that this is not the ratio of folding and ‘‘glass tran
sition’’ temperature for the same sequence but rather the
tio of two folding transition temperatures:Tf for the actual
sequence andTg (Tc) which is the folding ~‘‘freezing’’ !
transition temperature for a sequence having the same c
position as the actual one but which is randomly re-shuffl
Thus this ratio is a measure of sequence optimization.

The temperature dependencies presented in this w
~Figs. 2, 3 and 7! rule out, a kinetic glass transition for th
system that we studied. Indeed it is impossible to identif
temperature point on the plots of MFPT vsT shown in Figs.
2, 3, 7 with any ‘‘intuitive’’ glass transition point. There ar
only two special temperatures discernible in these plots:Topt

andTk . Obviously, it does not make sense to identifyTopt,
the temperature of fastest folding, with the ‘‘glass tran
tion’’; it is equally incorrect to do so forTk since folding rate
at Tk is only a few times slower than the fastest folding ra
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~at Topt), both for 27-mer and 48-mer. Further, the kineti
for the random sequences are purely exponential at all t
peratures studied, a factor inconsistent with qualitative f
tures of glass transition behavior.44 Since glass transition
does not have a rigorous definition~unlike Ehrenfest defini-
tion of phase transitions! only circumstantial evidence for o
against it can be obtained. Our results point out to the
sence of such a transition in the lattice model that we h
studied.

It was claimed earlier14 that ‘‘glass transition’’ behavior
had been observed in lattice simulations. Indeed, Fig. 12
Ref. 14 apparently does show that the Arrenius depende
of the unfolding rate levels off at lower temperature. T
discussion of these data in the text of Ref. 14 interprets
behavior as evidence of a glass transition correspondin
that predicted by BW. However, it is explained in the capti
to Fig. 12 of Ref. 14 that the form of the Arrenius curve is
artifact of the method used to generate the curve: Sim
tions were stopped either when the molecule unfolded t
specified degree or when its length reachedTmax51.08
3109 steps. Any simulation at which the chain did not u
fold in Tmax steps was assigned a fixed time ofTmax steps.
Thus the low-temperature plateau of the folding time atTmax

in the simulations discussed in Ref. 14 represents noth
more than the arbitrary cutoff.

The absence of a ‘‘freezing’’ glass transition atTc in our
simulations, in contrast to the theoretical prediction of B
can be understood by considering the fact that an impor
assumption in the kinetic model of BW26 is that transitions
occur between conformations with statisticallyindependent
energies. As a result, a typical conformation with ene
close toEc is ‘‘kinetically connected’’ to conformations with
energies close to the average energy because the latter
the vast majority. Correspondingly, the energy barrierE* to
leave any conformation with energyEc is of order 2Ec .
Thus, the lifetime in any low-energy non-native conform
tion; according to Ref. 26, ist;exp(2Ec /T). Together with
Eq. ~16! this gives t;exp(2Ec /Tc)5V2 for T5Tc . Since
the number of such low-energy conformations~with energy
close toEc) is of order unity, the folding time atT<Tc is of
the order of the time needed to escape from any low-ene
non-native conformation that is, the folding time is equal
V2. It was assumed in the subsequent development of
theory that two conformations connected by one kinetic s
have finite correlation rather than no correlation at all.51 This
corresponds to the statement that conformations with en
close toEc are kinetically connected not to conformatio
with the average energy~which can be taken to be zero! but
to conformations with energyaEc , wherea is a parameter
which characterizes correlation between two kinetically c
nected states. This reduces the typical barrier fromEc to
(12a)Ec and leads to the prediction of a faster average r
at Tc than in fully non-correlated case. However, qualitati
conclusions, including the prediction of ‘‘glass transition’’ o
the type suggested in Ref. 26 were not changed in the ne
version of the theory introduced in Ref. 51.

It is noteworthy that folding atTc is much slower in the
uncorrelated model of BW than folding at very high tem
perature where it equals toV, the ‘‘Levinthal’’ time of ex-
Downloaded 02 Apr 2003 to 18.55.0.94. Redistribution subject to AIP
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haustive search without any energetic biases. The unco
lated model of BW does not indeed provide any energe
biases toward the native conformation. However, the sea
at low T in the BW model is slower than a simple exhausti
‘‘Levinthal’’ search because it also requires overcoming t
energy barriers. It was mentioned in Ref. 26 that the the
presented there may describe kinetics of Monte-Carlo fo
ing simulations. The assumption of the independence of
energies of one-step-connected states is equivalent to a s
lation that generates a totally new conformation at each s
At very high temperature each such attempt will be accep
and the system would effectively perform an exhaust
search for the native conformation. The time required
that is equal to Levinthal timeV. However, at lower tem-
perature, an additional factor slows down folding in t
model of BW compared to the unbiased exhaustive searc
is clear that when low energy (Ec) is reached~at T,Tc),
any randomly generated conformation will have a mu
higher (;NkTc) energy and all such moves except expone
tially rare ones will be rejected. This makes the search aTc

inefficient in the model of BW and leads to a folding tim
V2, much greater than Levinthal time. Decreasing of te
perature belowTc gives rise to a further dramatic slowin
down since energetic barriers to escape low energy con
mations by random search are very high, are of the orde
NkTc .

In fact, BW obtainedV rather thanV2 as the folding
time at allT<Tc , ~see Fig. 3 of Ref. 26!. The independence
of the folding rate on the temperature in the BW calculatio
suggests that there is no energy barrier at low temperatur76

This difference between a simple analysis and the BW
sults appears to be due to the fact that folding time aT
<Tc was obtained by BW as a result of averaging of t
folding rate over the ensemble of ‘‘sequences’’~in the con-
text of proteinlike heteropolymers, each ‘‘sequence’’ rep
sents a realization of a quenched distribution of energie
states in the dynamic REM model of BW!. In Appendix B
we explain why the actual folding rate with which the m
jority of sequences fold in the BW model is very differe
from the rate averaged over sequences and show how
conclusion about zero energy barriers at low temperature
pears as an artifact of averaging the rate over sequence

In a more realistic model, conformations connected
one kinetic step are expected to be very similar in struct
and, therefore, have similar energies. In particular, con
mations connected by one Monte-Carlo step to a confor
tion that has an energy close toEc have energies close toEc

as well ~i.e., for a single MC step the energies differ by
nonextensive value!. We conclude that for more realisti
models where energies are related along MC trajectory
kinetic freezing transition temperature at which the foldi
rate drops significantly below the value predicted by t
Arrhenius law is expected and none is found in simulatio
we have presented.

A caveat that always has to be kept in mind compar
theory and simulations is that simulations are restricted
finite size ~and relatively small! systems while analytica
theory strictly applies to large~infinite! systems. However
typically the signs of phase transitions are clearly discern
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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in the temperature dependencies of different quantities
tained from simulations~e.g., sigmoidal or cusp-like curves!
which get sharper as the system size increases~dimensional
scaling!. This is the case, for example, when the thermo
namic theory of proteinlike heteropolymers is compared w
simulations: the predictions of mean-field theory for the th
modynamic character of the folding transition in rando
sequences10,23,24 and designed ones57,20,21 is in qualitative
agreement with simulation data~see Figs. 2, 5, 7! and results
of exhaustive enumeration of short chains.24 By contrast, our
kinetic data do not provide any qualitative indications o
potential~in the limit of large system! glass transition.

It is also important to consider the relevance to prote
of the phenomenological theory and simulations presen
here as well as other approaches discussed in this work.
teins are relatively small~compared to macroscopic sy
tems!. It has been suggested77 that lattice 27-mers corre
spond to helical proteins composed of 60 residues~hence
48-mers correspond to;100 amino acid proteins!. If this is
the case, our study covers the most relevant range of len
particularly for proteins that have been studied in foldi
experiments. Even with the caveat concerning the finite s
of the model chains, our results suggest that the concept
glass transition may be not relevant for understanding
folding of real proteins.

The issue of what features distinguish folding sequen
from nonfolding one has been a matter of considerable
rent study and interest.34,57,14,78,64,68,79The present work sug
gests that certain features should be optimized to prov
stability and folding at different temperatures. While no gla
transition was found in the present study, the essential
tures of protein folding kinetics do depend strongly on t
temperature. In particular, the dependence of folding rate
temperature is non-monotonic at higher temperatures and
hibits classical Arrhenius behavior at lower temperatur
These findings are supported by recent experiments of B
and coworkers,80 who showed that folding rate indeed exhi
its Arrhenius behavior when corrected for the temperat
dependence of stability. Further, the obtained results are
tionalized by a simple analytical theory which also points o
what features of sequences may be responsible for stab
and fast folding at different temperatures. It will be intere
ing to examine homologous proteins from organisms wh
live at different thermal environment to see whether th
differences are manifest in their sequences.
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APPENDIX A: THE RANDOM ENERGY MODEL

The random energy model was introduced by Derrid22

as a simplest nontrivial model of spin glasses. Bryngel
and Wolynes10 postulated and Shakhnovich and Gutin16,81

showed for the microscopic model of heteropolymer~in the
mean-field replica theory! that thermodynamic properties o
random heteropolymers can be described by the REM. Th
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are a number of good accounts of the REM in the literat
~see, e.g., Ref. 82!. Here we give a brief description of th
model~in a form that is slightly generalized and adapted
the case of heteropolymers! to make clear the results that a
used in the present study~see also Ref. 1!.

The REM was defined by Derrida as phenomenologi
model based on two postulates:

~1! The system hasV5gN microstates.
~2! The energies of the microstates can be treated

independent random variables with a Gaussian distribu
so that density of statesn(E) as a function of the energyE
obeys the equation

n~E!5V expF2
~E2Eav!

2

2Ns2 G . ~17!

HereN is the total number of monomers,g is the num-
ber of conformations per monomer,Eav is energy averaged
over all conformations,s is standard variance of interactio
energies. Introducing normalized quantities per monomee
5E/N and eav5Eav/N one can rewrite for the density o
states:

n~E!5expF2NS log~g!2
~e2eav!

2

2s2 G ~18!

from which one can see immediately that at the critical va
of energyec5Ec /N5eav2(2 loggs2)1/2 the system ‘‘runs
out of states.’’ Specifically, the density of states forE.Ec is
very high so that in every interval of energy aboveEc many
states~conformations! can be found. In contrast atE,Ec the
density of states is very sparse and it is unlikely to find
conformation in anyspecificsmall interval of energies below
Ec . Further, it can be shown that the total number of co
formations with energy belowEc is ;1 - a negligible small
fraction of the total number of conformations.

Now consider how energy of a system changes wh
temperature is varied. As temperature decreases the en
decreases also for temperatures aboveTc at which the energy
reachesec , the lower limit of the dense part of the density
states,ec . From then on energy can decrease only sligh
because, as will be seen shortly, the lowest energy con
mation differs fromec by small ~vanishing as N grows!
amount. Therefore atT,Tc E'Ec .

The dependence of the energy on the temperatureT
.Tc can be found from the well-known thermodynamic r
lation

]S

]E
5

1

T
5

]@ log„n~E!…#

]E
~19!

from where we have

E5Eav2
Ns2

T
~20!

at T.Tc and

E5Ec ~21!

at T<Tc with Tc5s/@2 log(g)#1/2
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Linearization of the last equation aroundec gives the
probability of finding a conformation with energy~per
monomer! e,ec

p~E!5exp@2N~e2ec!/Tc# ~22!

~see also Appendix to Ref. 34!. It is clear that it is extremely
unlikely to find a conformation in a random heteropolym
with energy ~per monomer! much lower thanec , i.e., the
typical value of energy of the global minimum conformatio
is ;Tc /N below ec . This means that the ‘‘gap’’~deviation
of the global minimum conformation fromec) is small in
random sequences, much smaller thanec itself, so thatemin

5ec1O(1/N).
The dependence of the energy on the inverse temp

ture given in Fig. 2 is fully consistent with the descriptio
given by Eqs.~20!, ~21!. Ec andTc can be determined from
this plot as temperature and energy at which the depend
comes to plateau. Having determined these values log(g) can
be determined and finally one gets after simple algebra

V5gN5expS 2
Ec2Eav

2Tc
D ; ~23!

this is Eq.~3! of the text.

APPENDIX B: ON THE PROCEDURE OF AVERAGING
IN KINETICS CALCULATIONS

Averaging over realizations of disordered systems i
very delicate procedure that requires considerable care
the context of our analysis each realization corresponds t
individual protein sequence. The difficulty with averagin
over all sequences lies in the fact that in the ensemble o
sequences some properties may vary widely from seque
to sequence. This raises the question as to the meaning
property averaged over all sequences. To obtain meanin
results in averaging over all possible sequences one can
erage only so-called ‘‘self-averaging’’ quantities.83 Average
values of such quantities are close to most probable ones
their variation from sequence to sequence is small~usually in
the limit of large systems!. In this case a typical represent
tive of the ensemble of sequences will have a value of
property that is close to the calculated average, i.e., the
erage value will be characteristic of the vast majority of
quences.

In the kinetic calculations of BW Eqs.~150! and~28! of
Ref. 26 state that at low temperature all sequences fold w
the same rate, equal to the average rate. The folding ra
this regime dependsexponentiallyon the barrier to escap
from misfolded traps@see Eqs.~21!–~28! of Ref. 26#. This
implies that folding rate is not self-averaging.

In order to see that consider first a simple example of
‘‘ensemble’’ of 20N (N@1) sequences such thatone se-
quence folds ‘‘instantly,’’ barrier free with the rateR0, one
sequence folds with high barrierBhigh, having folding rate is
Rslow5R0 exp(2Bhigh/T) and the remainingvastmajority of
sequences~i.e., 20N22) fold with some ‘‘typical’’ barrier
B0,Bhigh, having the rateRtypical5R0 exp(2B0 /T). The rate
averaged over the ensemble of sequences then would b
Downloaded 02 Apr 2003 to 18.55.0.94. Redistribution subject to AIP
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R~T!5202NR01202NR0 exp~2Bhigh/T!1~122

•202N!R0 exp~2B0 /T!. ~24!

It is easy to see that at highT the average rate will be
close to Rtypical, the rate with which the majority of se
quences fold. However, at lowT,B0 /(N log 20) the first
term in Eq. ~24! dominates, and the average folding ra
becomes

R~T!T→05202NR0 . ~25!

The folding time calculated ast51/R(T) turns out to be
temperature independent and equal to the ‘‘Levinthal tim
520NR0

21 at low temperature. It is clear that this result is
artifact of the averaging of the rate which, at low tempe
tures is dominated by one ‘‘superfast’’-folding sequen
rather than the majority of sequences in the ensemble.
note that it is equally inappropriate to average folding tim
In this case at low temperature the average time will
dominated by one sequence having ‘‘superslow’’ foldi
with the barrierBhigh. It is also clear that the correct way t
proceed is to calculate averagebarrier B̄ ~i.e., logarithm of
the rate!. In this case folding rate defined asR0 exp(2B̄/T)
will coincide with the rate with which the majority of se
quences fold~cf. the correct averaging over quenched dis
der in thermodynamics which requires averaging of free
ergy, i.e.,logarithmof the partition function, which is a sum
of Boltzmann exponentials83!. We note that the phenomeno
logical theory presented in this paper estimates the fold
rate with which the majority of sequences fold by estimati
a ‘‘typical’’ free energy barrier rather than average foldin
rate.

Technically, BW calculate the average rate in th
theory in the following way@e.g., see Eqs.~22!, ~28!, ~123!,
~147!–~150!# of Ref. 26:

R̄5E
0

`

P~B!exp~2B/T!, ~26!

whereP(B) is the probability distribution for the barrierB
5E(T)2E#. E(T) is the equilibrium~at a given tempera-
ture! energy. As in the previous, oversimplified, example,
T→0 the integral in Eq.~26! is dominated by smallB<T,
i.e., by very few ‘‘sequences’’ that have barrier free foldin
to the native state. At low temperatureT,Tc E(T)5Ec . It
follows that lnR̄→ln P(Ec2E#50) as T→0. P(Ec2E#

50) represents the probability that a given realization of
landscape~‘‘sequence’’! has a barrier free transition to th
native state. BW assumed the distribution of barriers to
Gaussian, like the distribution of states in the REM. In th
case, for uncorrelated stateP(Ec2E#50)51/V. Therefore
R̄;1/V, i.e., temperature-independent folding rate atT

<Tc , with ‘‘Levinthal’’ folding time 1/R̄5V, the result
shown in Fig. 3 of Ref. 26.

In the REM kinetic calculation the averaging of the ra
over the ‘‘ensemble of sequences’’ is equivalent to averag
of the rate of transition between all states and the na
state. Clearly, one state is just the native state itself and
rate of ‘‘folding’’ from the native state to itself is just instan
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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‘‘microscopic’’ one. It is this ‘‘fast-folding’’ but rare event
that gives the dominant contribution to theaveragefolding
rate at low temperature in the kinetic REM model.
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