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Temperature dependence of the folding rate in a simple protein model:
Search for a “glass” transition
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Monte Carlo simulation of model proteins on a cubic lattice are used to study the thermodynamics
and kinetics of protein folding over a wide range of temperatures. Both random sequences and
sequences designed to have a pronounced minimum of energy are examined. There is no indication
in the kinetics of a “glass” transition at low temperature, i.e., below the temperature of the
equilibrium folding transition, the kinetics of folding is described by the Arrhenius law at all
temperatures that were examined. The folding kinetics is single-exponential in the whole range of
studied temperatures for random sequences. The general implications of the temperature
dependence of the folding rate are discussed and related to certain properties of the energy spectrum.
The results obtained in the simulations are in qualitative disagreement with the conclusions of a
theoretical analysis of protein folding kinetics based on certain kinetics assumptions introduced in
the Random Energy Model. The origins of the discrepancies are analyzed and a simple
phenomenological theory is presented to describe the temperature dependence of the folding time
for random sequences. @998 American Institute of Physids$S0021-960608)52215-5

I. INTRODUCTION fast folding at the conditions when the native state is stable,
_ _ _ has been pointed ot 2
The protein folding problem has both thermodynamic  Recent theoretical studies based on heteropolymer lattice

and kinetic aspects. The existence of a unique structure fQfjmyations have introduced a new perspective on the protein
each globular protein demonstrates that this structure is thefﬁ)lding problem!3-15Because of the complexity of proteins

modynamically stable and kinetically accessible in a biologi-; 4 their folding reactions such simplified models can serve

Efa”yt. reasonatblef ?r;ne ungler phyﬁ!o:]o Q'Ctarll condnbﬁ@hi th to obtain insights that are not yet available from experiment.
ine |ctaspec of itpro ﬁm’ V(\j’ 1€ tls € ﬁotr;]cerll_w o thellt has been demonstrated with heteropolymer models, that
bresent paper, 1S otten pnrased in terms ot the Levinia, thermodynamics of the protein folding transition can be

paradox; i.e., the difficulty of finding the unique native statelEtudied analytically. The replica mean-field approach has

by searching through the astronomically large number o een used to investigate various models of infinite het-
conformations that exist for a polypeptide chain. It has bee 9

realized that the original statement by Levinthal does no{eropo!ymet:s, from the simplest case where tge mtgractlond
provide a full description of the problem. For example, al-8nergies between monomers were assumed random an

-18 ot
though the helix-coil transition also involves a very |argeuncorrelate66 to more realistic model treatments where
number of conformations, rapid folding is a direct conse-Neteropolymers were characterized by the monomer

quence of the fact that only local interactions are invol¥éd. sequ_encé?"”_ It was concludetf®" that the thermody-
The long-range interactions, which lead to the cooperativé@Mmic behavior of such heteropolymers can be adequately
folding transition, are an essential element in the difficulty ofdescribed by the Random Energy ModeREM) of
the search probler®~° Derrida?? This led to important analytic results, some of
The nature of the potential surface has to be considerefhich have been applied to the thermodynamics of protein
in any analysis of the folding reactidnif the potential sur-  folding.
face were a simple wella “funnel”) with an energy that Garel and Orlantd called these results into question
decreases rapidly enough to overcome the entropy reductiohen they concluded that the REM is a good approximation
associated with folding, there would be no Levinthal parafor random heteropolymers only in high-dimensional space
dox. Various suggestions for resolving the paradox havéd=4), while in three dimensions the thermodynamics of
stressed the importance of local interactions. These includeeteropolymers cannot be described by the REM. Their
the introduction of specific structural entitideelixes, sheets, analysis was based on a simplified model where the polymer
zippers®—8 as well as more general constructs, such as theonds were not treated explicitly; i.e., monomers were posi-
“harmony principle”® and the “principle of minimum tioned on a simpleX’ The analysis of microscopic models,
frustration”)® The importance of nonlocal interactions for where polymer bonds were taken into account
explicitly,'®*®?tindicates that the REM is a good approxi-
dpresent address: The Rockefeller University 1230 York Avenue Newma-tion for the thermodynamics of three-dimensional het-
York, NY 10021-6399. eropolymers. Further, analytic results for this model have
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been confirmed by lattice simulations of relatively short het-and denatured state; it is the sameTgsin the protein lit-
eropolymer chainge.g., a 27-mer on a three-dimensional erature. BW concluded that; must be higher thai for
cubic latticé® and a 16-mer on a two-dimensional squarefolding to occur on a reasonable time scale; belbw the
lattice?®). time required for folding was stated to be equal to Levinthal

Of particular interest for the protein folding problem is “time” (i.e., the effectively infinite time required for an un-
the conclusion from the random energy model that there exbiased random search of all significant conformations
ists a critical temperaturel() below which a sequence with Since the thermodynamic criterion for a stable unique
sufficient heterogeneity has a stable, essentially unique struground state in the random energy model requifes T,
ture. This satisfies the thermodynamic requirement for proas indicated above, random sequences cannot fold in the BW
tein folding. Lattice simulations have suggested that a sigmodel; i.e., the temperaturd,; at which such random se-
nificant fraction of random sequences have such a stablguences can foldT;>T,.) would lead to an unstable ground
unique structure below, .? Further, full enumeration of the state?” To overcome this difficulty, BW proposed that pro-
16-mer conformations on a two-dimensional square latticeein sequences have specific biases toward the native state
has demonstrated that the phase diagram as a function tifat make folding possible. The existence of such biases on
temperature and the average attraction between monomelfse entire potential energy surface, which would result in an
consists of an extended coil region, a homopolymer-like disenergy “funnel” leading toward the native stajs re-
organized globule region and an organized frozen globuleferred to as “the principle of minimum frustration,” which
which corresponds to the lowest energative conforma- is closely related to the consistency or harmony principle of
tion and is stable below,. The phase diagram from exact Go et al?® Other kinetics treatments based on the REM have
enumeration agrees well with analytical heteropolymerbeen proposetf~33The kinetic assumptions in Refs. 31-33
theory® were similar in spirit to the ones used by BWand the

These and other results from heteropolymer theory foresults of Refs. 32,33 were qualitatively in accord with the
protein thermodynamics suggest that a corresponding modehes obtained by BW.
should be useful for studying the kinetics of protein folding. Lattice Monte Carlo simulations of a 27-mer on a three-
However, it has not been possible to obtain analytic resultsimensional cubic lattice with random interactidh®
for the kinetics. Bryngelson and Wolyn&8W)?® introduced ~ showed that only a subset of random sequences fold in a
assumptions not inherent in the random energy model to pereasonable time in the neighborhood of the transition tem-
mit an approximate analytic treatment of folding kinetics. peratureT;; out of a total of 200 sequences whose folding
They assumed that the kinetics can be deduced by the use whs studied, only 30 folded rapidly as defined by cutoff in
a Metropolis Monte-Carlo(MC) algorithm in “energy the number of Monte-Carlo steps. The only difference be-
space.” Since the phenomenological random energy modeWeen random sequences and the subset of total folding se-
does not have geometric features, the Monte-Carlo moveguences was that the latter satisfied the thermodynamic re-
could not be based on geometric properties of the polymequirement for protein folding at a higher temperature due to
chain, i.e., there is no connection in the random energyhe presence of a large energy gap between the lowest energy
model between geometric properties of a conformation andnative state and the low-energy excited statest similar
its energy. Consequently, an additional assumption concerrstructurally to the ground stateThis led to a folding tem-
ing the possible energy changes associated with a move waerature T;) above the critical temperaturd () for these
required. BW assumed that at each MC step the energy of theelected sequences, in agreement with the conclusion of BW.
“attempted” conformation is statistically independent of the An analysis of the kinetics of folding for these sequences
energy of the existing conformation. This means that theshowed that the distribution of folding times was exponential
kinetic scheme used by them in extending the random energyver a wide temperature range, but that the temperature de-
model permitted any change of energy in an attempted movgendence was not Arrhenius-like; instead a bell-shaped curve
with equal probability. For standard Monte-Carlo simula-for the logarithm of the rate versus the inverse temperature
tions in real space, small energy changes are most likely atas obtained; i.e., although the rate increased with tempera-
each step because the “attempted” and “existing” struc-ture at low temperature, it decreased again at higher
tures are geometrically similar. temperature$ Because of strong (&T) average attraction

An important conclusion from the theory of Bfwas  between monomers, which had been introduced to ensure
that two temperatures play a key role in determining thethat the native state is fully compagte., belongs to the
folding properties of a heteropolymer sequence. One is thenumerated set of conformations in &3X3 cube, the
critical temperatureT ., already discussed. They dendtg  folding rate was too slow to examine what happens signifi-
by T4 because they suggest that it corresponds to the glassntly belowT,.%>%
transition temperature for the heteropolymer; we lisan Other lattice simulations have shown a corresponding
what follows. The BW model leads to the conclusion thattemperature dependence for the folding ratéSocci and
below T, the heteropolymer is frozen into one of many ran-Onuchié¢’ made a study of folding kinetics of the 27-mer at
dom low-energy conformation because it does not havalifferent temperatures and looked for a glass transition. They
enough energy to overcome the barrier separating such comtroduced an “operational” glass transition temperature as
formations. The other significant temperature introduced irthe temperature at which the folding “time” exceeds®10
BW is the folding temperaturd;;, which corresponds to the Monte-Carlo steps and found slow folding that satisfied this
midpoint of the thermodynamic transition between the nativecriterion at low temperatures. However, they did not demon-
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strate that folding was significantly slower than that expecteanuch shorter than the Levinthal time. This suggests that a
from the Arrhenius equation at any temperature. In the studynodifications of the BW model based on REM is required to
of folding kinetics of lattice model proteins Panee al®®  apply it to the kinetics of heteropolymer and protein folding.
observed Arrhenius dependence of folding rate on temperdn this paper a simple phenomenological model is proposed
ture. Chan and Diff numerically solved the master equation to describe the temperature dependence of the folding kinet-
describing transitions among all the conformations of a shorics of random sequences. The simulation results and the
chain on a square lattice. This allowed them to obtain thanodel are used as a basis for a general analysis of the tem-
folding time even for very low temperatures, and perfectperature dependence of the rate of protein folding.
Arrhenius-like behavior was still observed. There was no
indication of a kinetic glass transition. An Arrhenius-like be-
havior was also observed for fo—latt|ce folding of a het- Il. THE MODEL
eropolymer model® The question of whether the low-
temperature kinetics of 27-mer lattice model can be fitted by = The model which we used was described in detail in
Arrhenius or non-Arrhenius law was also discussed in a reprevious publication$4°3 A protein is modeled by a self-
cent publicatiorf! The authors of Ref. 41 noted that the “dy- avoiding heteropolymer chain on a cubic lattice. A monomer
namic ruggedness” of the energy landscape is much lessorresponds to an amino acid residue of a protein, as in the
than can be expected from the kinetic REM model. HoweverMiyazawa-Jernigan model. A monomer can occupy any site
the temperature range at which kinetics were studied in Rebf the lattice; two or more monomers cannot occupy the
41 was not sufficiently broad to allow a detailed analysis ofsame site. Monomers connected by a bond occupy nearest
the low-temperature behavior and its implications for theneighbor sites.
concept of kinetic glass transition in protein models. The  The energy of a conformation is given by
kinetic glass transition was defined in Ref. 41 as temperature
at which foIdm_g is S|gn|f|c_:ant_ly slower thaq _fastest obsgrvc_—:‘d E= E U(&,&)Ay, (1)
rate. Such definition of kinetic glass transition makes it dif- 1<i<j=N
ficult to search for specific features that distinguish “glassy”
behavior from obvious slowing down of folding at low tem-
perature which can be predicted from Arrhenius law an
which is a feature of any dynamics that involve energeti
barrier crossing.

To explore further the question of the existence of a
kinetic glass transition in heteropolymer lattice models, it is

necessary to have faster folding sequences that can be st bs and crankshaft moves by 90 and 180 degféeg.each
ied significantly belowT. In the present paper, this is ob- step a monomer is picked randomly and its possible moves
tained by elimination of the strong overall attraction between(corner flip or crankshaft in a random directiorre at-

the monomers. As a result the native states for random Sa 104 The directions of crankshaft moves are chosen ran-
guences are not fully compact. To make sure of the generahormy with equal probability.

ity of the results we also studied one sequence for which a

moderate average attractiorrkT) between monomers was

introduced, in order to obtain a maximally compact native

conformation. Both sequences selected at random and dl- NUMERICAL RESULTS
signed sequences are examined. Rather than using randgfNondesigned sequences

pairwise interactions as in the original 27-mer studfe¥; , ,
the Miyazawa-Jernigan amino acid parameters are We generated ten random amino acid sequences of 27

employed® in specifying the sequences and the interaction§es'dues' All sequences have the same co_mpos!tlon, which
between residue pairs. Analysis of the thermodynamic belVas chosen z_arbltranly. The sequences are Ilsted_m Tz_able g
havior of these sequences allows us to deterniipe By _The relilélve energy of the native conformati@i, is
doing simulations belowl;, we are able to make a direct defined a8"
test of the theoretical predictions concerning “glassy” fold- E.—E
. . nat av
ing dynamics belowl . Bre=—— (2

It is found that even at very low temperaturés<(T,),
the folding rate obeys the Arrhenius equation. As pointed outvhere E,, is the average energy of non-native conforma-
by Angell in his comprehensive review of glass forming tions. To estimate this value, we first compute the energies of
liquids** “The almost universal departure from the familiar all topologically possible contacts between all monomer
Arrhenius law is perhaps the most important canonical feapairs. From this we calculate the average enezgyof a
ture of glass forming liquids.” In addition he pointed to non- contact, and then estimate the average energy of non-native
exponential relaxation as another attribute of a glass. Sinceonformation a&,,=C-e,,, whereC is the number of con-
neither of those are evident in the presented folding simulatacts in the native conformation. In Table | we give the nor-
tion, there is clearly no evidence for a kinetic glass transitiormalized valuee,,;= E,/C. This value serves as a measure of
at or belowT,. Further, the folding time at or below. is  the “energy gap.”

where the sum is taken over all pairs of monomers;=1 if
Jnonomersi andj are in contact with each other, any;
=0 otherwise. The energy(¢;,¢;) of a pairwise contact
Cdepends on the identities of monome@ndj. The values of
U(&i, ;) are taken from Table VI of Ref. 43.
The motion of a chain is simulated by the standard
onte-Carlo technique with the move set including corner
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TABLE |. Random sequences of 27 monomers. Energy of the native conforntgfigrthe relative energy of
the native conformatiof,,/C (normalized by the number of contagtthe number of contacts in the native
conformation, and the MFPT at=0.16 in Monte-Carlo steps are given for each sequence, except sequence #5.

# Sequence Epat E./C C MFPT
1 DCSATYNFVPAGLSQHMRTEIEGWVKL —5.92 —-1.15 22 5.410°
2 ENHKGLTVDAPIASYWLQTEVRGMFCS —6.50 -1.12 22 3.910°
3 PALETMDSFQWRCISVYGAHVLGNTKE —6.45 -1.11 21 3.710°
4 VKAMRLAVPLFESESNYCWGHIQTDTG —6.32 —1.34 18 8.610°
52 EVPSLNMHESQAFGYLRTDCGTIKVWA —13.67 -0.73 28 6.610°
6 PGALKDIFNYVQSGRECTEHVTMWASL —5.61 —1.18 20 1.810°
7° LQIVADTSNHGERMVTCAPWFSKELGY —5.80 -1.12 20 1.11¢°
8 GSRPGAFNIVMQKCDTVLWEYASTHLE —5.68 —-1.09 21 3.010°
9 NKECIYLDPWHTGQRSTFALVGASVEM —5.55 -1.13 21 6.510°
10 LYSLTGTKSWQGAEEVMHCADRFINVP —7.22 —-1.30 20 4.810°

#Nonspecific attraction potential of0.3 is introduced to make the native state of this sequence maximally
compact. The folding rate for this sequence is quoteti=a0.25.
bThis sequence has double degenerate native state hence its slower (oédirthe teyt

For each of the sequences one Monte-Carlo simulatiotess than 19 steps of all the random sequences to their
of 10° steps starting from random coil conformations wasrespective “native” conformations can be explained by the
performed and the conformation with the lowest energy wasbsence of strong average attraction between monomers
determined. This is identified as the native structure for thatvhich makes the motion of the chain less constrained, com-
sequence. Figure 1 shows the native conformations for sonygared to previous studies where fast collapse to a quite dense
of these sequences. Native states for sequences #1, #4, é@nformation preceded foldirg.
shown in Fig. 1 have fewer contacts in the native state than From 25 Monte-Carlo runs at a temperature-0.16,
the 28 corresponding to a fully compact cube, while sewhereT is in the same units as the MJ parametdeg= 1
guence #5 has fully compact native state shown in Fid).1 and is dimensionlegsthe mean first passage tinieIFPT)

To test that the putative native conformation is, in fact, thefor reaching the native conformation was estimated for the

state of lowest energy, 25 runs were performed for eaclen sequences. The results are given in Table I. The MFPT
chain until it first reaches that conformation. During thesevalues for this temperature vary by a factor of about 30.

runs, no conformations with lower energy were observedSequence #7 folded significantly more slowly than the other
This test suggests that the chosen native conformation f@equences. The reason for the slow folding of sequence #7
each sequence has the lowest energy, at least among all kifrned out to be an almost exact double degeneracy of the
netically accessible conformations. Relatively fast foldiing  native state: the lowest energy conformation has energy of

FIG. 1. Native conformations that is conformations with the lowest energyafssequence #1(b) sequence #4, an) sequence #8.
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—5.80 while there exists also a second conformation with 171
E=-5.75 (i.e., only 0.3 KT higher thark,, for that se- O'..
guence. At T=0.16 sequence #7 folds fast, with MFPT of 27 e
6.7x 1C° steps to the conformation with energy5.75 and 3l °, oo
then slowly(in 10% steps interconverts to the native confor- )

mation. This phenomenon of “kinetic partitioning” is inter- 4l o
esting as a possible simple model of prion behavior. The e 3
temperature dependence of the folding rates into two ground ST o
states of the “prion-like” sequence was studied in Ref. 49
and was found to be qualitatively similar to the temperature 67
dependence of folding rates of the “normal” sequences stud- 1 p 3 10 > "
ied in this paper.

The prion-like behavior is atypical: Only one out of ten
random sequences generated for the present study exhibits a
such a behavior. Since our goal here is to study temperature
dependence of folding rates in typical random sequences, we
chose the following sequences for more detailed analysis:
sequences #1 and #4, which have intermediate folding times
representative of the whole sample of random sequences, 161
and, for comparison, sequence #8, which has the shortest s
folding time. To check whether our conclusions are sensitive 154 g
to the degree of compactness of the native conformation, a 5
fully compact sequence was studied; this was generated from
sequence #5 by adding a nonspecific attraction-6f3 to
every pairwise interactiofsee Fig. 1d)]. B3r °s

We find that all the qualitative features of the folding " : : : : :
behavior of the sequence with the fastest folding rate as a 4 6 8 10 12 14
function of temperature are the same as those of the other 1/T
sequences, including the one with a maximally compact
ground state. This suggests that for longer polymers most b
randomly generated sequences will exhibit similar fOldingFlG. 2. Inverse temperature dependen@sof the equilibrium energye
behavior. Consequently, we chose a fast-folding 48-mer foand(b) of the MFPT(circles and the median time divided by In@quare}s
detailed studysee belowso as to be able to obtain satisfac- averaged over 100 runs for sequencesi#black, #4 (in gray), and #8(in
tory statistics for this system in a reasonable time. It is im-White).
portant to emphasize that the present calculations are time-
consuming which means that a limited number of sequences
can be studied in detalil. at which the quasicontinuous part of the energy spectrum

A study of the kinetic and thermodynamic behavior wasends?® This makes it possible to evaluake for each se-
performed for sequences #1, #4, #8 and modified sequencgienceas the energy at which the dependence of E on T
#5. (Details are given in the figure captiongrigure 2a) levels off (It should be also noted that the exact value& of
shows the inverse temperature dependence of the equilibriuare not critical for the analysis.
energyE obtained from long Monte Carlo simulations. Ac- The inverse temperature dependence of the logarithm of
cording to the REMF (also see Appendix A the average the MFPT for sequences #1, #4, #8 is shown in Fig).ZFor
energy decreases with temperature whienT . (the average all three sequences there is an optimal temperature at which
energy varies approximately linearly withT)/and becomes the rate is maximal. In the vicinity of the optimal tempera-
constant close t&, at temperatures beloW,, correspond- ture the dependence of the rate is parabolic. As was men-
ing to the dominance of a few conformations with energiesioned in the Introduction, such a nonmonotonic dependence
E. close to that E,;) of the native state. The three se- of the MFPT on temperature was found in a number of pre-
quences exhibit similar behavior andl'l/is somewhere be- vious studies?3"33¢For the present analysis, it is the low
tween 8 and 10. The fact that the three sequences have agmperature behavior which is of primary interest. At low
proximately similar values of ; is expected becaudg, isa  temperatures the dependence of In MFPT oh técomes
self-averaging quantity in the sense that its value should ndinear which is characteristic of Arrhenius behavior. By com-
depend on a particular realization of a random sequé&nce.paring Figs. 2a) and 2b) we see that the temperature at
This fact was confirmed in a lattice model study where conwhich the Arrhenius dependence appears is close to the tem-
formations of a small chain were exhaustively enumer&ted. perature of the equilibrium transitioff, for random se-
The probability of a large { NT,.) energy gap in a random quences. This implies that beloWw, the activation energy
sequence is very low foN>1 (whereN is the number of and entropy, as well as the equilibrium energy, do not de-
monomer} (see Ref. 3% Therefore, for random sequences pend on temperature, i.e., the dependence of In MFPTDn 1/
the energy of the native stakg,, is close toE., the energy is well approximated by straight line 8t<T., which, ac-

Energy
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3] the median time is equal to MFPT multiplied by In 2. If the
61 distribution of folding times is a sum of exponentials, the
T median time is less than MFPTIn 2. This simple method is
3 useful because it compares two averaged quantities, each of
% 9] which can be reliably determined from a modest number of
3 -10 1 runs; at each temperature 100 runs were performed to esti-
ul mate the average time and median time. It is seen from Fig.
2(b) that folding of the three random sequences at all tem-
127 peratures studied is not distinguishable from a single-
137 exponential by this criterion. The same conclusion, for a sys-
—142 ; ) p : g ; ) tem with random interresidut_a intera_ctions was made in_ Ref.
T 36. based on a plot of Ik vs time. It is also clear from Fig.
200 7 3(b) that the kinetics are still single-exponential in the case
19.5 1 when the native state is fully compact, as it is for sequence
19.0 + #5.
1857 @ The most important aspect to be considered comparing
5 180+ & our results with theory of BW((and its subsequent
E sl ramifications?), is whether or not there is angualitative
E 170l ® signature of a kinetic glass transition Bt. It is clear from
165+ 8 Figs. 4b), and 3b) that the dependence of folding time does
16.0 + o 8 not exhibit any peculiar featurésigmoidal or a plateau or a
155+ %‘-a’ cusp which may be expected in a finite system as a mani-
15.0 , , , , : , , festation of a transition. Instead, the dependence of MFPT on
2 3 4 5 6 7 8 9 temperature is smooth, and Arrhenius behavior is observed
T up to the lowest temperatures examined, considerably below

FIG. 3. Inverse temperature dependen@sof the equilibrium energye Tc. Further, we showed that for all studied random se-
and(b) of the MFPT(circles and the median time divided by In®quares ~ quences the kinetics are single-exponential at all tempera-
averaggd over 100 runs for sequence #5. The line)inepresents the rgsult tures, which is not consistent with kinetic glass transifidn.
of thg histogram method calc‘u_lat_lon, while circles are actu_al datapomts. The As regards the comparison of quantitative aspects of the
consistency attests that equilibrium has been achieved in calculation. The ~ . -
line in (b) is drawn to guide the eve. BW theory with the simulation results, we should note that
their conclusion that folding time equals Levinthal time at
T=T, and stays unchanged at lower temperatures, is a con-
cording to classical Arrhenius theory is a signature of temsequence of averaging of folding rate over the ensemble of
perature independence of activation energy and entropy. sequences. This way of determining folding rate is flawed
Figures 3a) and 3b) show the thermodynamics and ki- because at low temperatufeelow T;) the major contribu-
netics for the sequence #5 which has compact native confotion to the averagéover ensemble of sequengeate is pro-
mation. It clearly has temperature dependent behavior that isded by a very small number of extremely improbable se-
similar to that of the noncompact sequences. There is a parguences having exceptionally fagiarrier free folding (a
bolic temperature dependence of MFPTTat T, and almost  discussion of this issue is given in the Discussion section and
perfect Arrhenius dependence & T, (in this caseT, more details are provided in Appendix¥.Bn fact, almost no
~0.22). Similar thermodynamic and kinetic properties assequences in the BW model will fold in “Levinthal time” at
shown in Figs. 2 and 3 were obtained for the model used iT.. Rather, a vanishingly small fraction will fold extremely
Refs. 34,35, in which the native states were almost alwayfast and the vast majority will fold much more slowly than
compact and the interactions between residues were chosébevinthal time” in the BW model. Averaging the rate over
to have independent random valugssS., E.S. and M.K., the ensemble of sequences in that model yields “Levinthal
unpublished resulis time” (see below. In contrast here we study folding of typi-
Another qualitative feature of “glassy dynamic¥”is  cal random sequences. It is not appropriate to compare our
that the distribution of folding times beloW, is nonexpo- results which pertain to several typical sequences with the
nential with an enhanced probability of very slow folding prediction of BW which applies to the ensemble and is not
events due to chain trapping in deep non-native states, i.e.,@aracteristic of any typical random sequence.
signature of the kinetic glass transition is a broad spectrum However, it is still instructive to compare the calculated
of relaxation times due to the differences between moleculefolding times with “Levinthal” time. To estimate the
that are frozen in local minima beloW, .?"*Therefore itis  Levinthal time for the present model, a naive approach
important to determine whether or not the folding kineticswould be to assume that the Levinthal time is the time
(distribution of first passage folding timesare single- needed to search the total number of conformations, in ac-
exponential. To examine this point we show in Figbh)2he  cord with original description of the Levinthal paradtx.
inverse temperature dependence of the median folding timéjowever, this is likely to be an overestimate because many
the time within which a chain finds its native conformation of the states may be inaccessible; e.g., the chain may un-
in half of the runs. If folding is a single-exponential process,dergo a partial nonspecific collapse since completely open

Downloaded 02 Apr 2003 to 18.55.0.94. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



6472 J. Chem. Phys., Vol. 108, No. 15, 15 April 1998 Gutin et al.
conformations are thermodynamically unfavorabie®>>>®  ones, etd.and therefore does not reflect the essential physics
so that the number of conformations is effectively reduced twf the problem.

the semi-compact states. Since it has been shown that the

statistics of the conformational energies in such an ensembB. Designed sequences

of semi-compact heteropolymer conformations follow the
REM,® the number of thermodynamically relevant confor-
mations() can be estimated using the REM. The quarlty

is related to the experimentally measurable “freezing” tem-
peratureT, and freezing energ§ 22 (see Fig. 2 by

It has been argued that protein sequences are not ran-
dom; i.e., that their the native state stability is higher than
that of random sequencé®®’ 355842596 hare has been also
a considerable interest in statistical analysis of real sequences
to assess whether they are random or®hdt: The question
of how to detect sequence nonrandomness is a delicate one.

Qzexp{ _ E &) The first simple tests did not reveal statistically significant

AR deviations of certain sequence characteristics, such as hydro-
phobicity pattern, from a random distributiéh®? However,
i.e., the number of relevant conformations is between the@ecent more refined analysis indicates that the distribution of
number that are maximally compact and the number of albifferent amino acids in protein sequences are not rarftfom.
possible conformationgSee Appendix A for the derivation It is important, therefore, to study the kinetics of folding
of this result and further discussign. of nonrandom sequences at different temperatures, in addi-

The number of relevant conformatiois given by Eq. tion to the random sequences considered above. We gener-
(3) is much smaller than the number of all possible confor-ated optimized sequences with a design algorithm similar to
mationsI". The latter can be estimated Bs-y(N~1), where that described in Ref. 58. In the present work we did not
y~4.68° andN is the number of monomers in the chain; for constrain the amino acid composition and minimized the
N=27 we obtainl'~10'". According to the REM the tem- relative value of the energy of the native conformatyg,
perature dependence of the energy reaches plateau at the lilsee Eq(2)] rather than the native state energy itself, as was
iting value of energyE; at T=T.. Therefore, we estimate done in Ref. 58. The choice &, [Eq.(2)] as a parameter to
E. as the energy at which the dependencé&(f) in Figs. be optimized is motivated by computational convenience
2(a) and 3a) reaches the platealBubstitutinge,~—6 and since at each stelp,, and o can be easily evaluated without
1/T.~8.5 [see Fig. 2a)] into Eq. (3) we obtainQ~10'% running, after each mutation, a computationally expensive
This is close to the estimate fgiven in Ref. 35 but some- search in space of denatured states. Sequences were designed
what greater since in the present case the mean attraction with low relative energy for the three native conformations
monomers is less than that in the earlier calculation. Thehat were used in the random sequence analyses 1.
estimate can also be compared with the MFPT drom our The original MJ parameters were shifted and scaled in
simulations, which is approximately 10Ve see that folding such a way to yield values fd&,, and o that were the same
rate of random sequences with no average attraction betweas for corresponding random sequences. This is important for
monomers af; is much faster than the Levinthal time esti- comparison with random sequences and BW theory and also
mated for that model. it provides a direct way of comparing the behavior of de-

Introduction of overall attraction makes the number ofsigned and random sequences having the same native con-
thermodynamically relevant conformations smaliee., it  formations.
restricts the conformational ensemble to more or less com- To demonstrate the effectiveness of the design proce-
pact conformations This factor decreases the apparentdure, we calculated the number of conformatio(E,Q)
“Levinthal time.” In fact, the same estimate for sequence #5with a given energf and a given number of native contacts
(for which the interaction potential includes an average nonQ; the method for doing this is described in Refs. 35,48.
specific attraction as described abpgeves()~10°. Thisis  Comparison ofE,,, for the random and designed sequences
less than MC folding time £6.6x 10°) even at the condi- in Tables | and Il show a pronounced decreask gffor the
tions of fastest folding[In making the estimate fdE. from  designed sequences.

Fig. 3(a) for sequence #5 one has to subtract total nonspecific The detailed mapping of configurational space obtained
attraction energy {8.4=-0.328) from the Ilow- inthe MC simulations allows us to assess the efficiency and
temperature plateau value in FigiaB since theE; is esti-  the role of design. Comparison of the plotéE,Q) for ran-
mated as the difference between average energy and the efem and designed sequend@sg. 4) indicates indeed that
ergy obtained at low temperatufdhat the Levinthal time the design is effective. It is clear that low energy conforma-
estimated this way can be less than the actual folding time ifons with many non-native contacts are present in the native
due to the fact that stronger compaction constrains the chaisequences and are absent in the designed sequences. More-
moves (i.e., very few MC trials are acceptednd slows over, we estimate the stability gap for the two sequences. By
down motion toward the native state. This simple considerstability gap we mean the energy difference between the na-
ation shows that comparison of the folding time with thetive state and lowest energy conformations belonging to the
“Levinthal time” for any model is somewhat arbitrary. Thus denatured state. To identify denatured states on the diagrams
the comparison of the folding time with the “Levinthal in Fig. 4 we assume that they have approximately 5 native
time” may be not very instructive since it depends on thecontacts, i.e., denatured states have a degree of similarity to
details of a model and the definition of the “Levinthal time” the native state corresponding to the similarity of two ran-
(e.g., does one consider all conformations, or only compaaiom conformations. We use as an estimateBEgf,iqeq the
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TABLE Il. Designed sequences of 27 monomers. Sequences #11, #14, and #18 are designed to Ejnimize
of the conformationsa), (b), and(c) in Fig. 1, respectively. The energy of the native conformafiqg and its
relative valueE,, normalized by the number of native conta€tsare given for each sequence.

# Sequence Enat Ere/C
11 MEYYWKGLEMAYAPWWIFKGTGILAWK —10.11 —-1.80
14 IKEMKAALWGWEMTMWKMWKTSYGETY —-10.14 -2.01
18 WWWTATKLKLKMQWEKTEGPAWMKQGT —10.32 —-1.87

lowest energy of conformations having 5 native contacts. Fostate and the first excited state have a high probability to
structure(a) in Fig. 1, the stability gapAE=E, s~ Eunfoiged  differ significantly in structure. This is obviously incorrect
is approximately 0.5 for random sequences and 4 for defor non-compact conformations where the native and “first
signed sequence #11. This can be seen clearly in Fig. 4. Thexcited” state can differ by only small structural rearrange-
difference is of particular significance because the standarghent (displacement by only one bead he latter definition
variance of interactionsr, is the same for the random and was used in the recent paper of Klimov and Thirunf4land
designed sequences. resulted in a misrepresentation of earlier restilghich dealt

It is worth emphasizing the importance of the definition specifically with “energy gap” defined in a fully compact
of stability gap as the energy difference between the nativensemble of conformations. In a later paper by the same
state and unfoldedtructurally significantly differentonfor-  author§® the qualitative correlation between folding rate and
mations. Care has to be used to avoid incorrect definitions adnergy gap irfully compact ensemblgas showr(Fig. 22 of
the energy gap’ The use of the difference between the na-Ref, 65.
tive state and nearest to it in energy is valid only in the realm Figure 4 shows that the random and designed sequences
of fully compactstates(e.g., 3<3x 3 cubed’) where native  are similar as far as energy gap between the native state and
the first “excited state” which differs by one monomer flip,
is concerned. In other words, the energy distribution for
structures in the immediate vicinity of the native state is
similar for the two noncompact sequences, which have pro-
nounced differences in their folding.

According to theory/*®5the equilibrium transition be-
tween the native and the unfolded states for designed se-
guences is first order, as explained in Fig. 1 of Ref. 538
the thermodynamic limit, a first order transition corresponds
to a sudden change in energy as a function of temperature.
For a finite system this temperature dependence becomes
sigmoidal. Such behavior is observgeg. 5a)] for the de-
signed sequences which have an inverse transition tempera-
ture 1T; at about 3.5. This should be contrasted with the
behavior of a typical random sequence for which the depen-
denceE vs 1T is much less sigmoidalsee Fig. 2. Se-
quences selected for fast folding from the pool of 200 ran-
dom sequences also showed more sigmoidal temperature
folding transition than the ones that did not fold f&stThe
different parameter, which is the number of thermodynami-
cally stable conformations was studied as a function of tem-
perature in Ref. 34. It was possible to do for the model stud-
ied in Ref. 34 because the thermodynamic quantities were
evaluated there for fully enumerated set of maximally com-
pact conformations. In the present study this is not possible
since no average attraction is introduced and non-compact
conformations contribute significantly. To this end we use a
simpler parameter, average enefgyto characterize transi-
tions in random and designed sequenkces.

These sequences were more thermostable than non-
folding ones, i.e., the selection for fast folding used in Ref.
34 represents a simple, “design” procedure and leads to the
FIG. 4. Number of conformations with a given number of the native con-SI(‘:]mOIda.I transition for such sequences.
tacts and a given energfg) for a random sequencg#l) and (b) for a The inverse temperature dependence of the MFPT for
designed sequencé1l). the designed sequences is shown on F{b).5The tempera-
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signature of a glass transition is seen in Figh) %t tempera-

2%e '“8,. tures close tdr.. Instead, the kinetics of folding appears to
% e be simply related to the thermodynamics in that it becomes
44 ', se Arrhenius-like at the end of equilibrium folding transition.
& . Figure 5b) also shows the inverse temperature dependence
;‘% -6 °L of the median timé¢squares in Fig. ®)]. Comparison of the

median time with MFPT[circles in Fig. §b)] suggests that
87 e the median time is close to MFPTIn 2 aboveT,. This
‘ implies (see abovethat the folding kinetics can be essen-
-107 tially represented by a single exponential abdye How-
5 s 4 5 6 71 8 ever, belowT, a strong deviation of the median time from
MFPT -In 2 can be seen in Fig.(B). The deviation from
one-exponential behavior can be seen on Fig. 4 atToas
a circles (representing MFPT In 2) which deviates from the
squares of the same col@ifferent grayscale correspond to
o different sequences on Figs. 2 and $his shows that the
1871 o folding kinetics belowT is nonexponential for the designed
. sequence3®® Such behavior contrasts with the single-
exponential behavior of random sequent®.

1/T

16

mo

141 ]
2 C. 48-mer

In ( Time )
b

1 e " . .
12 e ,!\", e The results discussed so far apply to chains of 27 mono-

mers, which are rather short compared to real proteins. To
10 i ’ : ; * ’ test whether the behavior found above is general, we simu-
lated a 48-mer. The results obtained are more limited be-
cause the folding of longer chains takes more time. We gen-
b erated ten random sequences for 48-mers and selected the
one of them which folded into the lowest energy conforma-
EIG. 5. The same as Fig. 2 but for sequences #11, #14, and #18, respegon faster than the other sequenced at0.2. The sequence
tively. and the lowest energy conformation are shown on Fig. 6.
Figure 7 shows the inverse temperature dependence of
the equilibrium average energy and of the folding rate. Al-
ture depeﬂdence is similar in form to that of the randon\though the average energy as a function a'fiS/essentia”y
sequencefsee Fig. 20)]. In particular, there is a temperature noncooperative as for the random sequences shown in Figs.
Ty below which an Arrhenius-like behavior is observed.2 and 3 there exists a temperature below which the average
From Fig. 8b) this temperature corresponds toT{#4.5.  energy and the energy barrier for foldifige., Arrhenius-like
An important feature which distinguishes designed senehavioy do not change with temperature. This temperature
quences from random sequences is thaf at the equilib- s equal to 1T,~5.5 from the folding rate and the value is
rium folding transition for designed sequen¢€®y. 5@]is  consistent with the behavior of the average energy.
almost ﬁniShEd, and the chain is mainly in the native confor- We also designed a sequence with a pronounced energy
mation; for random sequence, by contrast, at its respe€five minimum for the conformation shown in Fig. 6. The results
(1/Ty~8) the equilibrium transition is far from complete of simulations for this sequence are presented on Fig. 8. As
(see Fig. 2 This difference becomes more striking for for the 27-mer, the thermodynamic transition is more coop-
longer sequences, e.g., for 48-mers, as shown below. Thisrative than for the random sequence. Again, the kinetics are
suggests that designed sequences can fold fast at the congjrectly related to the thermodynamics; i.e., neither the equi-
tions when their native state is thermodynamically stable. librium energy nor the kinetic energy barrier change essen-
The fact that the kinetics become Arrhenius-like at thet|a||y below the temperaturék, which can be estimated as
end of the equilibrium folding transition for the designed 1/T,~3.2 from the figure.
sequences suggests that below this temperature the energetic
and entropic contributions to the free energy barrier for fold-
ing do not change with temperature. Such a behavior is i\, PHENOMENOLOGICAL MODEL
gualitative disagreement with the predictions of Ref. 26. Ac-
cording to Ref. 26, the glass transition is predicted to occur  Since the results of our simulations are inconsistent with
atT. (Tq4 in their notation, i.e., at the temperature at which the predictions of the theory developed in Ref. 26, an alter-
freezing takes place for random sequences having the sameative model is required. We have developed a simple phe-
amino acid compositiorii.e., sameE,, and o) as the de- nomenological model of the folding kinetics for the random
signed sequences. The valligfor the present systems was sequences. It makes use of the fact that for random se-
found to be in the range between 8 and($6e Fig. 2 No  quences the REM is adequate to treat thermodynamic
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FIG. 6. (&) Random sequence of 48 amino adia), the corresponding native 15 ; ; ; )
conformation, andc) sequence designed to minimize relative energy of this 4 5 6 7
conformation.
1/T
b

properties of the chains, as described in Ref. 1. However, the

; ; ; ; ; ieu FIG. 7. Inverse temperature dependen@sof the equilibrium energye
assumptions to obtain a kinetic model are differesgte Dis and (b) of the MEPT averaged over 50 runs for random 48-ffig. 6],

cussion.
According to the REM, the density of state¢E) is
Gaussian;
Q E_E.)2 ergy of conformations which are not structurally similar to
n(E)= ex;{ _ ( a) (4) the native state, defined as having only 10 native contacts
(2732)12 232 The native state energy for the sequences whose density of

Here the average energy over all conformations is denoted %ates Is shown in Fig.(8) is —5.9.
If the temperature is high enougfi ¢ T,), the equilib-

Eay and%?=2No? Is the standard variance of the energy of rium average energfg can be determined from the thermo-
the chain. From Eq(4), it follows that the entropy, Kg 9 oF

. o . ds 1
=1),is dynamic |dent|tyE= T From Eg.(5) we have
(E_ Eav)2 2
S(E)=Inn(E)=InQ— ——, (5) 3
23?2 E=Eam 7 v

where we hgve omitted factors th?t are small in the thermo"I'his result is valid until the temperature reaciiggiven by
dynamic limit. At the energyE., given by

E.—E,~3(21n )12 ®) N (®)

(21n Q)¥?

the entropy vanishes. This means that the energy spectrum
below T, is sparse; i.e., there are only a few states and they At T<T,. the entropy vanishes. The system reaches an
are separated significantly in energy from one another. Thenergy value where the density of states is low, the free
ground state energl,,, is only few T, below E..3* Corre-  energy is equal to the energy, and the standard thermody-
spondingly, E.—E,.)/E.~1/N; i.e., the deviation ofE,,;  nhamic relations involving the entropy are no longer valid.
from E presents a nonextensive correction so that it sufficefrom Eq. (7) when the temperature approachgg from

to use the approximatiok.~ E,,; for all estimates of ther- above, the average ener@yreaches its minimal valug,.
modynamic quantities. This can be seen clearly in Fig) 4 This means that, below., E equals toE, and does not
which gives the density of states for random sequences; i.echange with temperature in the approximation which ne-
E. can be estimated from Fig(&@ as —5.6 (the lowest en- glects nonextensive deviation &, from E; (see above
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sPe S*=log./*#, which we assume to be temperature-
. independent.
101 Postulatgi) which corresponds to the assumption that a
. small subset of the entire configuration space can be reached
& rapidly (i.e., the collapsed globuleand that the subsequent
g 11 * search is limited to conformations in this subset, was also
. suggested in earlier publicatiors*>®” Postulate(ii) of the
20t ¢ kinetic scheme is in the spirit of the kinetic REM discussed
* e, in the context of spin glasses by Kopper and Hilhtrand
25 : : =° LI I in our earlier publicatioﬁ,2 as well as in a more recent
25 3.0 3.5 40 paper’® This postulate was shown to be satisfied for the
1/T 27-mer with random sequencéSali, E.S., and M.K., to be
published. It assumes that folding proceeds by an equilib-
a rium mechanism, as do most chemical reactions. Here we
give a quantitative phenomenological analysis of the conse-
18+ quences of such a kinetic scheme.
. Postulatesi) and (ii) are sufficient to obtain the tem-
. perature dependence of the MFPT. Bt T, the equilibrium
171 energy is given by Eq.7). Substitution of this equation into
o~ o ® Eq. (5) gives the equilibrium entropy
% ].6 T 22
£ . . S=In Q- ﬁ 9
15+ . .
R * and the equilibrium free energy=E—TS.
14 : oloe : = According to postulatdgii) and the Arrhenius kinetic
2.5 3.0 3.5 4.0 law, the MFP folding time
1/T £ Fod
b k0t=ex;( T ) (10

FIG. 8. The same as Fig. 7 but for designed 48-fitég. 6(c)]. whereF#=E#*—T log 4 *is the free energy barrier arg

is the elementary transition rateithout a barriey. It should

) o ) depend on a number of factors such as the “connectivity” of
To characterize the kinetics of folding of random sequenceg,e move set ie.. how many conformations are connected in

we need to introduce kinetic postulates since the REM is 3ne MC step and “internal viscosity” which may depend on
model that describes the thermodynamics and not the kinelyera|l compactness of the chain and reflect steric constraints
ics, as already stated in the Introduction. The postulates arg 5t may affect the acceptance probability of MC moves.
derived from previous folding simulations and their gh6y1d be roughly close to the rate of nonspecific collapse of

analysis®® They are consistent with the three stage randompe chain and thus it reflects the nature of polymer dynamics

search mechanism found in simulations for quasi-random SQself-diffusion of the chain.

guences in Ref. 35. Since the kinetics of folding to the native Substituting(9) and (7) into the expressiofi10) for the

conformation for random sequences is a single exponenti%ming time we obtain

process, as described above, it can be assumed that folding

involves overcoming a free energy barrier, which is the rate- ECTC< 1 1 2+ E*
T

limiting step for the reaction. In the folding simulations, it In kot(T)= 2
was found als® that the number of conformations which
participate in the transition state for folding is much smallerwhereE* =E*—E_ is the activation energy.
than the total number of semi-compact conformations. The entropy of transition stat&’ represents a constant
Based on these findings for the folding of random se<temperature independgntontribution to the folding time
quences, we make two essential assumptions concerning tke. (11); in our phenomenological theory all temperature-
kinetics: independent terms can be adsorbed into the renormalized
(i) The mean energy of the system relaxes relatively rapelementary rate constant, i.e., we def% ko exp@) Eq.
idly to the equilibrium value determined from the REM (11) is valid for T>T,. Below T, the model is even simpler.
given in Eq.(7) for T>T, and toE, if T<T,. We can again use E@L0) taking into account that beloW,
(if) On a slower time scale, the system searches for onthe entropy vanishes arf=E.. We immediately obtain for
of the transition state conformations from which it rapidly T<T,
folds to the lowest energgnativel conformation. Conforma-
tions belonging to the transition state have enefdyand
their number is /¥ so that entropy of the transition state is

- g, (11)

*

In Kot(T)= E7 (12)
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Thus, the analysis predicts the Arrhenius behavior ob- 191
served in the simulations at low temperatureb<(T.). 181
Above T. [Eq (11)] there is a parabolic dependence of the
MFPT on the inverse temperature. At infinitely high tem-  _ 17
perature Eq(11) gives Y 16 +

=
In(Kot o 13 S
n =——=In
(Kot)== 7= 0, a3 =

that is, the MFPT equals the corrected Levinthal time. This 13+
result is as expected, because at infinitely high temperature o . ‘ ‘ ‘
the search for the native conformation is completely random. 4 6 8 10 12

The MFPT as a function of temperature has a minimum
at some temperaturg,, which can be determined from the
Eqg. (11). The result is

1/T

FIG. 9. Fitting of the data from Fig.(B) by analytical Eqs(11) and(12).
The parameters of the fitting are as follows: Sequenceb¥dck dots:

E* E.=-5.92, E*=1.19, Ink,=—4.2, 1T.=8.60; Sequence #{gray sym-
Top=Te 1| 1+ = (14 boly E,=—6.32,E*=0.99, InK;=—6.1, 1T, =8.04; Sequence #@vhite
¢ symbol$ E.=—5.68,E* =1.24, Ink,=—3.4, 1T,=8.6.
and the folding time at this temperature is
- E* * tions to be searched over increases as given by(Hgi.e.,
In[Kot(Topd I= 5 1+ 5 |- (19  the entropic contribution to the free energy becomes impor-
Cc Cc
tant.
This should be compared to the folding timeTatgiven
by V. DISCUSSION
E* The factors which determine the rate of protein folding

In[Kot(To)]= = (16)

- are of great interest-64%8:5%\10st discussions have been mo-

tivated by the “Levinthal paradox” and possible ways to

The fact thatT,,~ T, suggests thaE* <E.. This im-
plies thatE*~E_, i.e., transition state) are closer to the
bottom part of the energy spectrum.

The numerical dat@Figs. 2b) and 3b)] for random se-
qguences were fitted to Eqdl1) and(12). To do this, we first

fitted the Arrhenius portionT<T,) of the inverse tempera-

ture dependence of the MFPT by a straight ljis). (12)].

This gives the values d* andk,. Then we fitted the high
temperature portionT(>T.) by a parabola given by E¢11)

resolve it. In the last few years, simulatiofprimarily with
lattice models, e.g., Ref. 35as well as theoretical analyses,
have led to the realization that Levinthal paradox is not re-
ally a paradox because random search of all possible confor-
mations is not necessary. Instead, the variation in energy of
the potential surface of the polypeptide chain plays crucial
role. It provides the bias necessary to restrict the search so
that folding to the native state can occur in reasonable time.
This new perspective on the Levinthal paradox has raised

where E; is taken to be equal to the lowest energy for amany questions concerning the details of the folding mecha-
given sequence. Thus, for the high temperature behavior weism. A fundamental question concerns the relation between
have only one fitting parameter,.. The consistency of the stability, cooperativity and foldability in real proteins. It is
phenomenological theory may be evaluated by compdring clear that the existence of a large energy gap between the
obtained as a results of fitting the kinetics wifh obtained native state and states that are significantly different in struc-
from thermodynamic analysifFig. 2(@)]. The results are ture(i.e., so different that the protein would not be acliise
shown in Fig. 9. It is clear that the phenomenological theorya thermodynamic requirement for a stable protein that can
describes the simulation data in a satisfactory manner. In fagterform its biological functions. The magnitude of the re-
the fit is almost perfect for sequence [Bg. 3(b)] but there  quired gap obviously depends on the temperature since the
is a discrepancy at high temperatures, for sequences #1, #dominance of the lowest energy state is determined by the
and #8 which do not include average attractive potentialBoltzmann factor; for physiological temperatures a gap of 5
This deviation is not unexpected because we used a Gaussikoal/m leads to a native state population on the order 1000 to
density of state$Eq. (4)] with the variance®, assumed in- one. It was first shown in lattice simulations with a 27-mer
dependent of temperature in the derivation. In fact, the varichain and interactions derived from a random energy model
ance X, is proportional to the number of contacts atthat the existence of the energy gap is sufficient for the ex-
equilibrium® The number of contacts is insensitive to theistence of conditions at which protein molecules fold fast
temperature at low temperatures. However, for sequences #ihto stable native conformatiotf.This result, which supple-
#4, #8 it decreases substantially at high temperat(data ments and extends previous theoretical worR has been

not shown so that the varianc& also decreases at high elaborated in a number of papers that used the energy gap as
temperatures. The decrease of the variance for these sa-criterion for designing fast folding stable sequer@és.
guences slows down the folding reaction in this regime dud’he energy separation between the lowest and first excited
to the fact that the number of relevant unfolded conforma-state can be used as the meaningful energy gap in a fully
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compact X 3X 3 cube because the first excited state is gen-  Our simulations and analysis show that it is possible to
erally very different in structure from the native state. Forfind a temperature range at which random sequence folds
structures that are not fully compact, there can be low energfaster than designed sequence; e.gTa0.14 (1T=~7) the
states that are similar to the native one and so a more genemddsigned 27-mer sequences studied here fold more slowly
energy gap criterion is appropriate. The one used fgge than random sequencéSompare Fig. &) with Fig. 5a)].
Eqg. (2)] corresponds to that used in matching real proteins byHowever, at this high temperature the random sequences are
threading through a population of native stdtes. not stable in their native conformatiofisee Fig. 239)]; i.e.,
In two recent papers, the energy gap criterion for fastalthough the first passage time is short, the sequences reach
folding has been called into question. One of these p&perstheir native state and immediately leave it.
neglected the simultaneous requirement of stability and fold- It is useful to compare folding rates of sequences under
ability and the othéf neglected the condition just stated for the conditions where their native states are stable. For the
using the energy difference between the ground and first exandom sequences that means that a considerably low tem-
cited states as the energy gap. It is not our purpose to discupgrature must be used than for the designed sequences; i.e.,
these two papers here since they will be considered in sepfrom Fig. 2a) at the required temperature of 0.09 T1/
rate publications. However, their publication makes clear<=11), the folding of the random sequences is about 2 orders
that the energy gap criterion is not understood by everyonef magnitude slower than that of the designed sequences at
working in this field and deserves further discussion. the temperature 0.2 where they are still stable. However, it
One important question in applying the energy gap cri-should be noted that dt=0.09 the designed sequence folds
terion is how to compare the folding rates of different se-much more slowly than the random sequences. For the 48-
guences. As has been shown here, as well as in a number wfer the corresponding behavior is also observed with the
previous studied®33"the folding rate of a given sequence is designed sequences folding three orders of magnitude faster
very sensitive to the temperature and exhibits an overall betit T=0.35 (17~2.9) than random sequences &t 0.15
shaped curve when the logarithm of the rate is plotted versugl/T~6.7).
the inverse temperature. This might be taken to imply that The factor of stability was an essential element in the
the folding rates of different sequences should be compareariginal formulation of the energy gap criterion for fast fold-
at the optimum temperatur@at which folding rate is the ing in Ref. 34(i.e., folding was studied at a temperature
fastest for each. However, in considering the folding rate of when the sequence is stablelrhis requirement was ne-
a sequence as described by this curve, the stability must nglected, as already mentioned, in a recent public&fisg
be neglected; i.e., in some cases optimum rate is achievatat the conclusions made in this paper are not relevant to the
only at temperature at which sequence is not stable so thaarlier work.
the results are not really meaningful as models for proteins.  Another way to compare folding rates for different se-
From the present study, it is clear that temperatures correguences is at the temperature of their respective fastest fold-
sponding to fastest folding are different for random se-ing. This was done in a recent pafiefor random and de-
guencegwith relatively small energy “gaps,” see Fig(&] signed sequences of different lengths in the range 20-100
and designed sequend®gth larger “energy gaps,” see Fig. monomers. The result showed that in this case designed se-
4(b)]. In particular, the fastest folding for random sequencesjuences, having a larger “energy gap,” on average, folded
is achieved at lower temperature than the fastest folding fofaster than random sequences, which tend to have smaller
designed sequences, in accord with the theoretical analysenergy gaps, This difference became more pronounced as the
presented in this paper. Inde€fl, and E. in Eq. (14) are  chain length increasedThe energy gap was defined in Ref.
self-averaging, i.e., their values do not depend on the particu#l in the same way as ER) of the present study How-
lar sequence but rather on such averaged characteristics @ger, in line with the above argument, it should be noted here
the amino acid compositiof!® The data in Table | and Fig. that condition of stability is not satisfied for random se-
2 suggest that this is qualitatively correct; i.e., the value ofquences at the temperature of their fastest folding.
E. is constant withint10% for various random sequences The study made here of the thermodynamics and kinetics
given in Table I. The value of the barrier energ§ (and, of folding over a wide range of temperatures makes it pos-
thus,E* =E*—E,) is different for random and designed se- sible to obtain a deeper understanding of the relevance of
guences. Indeed, since transition state conformations shadifferent features of protein sequences for fast folding and
some structural properties with the native state it is reasorstability. This also enhances our ability to design sequences
able to assume that their energies follow the Hammond poswhich satisfy the requirements of fast folding at a selected
tulate, i.e., transition state energies are lower for the designefdlding temperatureT. It is clearly advantageous for fast
sequences. According to the Ed4), lower E* (character- folding to have sequences with the optimal folding tempera-
istic of designed sequengesorresponds to higheT oy, ture T, Close to the actual folding temperatufe(a tem-
which is exactly what is observed in the simulatideem-  perature at which sequence is stablé Tgm is the optimal
pare Figs. 2 and)5Another feature predicted by the analyti- folding temperature of the initial random sequence, the de-
cal theory is that designed sequences should Agye=T.  sign strategy to generate sequences which fold fast at
[see Eq.(14)], i.e., that linear part of the bell-curve should >T3pt is to make theirTopt>T8pt. It is clear from Eq.(14)
begin just below the temperature of fastest folding. Comparithat in this case sequences having highgland thus higher
son of Figs. 2 and Sfor 27-me) and Figs. 7 and &or T, and E;) and, most importantly, a lower energy of the
48-me}) suggests that this prediction is qualitatively correct.native statga greater energy gap and thus a smaller barrier
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E*, according to Hammond postulateould emerge as fast analysis of the relation between stability and fast folding as a
folders. Optimization of the energy gap by stabilizing thefunction of temperature would require a detailed knowledge
native state may be also sufficient for stability, which is anof factors affectingE. and the energy and entropy of the
important and nontrivial at higir requirement. This is in transition state ensemble. In particular the presented phe-
accord with the original proposal concerning evolution ofnomenological theory cannot address, in its present form, the
proteins in archaic high-temperature organisSthat lower  important question of chain length dependence of the protein
temperature, the energy gap requirement for stability is refolding time’* A consistent analytical theory explaining the
laxed so that a larger fraction of the sequences have stabfmwer law dependence of folding time on chain length, ob-
native states. Under such conditions fast folding becomeserved in simulatiodd and supported by qualitative
more important because folding rates tend to decrease witirgument&’ is a matter of future research.
temperature as temperature is lowered into actual Arrhenius The results of the present simulations and analysis can
range. This suggests that additional optimization of sealso be compared with the predictions of the analytical
quences to achieve fast folding may be required; i.e., théheory developed by Bryngelson and Wolyffeas well as
energy gap criterion by itself may be not sufficient for gen-more recent extensions and modificati6h$"’*"®In this
erating sequences which fold fast at lower temperature.  comparison we focus primarily on qualitative aspects of the
The present results, as well as earlier stufffesyggest BW theory and our simulations since quantitative details are
how the required optimization can be achieved so that sesensitive to the specific parameters used in the simulations
guences fold fast a1I'<T8pt. An optimal design strategy and analytical calculations and rather arbitrary definitions for
would be to adjust sequences to mdkg; lower. This can be “Levinthal time” (see above The BW theory predicts two
achieved makingd . lower andE; higher[see Eq(14)]. This  transitions for designed sequences. One transition is an equi-
suggests that in this case optimization may concern factorgbrium folding transition at temperatur€;; below T the
which determineE, and T, namely, the standard variance native state is thermodynamically stable. At a lower tempera-
of the interaction energie® and the average energy of in- ture T (T4 in the notation of BW a kinetic glass transition
teractionsE,,. Thus, to increasd&. one can increase the is predicted. The qualitative features of the glass transition as
average interaction enerdi;e., make monomers more mu- proposed by B! are that as the temperature goes down
tually repulsive or less attractive, on averagmd/or de- to T the folding times reaches a plateau value and no longer
creases,. changes with temperature and that the kinetics become mark-
Recently, an evolution-like selection algorithm to gener-edly nonexponential afy and below.
ate fast folding sequences was proposed and studied in Ref. Our results do not show two independent transitions. In-
48. In this method sequences are mutated randomly such thsitead, we observe that both the thermodynamics and kinetics
only point mutations increasing the folding rate are acceptedf folding are governed by the same temperattife, This is
This algorithm proved to be efficient in generating fast-the temperature below which the equilibrium energy is close
folding sequences over a range of temperatures. When it wds the energy of the native conformation and does not change
applied to generate sequences which fold fast at low temfurther with temperature. The simulations results strongly
perature the resulting sequences had features in accord witluggest that no qualitative changes in the system properties
the present analysis, i.e., they had a higher average contaate expected below,. The temperature dependence of the
energy and a lower dispersion of interaction enef§igsan  MFPT, as well as of the median time, becomes Arrhenius-
in the original quasi-random sequences from which the selike at T, without any singularities or plateaus at lower tem-
lection began. peratures. In this regard the criterion for fast folding, pro-
Another sequence design algorithm was proposegosed in Ref. 57 can be clarified. It was argued that the ratio
recently? which generated sequences having selected thet-T IT4” (a measure of stability gapcould be viewed to
mal properties, i.e., ones that are stable in a specified tentletermine fast-folding sequences. From the present results it
perature range. The analysis presented in this paper suggeftfiows that this is not the ratio of folding and “glass tran-
that there is a close connection between thermodynamisition” temperature for the same sequence but rather the ra-
properties of sequences and kinetics. While the algorithntio of two folding transition temperature3; for the actual
presented in Ref. 72 selected sequences which are stable irsequence andy (T.) which is the folding (“freezing”)
specified range of temperatures, these sequences had theansition temperature for a sequence having the same com-
fastest folding in the same temperature range, which is iposition as the actual one but which is randomly re-shuffled.
line with the findings of the present work. Comparison of Thus this ratio is a measure of sequence optimization.
sequences generated to fold at high temperature with the The temperature dependencies presented in this work
ones generated for low temperature showed again that th&igs. 2, 3 and ¥rule out, a kinetic glass transition for the
feature of highT sequences was that their native states hadystem that we studied. Indeed it is impossible to identify a
particularly low energy, i.e., this was effectively an “energy- temperature point on the plots of MFPT Vsshown in Figs.
gap” optimization. In contrast, sequences designed to fol®, 3, 7 with any “intuitive” glass transition point. There are
and be stable at lowl' had smaller dispersion of contact only two special temperatures discernible in these plbfs:
interactions, also in accord with the presented analysis.  andT,. Obviously, it does not make sense to idenify,,
Although meaningful correlations have been obtainedhe temperature of fastest folding, with the “glass transi-
from the above analysis and its applications the resultsion”; it is equally incorrect to do so fof since folding rate
should be considered only as qualitative: A more completat T, is only a few times slower than the fastest folding rate
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(at Top), both for 27-mer and 48-mer. Further, the kineticshaustive search without any energetic biases. The uncorre-
for the random sequences are purely exponential at all tenfated model of BW does not indeed provide any energetic
peratures studied, a factor inconsistent with qualitative feabiases toward the native conformation. However, the search
tures of glass transition behavitfr.Since glass transition atlowT inthe BW model is slower than a simple exhaustive
does not have a rigorous definitiganlike Ehrenfest defini- “Levinthal” search because it also requires overcoming the
tion of phase transitiononly circumstantial evidence for or energy barriers. It was mentioned in Ref. 26 that the theory
against it can be obtained. Our results point out to the abPresented there may describe kinetics of Monte-Carlo fold-

sence of such a transition in the lattice model that we havég simulations. The assumption of the independence of the
studied. energies of one-step-connected states is equivalent to a simu-

It was claimed earliéf that “glass transition” behavior lation that generates a totally new conformation at each step.
had been observed in lattice simulations. Indeed, Fig. 12 of\t very high temperature each such attempt will be accepted
Ref. 14 apparently does show that the Arrenius dependen@nd the system would effectively perform an exhaustive
of the unfolding rate levels off at lower temperature. Thesearch for the native conformation. The time required for
discussion of these data in the text of Ref. 14 interprets thahat is equal to Levinthal timé€). However, at lower tem-
behavior as evidence of a glass transition corresponding tBerature, an additional factor slows down folding in the
that predicted by BW. However, it is explained in the captionmodel of BW compared to the unbiased exhaustive search. It
to Fig. 12 of Ref. 14 that the form of the Arrenius curve is anis clear that when low energyE() is reachedat T<T,),
artifact of the method used to generate the curve: Simulaany randomly generated conformation will have a much
tions were stopped either when the molecule unfolded to &igher (~NkT.) energy and all such moves except exponen-
specified degree or when its length reachBg,=1.08 tially rare ones will be rejected. This makes the search.at
X 10° steps. Any simulation at which the chain did not un- inefficient in the model of BW and leads to a folding time
fold in T Steps was assigned a fixed time Tf,., steps. 02, much greater than Levinthal time. Decreasing of tem-
Thus the low-temperature plateau of the folding tim@ gy,  Perature belowT gives rise to a further dramatic slowing
in the simulations discussed in Ref. 14 represents nothingown since energetic barriers to escape low energy confor-

more than the arbitrary cutoff. mations by random search are very high, are of the order of
The absence of a “freezing” glass transitionTatin our ~ NKT;. . ) _
simulations, in contrast to the theoretical prediction of BW, In fact, BW obtained() rather than(2< as the folding

can be understood by considering the fact that an importaritme at allT<T., (see Fig. 3 of Ref. 26 The independence
assumption in the kinetic model of B¥is that transitions of the folding rate on the temperature in the BW calculations
occur between conformations with statisticalydependent ~ suggests that there is no energy barrier at low temperatfires.
energies. As a result, a typical conformation with energyThis difference between a simple analysis and the BW re-
close toE, is “kinetically connected” to conformations with Sults appears to be due to the fact that folding timeT at
energies close to the average energy because the latter aresiTc Was obtained by BW as a result of averaging of the
the vast majority. Correspondingly, the energy barirto  folding rate over the ensemble of “sequence@f the con-
leave any conformation with enerdy, is of order —E..  text of proteinlike heteropolymers, each “sequence” repre-
Thus, the lifetime in any low-energy non-native conforma-sents a realization of a quenched distribution of energies of
tion; according to Ref. 26, is~exp(—E,/T). Together with ~ states in the dynamic REM model of BWMn Appendix B
Eq. (16) this givest~exp(—E./T)=0? for T=T.. Since Wwe explain why the actual folding rate with which the ma-
the number of such low-energy conformatiométh energy  jority of sequences fold in the BW model is very different
close toE,.) is of order unity, the folding time af<T.is of  from the rate averaged over sequences and show how the
the order of the time needed to escape from any low-energgonclusion about zero energy barriers at low temperature ap-
non-native conformation that is, the folding time is equal topears as an artifact of averaging the rate over sequences.
Q2. It was assumed in the subsequent development of the In a more realistic model, conformations connected by
theory that two conformations connected by one kinetic stepne kinetic step are expected to be very similar in structure
have finite correlation rather than no correlation aPaithis  and, therefore, have similar energies. In particular, confor-
corresponds to the statement that conformations with energyations connected by one Monte-Carlo step to a conforma-
close toE, are kinetically connected not to conformations tion that has an energy close g have energies close &,
with the average energyvhich can be taken to be zerbut  as well(i.e., for a single MC step the energies differ by a
to conformations with energywE., wherea is a parameter nonextensive valye We conclude that for more realistic
which characterizes correlation between two kinetically conimodels where energies are related along MC trajectory no
nected states. This reduces the typical barrier fiegnto  kinetic freezing transition temperature at which the folding
(1- a)E, and leads to the prediction of a faster average rateate drops significantly below the value predicted by the
at T, than in fully non-correlated case. However, qualitative Arrhenius law is expected and none is found in simulations
conclusions, including the prediction of “glass transition” of we have presented.
the type suggested in Ref. 26 were not changed in the newer A caveat that always has to be kept in mind comparing
version of the theory introduced in Ref. 51. theory and simulations is that simulations are restricted to
It is noteworthy that folding aT is much slower in the finite size (and relatively small systems while analytical
uncorrelated model of BW than folding at very high tem- theory strictly applies to larg€énfinite) systems. However,
perature where it equals @, the “Levinthal” time of ex-  typically the signs of phase transitions are clearly discernible
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in the temperature dependencies of different quantities obare a number of good accounts of the REM in the literature
tained from simulationge.g., sigmoidal or cusp-like curves (see, e.g., Ref. 82Here we give a brief description of the
which get sharper as the system size increédmsensional model(in a form that is slightly generalized and adapted for
scaling. This is the case, for example, when the thermody-the case of heteropolymer® make clear the results that are
namic theory of proteinlike heteropolymers is compared withused in the present studgee also Ref.)l

simulations: the predictions of mean-field theory for the ther-  The REM was defined by Derrida as phenomenological
modynamic character of the folding transition in randommodel based on two postulates:

sequencé8?*?* and designed ongs?>?'is in qualitative (1) The system ha§) = yN microstates.

agreement with simulation datsee Figs. 2, 5,)7and results (2) The energies of the microstates can be treated as
of exhaustive enumeration of short chafA®y contrast, our independent random variables with a Gaussian distribution
kinetic data do not provide any qualitative indications of aso that density of states(E) as a function of the enerdgy
potential(in the limit of large systemglass transition. obeys the equation

It is also important to consider the relevance to proteins
of the phenomenological theory and simulations presented (E-Ea)?
here as well as other approaches discussed in this work. Pro- n(E)=0 exp — INo2 |
teins are relatively smallcompared to macroscopic sys-
temg. It has been suggest€dthat lattice 27-mers corre- HereN is the total number of monomers,is the num-
spond to helical proteins composed of 60 resid(lesnce ber of conformations per monomek,, is energy averaged
48-mers correspond te 100 amino acid proteinsif this is  over all conformationsy is standard variance of interaction
the case, our study covers the most relevant range of lengthenergies. Introducing normalized quantities per monoener
particularly for proteins that have been studied in folding=E/N and e,,=E,,/N one can rewrite for the density of
experiments. Even with the caveat concerning the finite sizetates:
of the model chains, our results suggest that the concept of a
glass transition may be not relevant for understanding the
folding of real proteins.

The issue of what features distinguish folding sequences
from nonfolding one has been a matter of considerable curfrom which one can see immediately that at the critical value
rent study and interedf;” 1478646874 e present work sug- Of energye,=E./N=e,— (2 log yo?)*? the system “runs
gests that certain features should be optimized to provideut of states.” Specifically, the density of states Eor E is
stability and folding at different temperatures. While no glassvery high so that in every interval of energy abdwgmany
transition was found in the present study, the essential fesstateconformationgcan be found. In contrast &<E the
tures of protein folding kinetics do depend strongly on thedensity of states is very sparse and it is unlikely to find a
temperature. In particular, the dependence of folding rate ofonformation in anyspecificsmall interval of energies below
temperature is non-monotonic at higher temperatures and ek . Further, it can be shown that the total number of con-
hibits classical Arrhenius behavior at lower temperaturesformations with energy belo, is ~1 - a negligible small
These findings are supported by recent experiments of Bakéfaction of the total number of conformations.
and coworker§® who showed that folding rate indeed exhib- ~ Now consider how energy of a system changes when
its Arrhenius behavior when corrected for the temperaturéemperature is varied. As temperature decreases the energy
dependence of stability. Further, the obtained results are rglecreases also for temperatures abbyat which the energy
tionalized by a simple analytical theory which also points outreaches, the lower limit of the dense part of the density of
what features of sequences may be responsible for stabilitjtates.e.. From then on energy can decrease only slightly
and fast folding at different temperatures. It will be interest-because, as will be seen shortly, the lowest energy confor-
ing to examine homologous proteins from organisms whichmation differs frome; by small (vanishing as N grows
live at different thermal environment to see whether thes@mount. Therefore &l <T; E~E,.

(17)

(e—ey)?

207 (18

log(y) —

n(E)=ex;{—N

differences are manifest in their sequences. The dependence of the energy on the temperatule at
>T,. can be found from the well-known thermodynamic re-
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from where we have

APPENDIX A: THE RANDOM ENERGY MODEL N o2

The random energy model was introduced by Deffida 20

as a simplest nontrivial model of spin glasses. Bryngelson

and Wolyne¥ postulated and Shakhnovich and GHftitt &t T>Tc and

showed for the microscopic model of heteropolyrfiarthe E=E, (21)
mean-field replica theojythat thermodynamic properties of

random heteropolymers can be described by the REM. Therat T<T, with T.=o/[2 log(y)]*?
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Linearization of the last equation arourd gives the R(T)=20"NRy+20" Ry exp — Bpgn/T) +(1—2
probability of finding a conformation with energyper
monomey e<e, -20"M)Ry exp(—Bo/T). (24)
p(E)=exgd —N(e—e.)/T.] (22 It is easy to see that at high the average rate will be

close toRypica, the rate with which the majority of se-
guences fold. However, at loW<Bg/(N log 20) the first
term in Eq. (24) dominates, and the average folding rate
becomes

(see also Appendix to Ref. R4t is clear that it is extremely
unlikely to find a conformation in a random heteropolymer
with energy (per monomer much lower thare., i.e., the
typical value of energy of the global minimum conformation

is ~T./N belowe.. This means that the “gap'(deviation R(M)1_0=20""Ry,. (25)

of the global minimum conformation from;) is small in

random sequences, much smaller tlegritself, so thate., The folding time calculated &s=1/R(T) turns out to be
=e,+O(1/N). temperature independent and equal to the “Levinthal time”

The dependence of the energy on the inverse tempera= 20'R, * at low temperature. It is clear that this result is an
ture given in Fig. 2 is fully consistent with the description artifact of the averaging of the rate which, at low tempera-
given by Egs(20), (21). E. and T, can be determined from tures is dominated by one “superfast’-folding sequence
this plot as temperature and energy at which the dependencather than the majority of sequences in the ensemble. We
comes to plateau. Having determined these valuegjag(n  note that it is equally inappropriate to average folding time:
be determined and finally one gets after simple algebra  In this case at low temperature the average time will be

dominated by one sequence having ‘“superslow” folding

0= YN:eX% _Ee EaV); (23)  With the barrierByg,. It is also clear that the correct way to
2Te proceed is to calculate averabarrier B (i.e., Iogarithrﬂ of
this is Eq.(3) of the text. the rate. In this case folding rate defined & exp(—B/T)

will coincide with the rate with which the majority of se-
quences foldcf. the correct averaging over quenched disor-
APPENDIX B: ON THE PROCEDURE OF AVERAGING der in. thermodynamics which _requires.averag_ing _of free en-
IN KINETICS CALCULATIONS ergy, i.e.logarithm of the partition function, which is a sum
of Boltzmann exponentidld). We note that the phenomeno-
Averaging over realizations of disordered systems is dogical theory presented in this paper estimates the folding
very delicate procedure that requires considerable care. IFate with which the majority of sequences fold by estimating
the context of our analysis each realization corresponds to ah “typical” free energy barrier rather than average folding
individual protein sequence. The difficulty with averaging rate.
over all sequences lies in the fact that in the ensemble of all Technically, BW calculate the average rate in their
sequences some properties may vary widely from sequendbeory in the following waye.g., see Eqg22), (28), (123),
to sequence. This raises the question as to the meaning of(347)—-(150] of Ref. 26:
property averaged over all sequences. To obtain meaningful
results in averaging over all possible sequences one can av- ﬁzf P(B)exp —B/T), (26)
erage only so-called “self-averaging” quantiti&Average 0
values of such quantities are close to most probable ones and, o, gy i< the probability distribution for the barries
their variation from sequence to sequence is stoallially in

- _E# i il i -
the limit of large systems In this case a typical representa- =E(T)~E". E(T.) Is the equmbrlum(af[ a given tempera
tive of the ensemble of sequences will have a value of th ure) energy. As in the previous, oversimplified, example, at

property that is close to the calculated average, i.e., the a\lz-;%thfe:ntfgv;a‘l,s'g 52512023',? t?}g?;g;tg%:zi;ﬂ?ii;%m
erage value will be characteristic of the vast majority of se- "’ y very N 9
quences to the native state. At low temperatufe<T. E(T)=E.. It
) =3 #_ #
In the kinetic calculations of BW Eqé150 and(28) of ~ follows that InR—In P(E.—E"=0) as T—0. P(E.~E
Ref. 26 state that at low temperature all sequences fold witfy 0) represents the probability that a given realization of the
the same rate, equal to the average rate. The folding rate {gNdscape’sequence’) has a barrier free transition to the
this regime dependexponentiallyon the barrier to escape Native state. BW assumed the distribution of barriers to be

from misfolded trapgsee Eqs(21)—(28) of Ref. 26. This Gaussian, like the distribution of s;ates in the REM. In this
implies that folding rate is not self-averaging. case, for uncorrelated staf{E.—E"=0)=1/). Therefore

In order to see that consider first a simple example of th&r~ 1/, i.e., temperature-independent folding rate Tat
“ensemble” of 20" (N>1) sequences such thahe se- <T., with “Levinthal” folding time 1/R=Q, the result
guence folds “instantly,” barrier free with the rat,, one  shown in Fig. 3 of Ref. 26.
sequence folds with high barri&,g,, having folding rate is In the REM kinetic calculation the averaging of the rate
Rqow= Ro exp(=By,ign/ T) and the remainingastmajority of  over the “ensemble of sequences” is equivalent to averaging
sequencesi.e., 20'—2) fold with some “typical” barrier  of the rate of transition between all states and the native
Bo<Bhign, having the ratdRy,ica=Ro exp(=B,/T). The rate  state. Clearly, one state is just the native state itself and the
averaged over the ensemble of sequences then would be rate of “folding” from the native state to itself is just instant,
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“microscopic” one. It is this “fast-folding” but rare event
that gives the dominant contribution to theeragefolding
rate at low temperature in the kinetic REM model.
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