
4.5 Synchronization

We have established how simple chemical reactions can create an oscillator. The phase
of such simple oscillators is set by initial conditions. In certain situations, e.g. for the
pacemaker cells in the heart, the oscillators must act in concert. One way to synchronize a
number of oscillators is to couple them to an external source, such as the light of the sun
in the example of circadian rhythms. In other cases, a collection of self–coupled oscillators
may spontaneously synchronize as a collective. The following Kuramoto model provides an
explanation of how such synchronization may happen.

Consider a set of oscillators, each parametrized by a phase angle θi, for i = 1, 2, · · · , N .
We shall assume that each oscillator advances at a uniform angular velocity ωi, taken inde-
pendently from a probability distribution function p(ω), such that

θ̇i = ωi.

In a biological context the rate ω for a collection of cells (or organisms) may well depend
on the concentration of chemicals within each. While these concentrations vary between
individuals, it is likely that for a specific system the range of this variation is small, and the
distribution is narrowly peaked around some central frequency Ω. Without loss of mathe-
matical rigor we can set Ω = 0, which is equivalent to measuring angles relative to a frame
rotating at angular velocity Ω (i.e. after a shift θi → θi − Ωt).

To synchronize the oscillators we need a coupling between their phases. The simplest
form of such coupling, pushing θi towards θj , and independent of a phase change by 2π, is
sin(θj − θi). The coupled dynamics of phases of many such oscillators is now governed by

θ̇i = ωi +

N
∑

j=1

Wij sin(θj − θi) , (4.39)

where Wij indicates the strength of the coupling to j from i. To make analytical progress, we
shall assume that all interactions have the same value of K/N . (As each oscillator is coupled
to N others, it makes sense to scale the interaction parameter by 1/N , corresponding to an
average.) In this case, we can re-write Eq. (4.39) as

θ̇i = ωi +Kℑ
[

e−iθi

(

∑N
j=1 e

iθj

N

)]

= ωi +Kℑ
[

e−iθi ·meiφ
]

, (4.40)

where ℑ stands for the imaginary part, and we have indicated the average of all phase points
(around the complex imaginary circle) by meiφ. The order parameter
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, (4.41)

is a measure of synchronization amongst the oscillators. If each oscillator follows its own
period, perhaps somewhat altered by the others, the phases in Eq. (4.41) will shift with time
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more or less independently, eventually covering the unit circle, in which case the average
over them will be zero. If a finite fraction of the oscillators is locked to the central frequency
Ω (thus appearing stationary in our rotating frame), their contributions will be time inde-
pendent, and (if more or less in phase) add up to a finite value. Without loss of generality,
we can set the overall phase of the sum to zero, φ = 0, resulting in the self-consistent set of
equations

θ̇i = ωi −Km sin θi . (4.42)

The solutions to this equation have two possible forms, mimicking the two populations of
oscillators. The first set includes oscillators locked to the central frequency, hence with
θ̇i = 0. To satisfy Eq. (4.42), these oscillators acquire a “phase lag”

sin θi =
ωi

Km
; (4.43)

oscillators faster than Ω are ahead of the pack, those with ω < Ω fall behind. Such locking
is possible only if the natural frequency of the oscillator is sufficiently close to the central
frequency, i.e. as long as |ωi| < Km. Oscillators with frequency difference |ωi| > Km cannot
be synchronized to the central frequency, and their phases vary over time according to

θ̇i = ωi −Km sin(θi) 6= 0 . (4.44)

We can self-consistently solve for m by summing over the phase contributions of the
stationary oscillators (the moving ones do not contribute to m). Since the behavior of the
locked oscillators depends only on their native frequency, we can use the probability density
p(ω) to write

m =
1

N

∑

locked oscillators j

eiθj =

∫ Km

−Km

dω p(ω)eiθ(ω) . (4.45)

We can change variables from ω = Km sin θ to θ = arcsin(ω/Km), and expand the narrow
distribution to second order around its peak to simplify the self-consistency equation to

m =

∫ π/2

−π/2

dθ(Km cos θ)p(Km sin θ)eiθ

=

∫ π/2

−π/2

dθ(Km cos θ)

[

p(0)− (Km sin θ)2

2
|p′′(0)|+ · · ·

]

(cos θ + i sin θ)

= Km

[

π

2
p(0)− K2m2π

8
|p′′(0)|+ · · ·

]

. (4.46)

For example, for a Gaussian distribution of variance σ2, p(0) = 1/
√
2πσ2 and |p′′(0)| =

p(0)/σ2.
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A non-zero solution for m is possible only for

K > Kc =
2

πp(0)
. (4.47)

Below Kc, m = 0 is the only solution, and all oscillators are unlocked. For larger couplings
the oscillators are synchronized and rotate together, while on reducing the coupling to its
critical value the order parameter vanishes as

m ∝
√

K −Kc . (4.48)

For example, if p(ω) is approximated by a Gaussian distribution of width σ,

Kc =

√

8

π
σ , and m ≃

√

2π

(

K

Kc
− 1

)

. (4.49)

As an alternative example, you may work through the case where the frequencies are uni-
formly distributed in the interval [Ω− ωm,Ω+ ωm].
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