
4.6 Turing patterns

So far we explored variations of a set of variables in time, ignoring dependencies on space.
In fact cells actively compartmentalize different molecules to different locations. Genetic
information is localized to the nucleus and has to be carried out to the rest of the cell by
diffusion of various molecules (mRNA or proteins). Even in the absence of physical barriers,
chemical reactions can give rise to interesting patterns of spatio-temporal concentration
variations. Since diffusion is the most common mechanism for transport of molecules in
space, we shall examine the following set of reaction–diffusion equations

∂Ci

∂t
= Fi ({Cj}) +Di∇2Ci . (4.50)

Here, Di is the diffusion coefficient for molecular species i (with concentration Ci) and the
reactions are described by local non-linear terms included in {Ci}. Intrigued by the question
of how biological patterns (e.g. body shapes, or colorations of animal coats) occur in the first
place, Turing postulated a set of morphogens whose concentrations evolve as in Eqs. (4.50).

Let us specifically ask if it is possible to have a stable fixed point {C∗
i } as solution

to Eqs. (4.50) if spatial variations are forbidden (as in a very well mixed bag with very
large {Di}), but which becomes unstable if spatial variations are permitted. To answer this
question, let us linearize the reaction-diffusion equations around the fixed point as

Ci(~r, t) = C∗
i + ci(~r, t) , ⇒ ∂ci

∂t
=
∑

j

Mijcj +Di∇2ci , with Mij =
∂Fi

∂Cj

∣

∣

∣

∣

C∗

. (4.51)

Stability of the uniform solution implies that all eigenvalues of the matrix Mij are negative.
To examine the stability with respect to spatial variations we introduce Fourier transforms

ci(~r, t) =

∫

d~kei
~k·~rc̃i(~k, t) , (4.52)

in terms of which Eq. (4.51) becomes

dc̃i(~k, t)

dt
=
∑

j

(

Mij − δijDik
2
)

cj(~k, t) . (4.53)

The original question can now be recast as whether the matrix Mij(k) = Mij − δijDik
2 can

have a positive eigenvalue at a finite wave-vector ~k. The answer is clearly negative if only
one chemical species is present, in which case λ(k) = λ(0)−Dk2 is obviously more negative

(hence more stable) at finite ~k. However, Turing showed that even with two morphogens it
is possible to find a finite wave-length instability.

Let us examine the 2× 2 linear-stability matrix

M(k) =

(

M11 −D1k
2 M12

M21 M22 −D2k
2

)

. (4.54)
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Let us denote the two eigenvalues of the matrix by λ±(k), and consider their variation with
k, noting that their sum, given by

λ+(k) + λ−(k) = trM(k) = (M11 +M22)− (D1 +D2)k
2 , (4.55)

becomes progressively more negative upon increasing k.
1. Given the assumption of stability of the uniform state, the two eigenvlaues are negative for
k = 0. The simplest possibility, indicated by (11, 1+) in the figure, is that they monotonically
decrease with k and there is no instability.
2. The larger eigenvalue λ+(k) can potentially increase with k (the conditions for this will be
discussed later) at the expense of further decrease in λk(k) to ensure the required decrease
in the sum dictated by Eq. (4.55). The eigenvalues must eventually decrease at large k,
behaving asymptotically as −D1k

2 and −D2k
2. As long as the maximum of λ+(k) remains

negative (as in the curve labelled 2+) there is again no instability.

3. The most interesting case is when the maximum occurs at a positive λ+(k) signaling
a band of unstable modes as in the curve labelled 3+. Perturbing a uniform initial state
is thus expected to result, through diffusion of C1 and C2, to growing non-uniformities
at the band of unstable wavelength. Nonlinearities are expected to prevent unbounded
growth of perturbations, leading to finite patters that will likely carry signatures of the
initial instability.
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To examine the conditions necessary for formation of patterns, let us consider the product
of the two eigenvalues, given by the determinant of the matrix M(k) as

λ+(k)λ−(k) = detM(k)

= (M11M22 −M12M21)− (M11D2 +M22D1) k
2 +D1D2k

4 . (4.56)

Within the unstable band (λ+(k) > 0 and λ−(k) < 0) the product must be negative. The
first term in the brackets above, detM(0) = λ+(0)λ−(0) is positive as at k = 0 (uniform
state) both eigenvalues are by fiat negative. The last term D1D2k

4 is also manifestly positive,
and thus the only possible route to instability is if the middle term is large and positive, i.e.

(M11D2 +M22D1) > 0 , while (M11 +M22) < 0 . (4.57)

(The latter is required by the stability condition for k = 0.) If so, then Eq. (4.56) can
potentially account for a curve that crosses zero at two points, k+ and k−, with a maximum
at an intermediate km. The band of unstable modes will then span wave-numbers from k−
to k+ (ala curve labelled by 3+ in the figure). By setting this equation (and its derivative)
to zero, it is easily checked that

k2
+ + k2

− = 2k2
m =

M11D2 +M22D1

D1D2

. (4.58)

Of course,the instability wavelength must be large enough so that the assumptions implicit
in the continuum formulation of reaction-diffusion equations remain valid.

Clearly the conditions in Eq. (4.57) cannot be simultaneously satisfied if both M11 and
M22 are negative, or if both diffusion coefficients have the same value. Without loss of
generality, we can choose M11 > 0 and M22 < 0, in which case the necessary requirement for
instability from Eq. (4.57) can be recast as

|M22|
D1

D2
< M11 < |M22| , ⇒ D2

D1
>

|M22|
M11

> 1 . (4.59)

The negative diagonal term thus corresponds to the faster diffusing component. Since neg-
ative terms are usually associated with inhibition, the above conclusion can be summarized
somewhat imprecisely by the statement that finite wavelength instabilities arise from a com-
bination of long-range inhibition and short-range excitation. Since M11M22 is now negative,
the additional requirement detM(0) = M11M22 −M12M21 > 0, implies that the off-diagonal
terms M12 and M21 must have opposite signs, with a product larger than −M11M22. If both
elements of the top row are positive, the species 1 being both self and cross excitatory, the
instability occurs when the two components are out of phase; otherwise the two species will
vary in phase.

While necessary, the conditions in Eq. (4.59) is not sufficient for instability, as the value of
the product in Eq. (4.56) must be negative at its maximum if λ+(km) > 0 while λ−(km) < 0,
and thus we must require

λ+(km)λ−(km) = detM(0)− (M11D2 +M22D1)
2

4D1D2

< 0

⇒ (M11D2 +M22D1) > 2
√

D1D2 detM(0) , (4.60)
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which is a much more restrictive condition on the ratio D2/D1. For example, in case of the
matrix

M(k) =

(

1−D1k
2 1

−3 −2−D2k
2

)

, (4.61)

the condition in Eq. (4.59) requires D2/D1 > 2, while Eq. (4.60) is satisfied for D2/D1 >
4 + 2

√
3 ≈ 7.5. The milder condition may in fact be sufficient to lead to transient “quasi-

patterns” in the presence of noise3.
Let us generalize Eq. (4.50)

∂Ci

∂t
= Fi ({Cj}) +Di∇2Ci + η(~x, t) , (4.62)

to include a stochastic term η(~x, t). For microscopic systems the noise could be due to
thermal fluctuations, in macroscopic systems it could be due to variations in the environment.
For chemical reactions, the intrinsic stochasticity of rate equations leads to typical

√
N

fluctuations for a finite number N of molecules. For simplicity we assume that the stochastic
fluctuations are described by white noise with co-variance

〈η(~x, t)η(~x′, t′)〉 = 2Nδ(t− t′)δd(~x− ~x′) . (4.63)

The noisy version of Eq. (4.53) is now

dc̃i(~k, t)

dt
=
∑

j

(

Mij − δijDik
2
)

cj(~k, t) + η̃(~k, t) , (4.64)

with

〈η(~k, t)η(~k′, t′)〉 = 2N

(2π)d
δ(t− t′)δd(~k + ~k′) . (4.65)

For a single (stable) variable c, it is easy to show that in steady state 〈|c̃(~k)|2〉 ∝ N/λ(~k).
For the many variable case in Eq. (4.64) the power-spectrum of fluctuations in steady state
is inversely proportional to detM(k) in Eq. (4.56). It is now easy to see that the peak in

the power spectrum for the transient noisy fluctuations in concentration moves from ~k = 0
to a finite wave-number km when D2/D1 > |M22|/M11.

3See “Fluctuation-driven Turing patterns,” by T. Butler and N. Goldenfeld, in Phys. Rev. E 84, 011112
(2011).
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