

Massachusetts Institute of Technology

Cancer as an evolutionary process

Leonid Mirny

leonid@mit.edu

Theory

Impact of deleterious passenger mutations on cancer progression

Christopher D. McFarland^a, Kirill S. Korolev^b, Gregory V. Kryukov^{c,d}, Shamil R. Sunyaev^{a,c,d}, and Leonid A. Mirny^{a,b,c,e,1}

^aGraduate Program in Biophysics, Harvard University, Boston, MA 02115; ^bDepartment of Physics, Massachusetts Institute of Technology, Cambridge, MA 02129; ^cBroad Institute of MIT and Harvard, Cambridge, MA 02139; ^dDivision of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and ^eInstitute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited* by Robert H. Austin, Princeton University, Princeton, NJ, and approved January 4, 2013 (received for review August 23, 2012)

https://www.pnas.org/content/110/8/2910

Tug-of-war between driver and passenger mutations in cancer and other adaptive processes

Christopher D. McFarland^a, Leonid A. Mirny^{a,b,c,1}, and Kirill S. Korolev^{b,d,1}

^aGraduate Program in Biophysics, Harvard University, Boston, MA 02115; ^bDepartment of Physics and ^cInstitute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139; and ^dDepartment of Physics and Program in Bioinformatics, Boston University, Boston, MA 02215

Edited* by Herbert Levine, Rice University, Houston, TX, and approved August 7, 2014 (received for review March 7, 2014)

https://www.pnas.org/content/111/42/15138

Experiments

Published OnlineFirst May 23, 2017; DOI: 10.1158/0008-5472.CAN-15-3283-T

Molecular and Cellular Pathobiology

The Damaging Effect of Passenger Mutations on Cancer Progression №

Christopher D. McFarland¹, Julia A. Yaglom², Jonathan W. Wojtkowiak³, Jacob G. Scott⁴, David L. Morse³, Michael Y. Sherman², and Leonid A. Mirny^{5,6}

https://cancerres.aacrjournals.org/content/77/18/4763.long

Main points

1. Cancer is an evolutionary process

Cancer genomics allows to look under the hood of this process

Treating cancer using its own evolutionary mechanisms

Evolution

mutations

diversity

selection

Evolution

mutations

diversity

selection

Evolution

mutations

diversity

selection

Mutant is new normal

mutations

new phenotype is acquired

diversity

selection

gradual change accumulation of mutations

Cancer = evolution

Cancer = evolution

Acquired phenotypes of cancer

Cell, Vol. 100, 57-70, January 7, 2000, Copyright ©2000 by Cell Press

The Hallmarks of Cancer

Acquired phenotypes of cancer acquired *mutations*

Mutation targets tumor suppressors and oncogenes

Acquired phenotypes of cancer acquired *mutations*

Mutation targets tumor suppressors and oncogenes

Acquired phenotypes of cancer acquired *mutations*

Mutation targets tumor suppressors and oncogenes

Mutation targets tumor suppressors and oncogenes [drivers]

Oncogenes and tumor suppressors

- Oncogenes -- need to be activated
 - -by mutations (within a gene or regulatory regions)
 - by chromosomal alterations
 - overexpression/modifications
- Tumor suppressors -- need to be inactivated
 - mutations, chromosomal loss, modifications

[drivers]

Cancer: series of driver mutations

Cancer: is hard to stop because it's an evolutionary process

Main points

1. Cancer is an evolutionary process

2. Cancer genomics allows to look under the hood of this process

Treating cancer using its own evolutionary mechanisms

Cancer genomics

- Get a sample of cancer => sequence
- Get a sample of normal tissue
 (from the same patient) =>

GATGTTTTATCAGTATCTTTTGACTTTTTAACATTCAAAACACTCCCTACTAATTTCTGCTTTTGGTAACAGTACATGCCATGTTAACCT TTTGCCCCTCCTTCCACCCCCATGATTCATAATGTCTGCAGACATTTTTCACTGTCACAACTGGGGGATGCTGCTAAACATCCTACAAA AGGACAGTTCTCTAGGTCAAAGCTGTTCTTAGGCAAAAAAGTCAAGTGCCAAAGGTGAGAAATCCTAATATAGAGGAATTTACTGTCTC TGAAAATTTTTCTCAAGCAATTTCATGATTTAAATAATTTCCCAGTCATAGGGTTGAATCCATGAGGTAATGCTAGCAATATGAAACA(GCAGGATTATTAATTATCACTAATTCTTCCAAGGCTACCTAACAGAATATCTCTGCTCTCCACAGGCCCATCAATTTGAAAACTCAAGT TAAGAGTAAAAAAGTAGATAATGGCTTTGAAGTTTATAAGAAAATTATGCAGCAAAGCTTTTTGTTTTACATAAGCTCATGTAAGAATAA AATTTCCTAAATCTGCATAAAACAGTTGTTATTTGGATCCACTTTTACATGTTAAGTTAGAATCTGGCAAATTCTGTCTAAATAGTCC TTTCACCAGCCCTACAAGATTATTCATGGGAGAGACTATATTAACGAATTTTGTTTCTAAAAAATTAAACCTCTCTTTTTCCCTACAATAT AGATGGAGGCACTGTCTGACCATTTTACTGAAAGCATTGTAAACGTGGTCAAACCAAACATACACAGACTGTGGCATTTCTCTGCACT(ATTTAAAGACAAAAGGAAAAAAAGCCTAAGCCATTGTCATATGTTAACAAAGGGCTGCCAACATTGTAATCTTGCCTCGAAATGTCCAC TATTTAAAATTACCCGAACGGAAACATGTAAGTGATATGAGCACACAATTCACAAAGATCAAGGTGCCAATGGTTAGCAGATACAAAA GTTCAACCTCATCAGTATTCCAGAATATGCACAAAGATTCTATCTTTAAACCTGCAAAATTATCAGAGTACAAGATATACTCTCAAAAT GCTAGTGCAAACATGTCATAAACTCCTACTACTGTCTGCATAGAATTGTTCATCCAAATGGATTTTTTCAAAGGAAATTTAAAACTCAG AAATGGACAAATGTGGTTTTTTTTTAATAGCAAGCAACATGACAATGAAGAATTGTGTCCTGGTATCTATGTCCTGGTAGGTGGGCCAA GCAAGAGTGCTCTGCTGATCTGACTTAAATGTGTTTTCTTCAGTGAATCCCTCTGTAGAGGTTTAATTTGGTAGACGTTCTATAGAGAA AAAAAATAAGATATCATCTTGATCAATTATAAAATGTGTACTTCAATTTCTTGGTTTCTATCATTGCAAATAGCAGTTCATGTTATACA AAACCCAGGTGTGGTCAAATTTCATTGTCAAGGAAAAGGGAACATTTTGGTGCTTCTTGAGATTATCATCATGAAAACACAATAAAAGG CTTAACTTTTCTTGGTAGAGAGGTTATGTGTGCCAATTCATGCACTGGTACATTAATGTCTAGCTCACATCAAATAAAAAGCAACATC GATACTGCTATGAATAAAAGACTGTTCTCTACACTTTCCTGTACTGTTTTGTAATTTCTGAAGGGAAAAAAGAAGAAATGAATTAGAGAA AGCTAGAAAGGTAAAAGTATATGAACAACACTTTTCTATTTAGTTCCCTCATTTGTTTCATAGTGCTTTAACTGCCATCATTTCATTAC AAAAAAGGTTAAATCTAACAATATATGCTAAAAACTCAATTTCACTGCAACAAAAGAATGAAAGTCCCAGGCTGGGCGTGGTGGCTCAC CCTGTAATCCCAGCACTTTGGGAGGCCAAAGCAGGCGGATCACCTGAGATCAGGAGTTCGAGACCAGCCCAGCCAACATGGTAAAACC AAAAGAAAAAAAAGAAAGTCTCTTGCATTAGTGTCAAAAGTATAATATAGATATTTCAAGTTCCCCAGATTAATAATATTACCTTAACT GATGTTTTATCAGTATCTTTTGACTTTTTAACATTCAAAACACTCCCTACTAATTTCTGCTTTTGGTAACAGTACATGCCATGTTAACCT TTTGCCCCTCCTTCCACCCCCATGATTCATAATGTCTGCAGACATTTTTCACTGTCACAACTGGGGGATGCTGCTAAACATCCTACAAA AGGACAGTTCTCTAGGTCAAAGCTGTTCTTAGGCAAAAAAGTCAAGTGCCAAAGGTGAGAAATCCTAATATAGAGGAATTTACTGTCTC TGAAAATTTTTCTCAAGCAATTTCATGATTTAAATAATTTCCCAGTCATAGGGTTGAATCCATGAGGTAATGCTAGCAATATGAAACA(GCAGGATTATTAATTATCACTAATTCTTCCAAGGCTACCTAACAGAATATCTCTGCTCTCCACAGGCCCATCAATTTGAAAACTCAAGT TAAGAGTAAAAAAGTAGATAATGGCTTTGAAGTTTATAAGAAAATTATGCAGCAAAGCTTTTTGTTTTACATAAGCTCATGTAAGAATAA AATTTCCTAAATCTGCATAAAACAGTTGTTATTTGGATCCACTTTTACATGTTAAGTTAGAATCTGGCAAATTCTGTCTAAATAGTCC TTTCACCAGCCCTACAAGATTATTCATGGGAGAGACTATATTAACGAATTTTGTTTCTAAAAAATTAAACCTCTCTTTTTCCCTACAATAT AGATGGAGGCACTGTCTGACCATTTTACTGAAAGCATTGTAAACGTGGTCAAACCAAACATACACAGACTGTGGCATTTCTCTGCACT(ATTTAAAGACAAAAGGAAAAAAAGCCTAAGCCATTGTCATATGTTAACAAAGGGCTGCCAACATTGTAATCTTGCCTCGAAATGTCCAC TATTTAAAATTACCCGAACGGAAACATGTAAGTGATATGAGCACACAATTCACAAAGATCAAGGTGCCAATGGTTAGCAGATACAAAA GTTCAACCTCATCAGTATTCCAGAATATGCACAAAGATTCTATCTTTAAACCTGCAAAATTATCAGAGTACAAGATATACTCTCAAAAT GCTAGTGCAAACATGTCATAAACTCCTACTACTGTCTGCATAGAATTGTTCATCCAAATGGATTTTTTCAAAGGAAATTTAAAACTCAG AAATGGACAAATGTGGTTTTTTTTTAATAGCAAGCAACATGACAATGAAGAATTGTGTCCTGGTATCTATGTCCTGGTAGGTGGGCCAA GCAAGAGTGCTCTGCTGATCTGACTTAAATGTGTTTTCTTCAGTGAATCCCTCTGTAGAGGTTTAATTTGGTAGACGTTCTATAGAGAA AAAAAATAAGATATCATCTTGATCAATTATAAAATGTGTACTTCAATTTCTTGGTTTCTATCATTGCAAATAGCAGTTCATGTTATACA AAACCCAGGTGTGGTCAAATTTCATTGTCAAGGAAAAGGGAACATTTTGGTGCTTCTTGAGATTATCATCATGAAAACACAATAAAAGG CTTAACTTTTCTTGGTAGAGAGGTTATGTGTGCCAATTCATGCACTGGTACATTAATGTCTAGCTCACATCAAATAAAAAGCAACATC GATACTGCTATGAATAAAAGACTGTTCTCTACACTTTCCTGTACTGTTTTGTAATTTCTGAAGGGAAAAAAGAAGAAATGAATTAGAGAA AGCTAGAAAGGTAAAAGTATATGAACAACACTTTTCTATTTAGTTCCCTCATTTGTTTCATAGTGCTTTAACTGCCATCATTTCATTAC AAAAAAGGTTAAATCTAACAATATATGCTAAAAACTCAATTTCACTGCAACAAAAGAATGAAAGTCCCAGGCTGGGCGTGGTGGCTCAC CCTGTAATCCCAGCACTTTGGGAGGCCAAAGCAGGCGGATCACCTGAGATCAGGAGTTCGAGACCAGCCCAGCCAACATGGTAAAACC AAAAGAAAAAAAAGAAAGTCTCTTGCATTAGTGTCAAAAGTATAATATAGATATTTCAAGTTCCCCAGATTAATAATATTACCTTAACT GATGTTTTATCAGTATCTTTTGACTTTTTAACATTCAAAACACTCCCTACTAATTTCTGCTTTTGGTAACAGTACATGCCATGTTAACCT TTTGCCCCTCCTTCCACCCCCATGATTCATAATGTCTGCAGACATTTTTCACTGTCACAACTGGGGGATGCTGCTAAACATCCTACAAA AGGACAGTTCTCTAGGTCAAAGCTGTTCTTAGGCAAAAAAGTCAAGTGCCAAAGGTGAGAAATCCTAATATAGAGGAATTTACTGTCTC TGAAAATTTTTCTCAAGCAATTTCATGATTTAAATAATTTCCCAGTCATAGGGTTGAATCCATGAGGTAATGCTAGCAATATGAAACA(GCAGGATTATTAATTATCACTAATTCTTCCAAGGCTACCTAACAGAATATCTCTGCTCTCCACAGGCCCATCAATTTGAAAACTCAAGT TAAGAGTAAAAAAGTAGATAATGGCTTTGAAGTTTATAAGAAAATTATGCAGCAAAGCTTTTTGTTTTACATAAGCTCATGTAAGAATAA AATTTCCTAAATCTGCATAAAACAGTTGTTATTTGGATCCACTTTTACATGTTAAGTTAGAATCTGGCAAATTCTGTCTAAATAGTCC TTTCACCAGCCCTACAAGATTATTCATGGGAGAGACTATATTAACGAATTTTGTTTCTAAAAAATTAAACCTCTCTTTTTCCCTACAATAT AGATGGAGGCACTGTCTGACCATTTTACTGAAAGCATTGTAAACGTGGTCAAACCAAACATACACAGACTGTGGCATTTCTCTGCACT(ATTTAAAGACAAAAGGAAAAAAAGCCTAAGCCATTGTCATATGTTAACAAAGGGCTGCCAACATTGTAATCTTGCCTCGAAATGTCCAC TATTTAAAATTACCCGAACGGAAACATGTAAGTGATATGAGCACACAATTCACAAAGATCAAGGTGCCAATGGTTAGCAGATACAAAA GTTCAACCTCATCAGTATTCCAGAATATGCACAAAGATTCTATCTTTAAACCTGCAAAATTATCAGAGTACAAGATATACTCTCAAAAT GCTAGTGCAAACATGTCATAAACTCCTACTACTGTCTGCATAGAATTGTTCATCCAAATGGATTTTTTCAAAGGAAATTTAAAACTCAG AAATGGACAAATGTGGTTTTTTTTTAATAGCAAGCAACATGACAATGAAGAATTGTGTCCTGGTATCTATGTCCTGGTAGGTGGGCCAA GCAAGAGTGCTCTGCTGATCTGACTTAAATGTGTTTTCTTCAGTGAATCCCTCTGTAGAGGTTTAATTTGGTAGACGTTCTATAGAGAA AAAAAATAAGATATCATCTTGATCAATTATAAAATGTGTACTTCAATTTCTTGGTTTCTATCATTGCAAATAGCAGTTCATGTTATACA AAACCCAGGTGTGGTCAAATTTCATTGTCAAGGAAAAGGGAACATTTTGGTGCTTCTTGAGATTATCATCATGAAAACACAATAAAAGG CTTAACTTTTCTTGGTAGAGAGGTTATGTGTGCCAATTCATGCACTGGTACATTAATGTCTAGCTCACATCAAATAAAAAGCAACATC GATACTGCTATGAATAAAAGACTGTTCTCTACACTTTCCTGTACTGTTTTGTAATTTCTGAAGGGAAAAAAGAAGAAATGAATTAGAGAA AGCTAGAAAGGTAAAAGTATATGAACAACACTTTTCTATTTAGTTCCCTCATTTGTTTCATAGTGCTTTAACTGCCATCATTTCATTAC AAAAAAGGTTAAATCTAACAATATATGCTAAAAACTCAATTTCACTGCAACAAAAGAATGAAAGTCCCAGGCTGGGCGTGGTGGCTCAC CCTGTAATCCCAGCACTTTGGGAGGCCAAAGCAGGCGGATCACCTGAGATCAGGAGTTCGAGACCAGCCCAGCCAACATGGTAAAACC AAAAGAAAAAAAAAGAAAGTCTCTTGCATTAGTGTCAAAAGTATAATATAGATATTTCAAGTTCCCCCAGATTAATAATATTACCTTAACT

Finding driver events

Rates of somatic mutation vary across cancers: [G.Getz]

Figure 1 | Somatic mutation frequencies observed in exomes from 3,083 tumour-normal pairs. Each dot corresponds to a tumour-normal pair, with vertical position indicating the total frequency of somatic mutations in the exome. Tumour types are ordered by their median somatic mutation frequency, with the lowest frequencies (left) found in haematological and paediatric tumours, and the highest (right) in tumours induced by carcinogens

such as tobacco smoke and ultraviolet light. Mutation frequencies vary more than 1,000-fold between lowest and highest across different cancers and also within several tumour types. The bottom panel shows the relative proportions of the six different possible base-pair substitutions, as indicated in the legend on the left. See also Supplementary Table 2.

M. Lawrence et al Nature 2013

Cancer genomics

- Whole-genome sequences (cancer vs normal)
- Whole-exome sequences (cancer vs normal)

Chromosomal alterations

GATGTTTTATCAGTATCTTTTGACTTTTTAACATTCAAAACACTCCCTACTAATTTCTGCTTTTGGTAACAGTACATGCCATGTTAACCT TTTGCCCCTCCTTCCACCCCCATGATTCATAATGTCTGCAGACATTTTTCACTGTCACAACTGGGGGATGCTGCTAAACATCCTACAAA AGGACAGTTCTCTAGGTCAAAGCTGTTCTTAGGCAAAAAAGTCAAGTGCCAAAGGTGAGAAATCCTAATATAGAGGAATTTACTGTCTC TGAAAATTTTTCTCAAGCAATTTCATGATTTAAATAATTTCCCAGTCATAGGGTTGAATCCATGAGGTAATGCTAGCAATATGAAACA(GCAGGATTATTAATTATCACTAATTCTTCCAAGGCTACCTAACAGAATATCTCTGCTCTCCACAGGCCCATCAATTTGAAAACTCAAGT TAAGAGTAAAAAAGTAGATAATGGCTTTGAAGTTTATAAGAAAATTATGCAGCAAAGCTTTTTGTTTTACATAAGCTCATGTAAGAATAA AATTTCCTAAATCTGCATAAAACAGTTGTTATTTGGATCCACTTTTACATGTTAAGTTAGAATCTGGCAAATTCTGTCTAAATAGTCC TTTCACCAGCCCTACAAGATTATTCATGGGAGAGACTATATTAACGAATTTTGTTTCTAAAAAATTAAACCTCTCTTTTTCCCTACAATAT AGATGGAGGCACTGTCTGACCATTTTACTGAAAGCATTGTAAACGTGGTCAAACCAAACATACACAGACTGTGGCATTTCTCTGCACT(ATTTAAAGACAAAAGGAAAAAAAGCCTAAGCCATTGTCATATGTTAACAAAGGGCTGCCAACATTGTAATCTTGCCTCGAAATGTCCAC TATTTAAAATTACCCGAACGGAAACATGTAAGTGATATGAGCACACAATTCACAAAGATCAAGGTGCCAATGGTTAGCAGATAC GTTCAACCTCATCAGTATTCCAGAATATGCACAA GATTCTATCTTCAAAACCTGCAAAATTATCAGAGTACAAGATATACTCTCAAAATGCTCACAAATGCTCACAAAATGCTCACAAAATGCTCACAAAATGCACAAAATTATCAAAAGGAAATTTAAAAACTCACAAAAGCTCACAAAATGCACAAAATGGATTTTTTCAAAAGGAAATTTAAAAACTCAC GCAAGAGTGCTCTGCTGATCTGACTTAAATGTGTTTTCTTCAGTGAATCCCTCTGTAGAGGTTTAATTTGGTAGACGTTCTATAGAGAA AAAAAATAAGATATCATCTTGATCAATTATAAAATGTGTACTTCAATTTCTTGGTTTCTATCATTGCAAATAGCAGTTCATGTTATACA AAACCCAGGTGTGGTCAAATTTCATTGTCAAGGAAAAGGGAACATTTTGGTGCTTCTTGAGATTATCATCATGAAAACACAATAAAAGG CTTAACTTTTCTTGGTAGAGAGGTTATGTGTGCCAATTCATGCACTGGTACATTAATGTCTAGCTCACATCAAATAAAAAGCAACATC AGCTAGAAAGGTAAAAGTATATGAACAACACTTTTCTATTTAGTTCCCTCATTTGTTTCATAGTGCTTTAACTGCCATCATTTCATTAC AAAAAAGGTTAAATCTAACAATATATGCTAAAAACTCAATTTCACTGCAACAAAAGAATGAAAGTCCCAGGCTGGGCGTGGTGGCTCAC CCTGTAATCCCAGCACTTTGGGAGGCCAAAGCAGGCGGATCACCTGAGATCAGGAGTTCGAGACCAGCCCAGCCAACATGGTAAAACC AAAAGAAAAAAAAGAAAGTCTCTTGCATTAGTGTCAAAAGTATAATATAGATATTTCAAGTTCCCCAGATTAATAATATTACCTTAACT GATGTTTTATCAGTATCTTTTGACTTTTTAACATTCAAAACACTCCCTACTAATTTCTGCTTTGGTAACAGTACATGCCATGTTAACCT TTTGCCCCTCCTTCCACCCCCATGATTCATAATGTCTGCAGACATTTTTCACTGTCACAACTGGGGGATGCTGCTAAACATCCTACAAA AGGACAGTTCTCTAGGTCAAAGCTGTTCTTAGGCAAAAAAGTCAAGTGCCAAAGGTGAGAAATCCTAATATAGAGGAATTTACTGTCTC TGAAAATTTTTTCTCAAGCAATTTCATGATTTAAATAATTTCCCAGTCATAGGGTTGAATCCATGAGGTAATGCTAGCAATATGAAACAG GCAGGATTATTAATTATCACTAATTCTTCCAAGGCTACCTAACAGAATATCTCTGCTCTCCACAGGCCCATCAATTTGAAAACTCAAGT TAAGAGTAAAAAAGTAGATAATGGCTTTGAAGTTTATAAGAAAATTATGCAGCAAAGCTTTTTGTTTTACATAAGCTCATGTAAGAATAA AATTTCCTAAATCTGCATAAAACAGTAAAAAGCCTAAGCCATTGTCATATGTTAACAAAGGGCTTGTTATTTGGATCCACTTTTACAT(TAAGTTAGAATCTGGCAAATTCTGTCTAAATAGTCCCATTTCACCAGCCCTACAAGATTATTCATGGGAGAGACTATATTAACGAATTT AAAGAAAACAACTACTTTTTTGATGAGTATTAGCTTAGAGATGGAGGCACTGTCTGACCATTTTACTGAAAGCATTGTAAACGTGGTCA **GGCT**GCCAACATTGTAATCTTGCCTCGAAATGTCCACATATTTAAAATTACCCGAACGGAAACATGTAAGTGATATGAGCACACAATT CAAAGATCAAGGTGCCAATGGTTAGCAGATACAAAAATGTTCAACCTCATCAGTATTCCAGAATATGCACAAAGATTCTATCTTTAAAG TGCAAAATTATCAGAGTACAAGATATACTCTCAAAATTGCTAGTGCAAACATGTCATAAACTCCTACTACTGTCTGCATAGAATTGAAA $\tt CTATGTCCTGGTAGGTGGGCCAAAGCAAGAGTGCTCTGCTGATCTGACTTAAATGTGTTTTCTTCAGTGAATCCCTCTGTAGAGGTTTI$ ATCTCTTAATTGCATCATTTGACTCAAAAAAAAAGCCTAAGCCATTGTCATATGTTAACAAAGGGCTGCCACAAATAATCTTCCAATG(CCTCAATCTCCATACCTAAATAAATCCCACGACAATCCACTGAAACCAGTACCATTGTGTTTAAAAAAATAAGATATCATCTTGATCAAT ATAAAATGTGTACTTCAATTTCTTGGTTTCTATCATTGCAAATAGCAGTTCATGTTATACAGAAACCCAGGTGTGGTCAAATTTCATT(CAAGGAAAAGGGAACATTTTGGTGCTTCTTGAGATTATCATGATGAAAACACAATAAAAGCACTTAACTTTTCTTGGTAGAGAGGTTAT TGTGCCAATTCATGCACTGGTACAT 4 C' Α AIⁿ. A io I A Α **A** TTGATACTGCTATGAATAAAAGACTGTT(CTACACTTTCCTGTACTGTTTGTAATTTCTGAAGEGAAAAAAGAAGAAGTGAATTAGAGAAAAGCTAGAAAGGTAAAAGTATATGAACA CACTTTTCTATTTAGTTCCCTCATTTGTTTCATAGTGCTTTAACTGCCATCATTTCATTACCAAAAAAGGTTAAATCTAACAATATATC TAAAAACTCAATTTCACTGCAACAAAAGAATGAAAGTCCCAGGCTGGGCGTGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCC AAGCAGGCGGATCACCTGAGATCAGGAGTTCGAGACCAGCCCAGCCAACATGGTAAAAACCCCGTCTCCACTAAAAACACAAAAATCAGG ͲϪϹͲϾͲϹϪϪϪϪϾͲϪͲϪϪϪϪϪϪϪϹͲϪͲϪͲͲϹϪϪϾͲͲϹϹϹϹϪϾϪͲͲϪϪͲϪϪͲϪͳͳͲϪϹϹͲͲϪϪϹͲϪϪϪϾͲͲϾϾͲϾͲϹϪϾͲϾϾϾͲͲϾϾͲϪͲϪϹ

Somatic Copy Number Alterations (SCNAs)

Finding oncogenes and tumor suppressors

Deletions Amplifications tumor suppressors and oncogenes

Cancer genomics

Finding new oncogene and tumor suppressors Whole mutational landscape of cancer Precision medicine:

mutations in each patient

Main points

1. Cancer is an evolutionary process

2. Cancer genomics allows to look under the hood of this process

Treating cancer using its own evolutionary mechanisms

Cancer genomics

100-400 amino acid substitutions

10-40 chromosomal alterations

2-5 drivers

the rest are passengers

Can some passengers

... be deleterious to cancer cells?

... affect progression?

Passengers hitchhike of drivers

Passengers hitchhike to fixation

Theory

Impact of deleterious passenger mutations on cancer progression

Christopher D. McFarland^a, Kirill S. Korolev^b, Gregory V. Kryukov^{c,d}, Shamil R. Sunyaev^{a,c,d}, and Leonid A. Mirny^{a,b,c,e,1}

^aGraduate Program in Biophysics, Harvard University, Boston, MA 02115; ^bDepartment of Physics, Massachusetts Institute of Technology, Cambridge, MA 02129; ^cBroad Institute of MIT and Harvard, Cambridge, MA 02139; ^dDivision of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and ^eInstitute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited* by Robert H. Austin, Princeton University, Princeton, NJ, and approved January 4, 2013 (received for review August 23, 2012)

https://www.pnas.org/content/110/8/2910

Tug-of-war between driver and passenger mutations in cancer and other adaptive processes

Christopher D. McFarland^a, Leonid A. Mirny^{a,b,c,1}, and Kirill S. Korolev^{b,d,1}

^aGraduate Program in Biophysics, Harvard University, Boston, MA 02115; ^bDepartment of Physics and ^cInstitute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139; and ^dDepartment of Physics and Program in Bioinformatics, Boston University, Boston, MA 02215

Edited* by Herbert Levine, Rice University, Houston, TX, and approved August 7, 2014 (received for review March 7, 2014)

https://www.pnas.org/content/111/42/15138

Experiments

Published OnlineFirst May 23, 2017; DOI: 10.1158/0008-5472.CAN-15-3283-T

Molecular and Cellular Pathobiology

The Damaging Effect of Passenger Mutations on Cancer Progression №

Christopher D. McFarland¹, Julia A. Yaglom², Jonathan W. Wojtkowiak³, Jacob G. Scott⁴, David L. Morse³, Michael Y. Sherman², and Leonid A. Mirny^{5,6}

https://cancerres.aacrjournals.org/content/77/18/4763.long

Passanger load negatively correlates with metastasis

Passengers slowdown cancer

New Experiment: Her2+ breast cancer mouse model:

mildly elevated mutation rate (H2AX+/-) normal mutation rate (control)

Passenger-based treatment

Mutagenic chemo

- requires very high mutation rate
- likely relapse

Passenger-based treatment

10⁻³

10⁻⁴

10⁻²

10⁻¹

Main points

1. Cancer is an evolutionary process

Cancer genomics allows to look under the hood of this process

Treating cancer using its own evolutionary mechanisms

MIT Physical Sciences-Oncology Center

Chris McFarland
Stanford University

Kirill Korolev, Boston University

Experiments

Julia Yaglom Michael Sherman BU Medical School

Metastatic potential

Genomics

Gregory Kryukov

Broad Institute

Shamil Sunyaev

BWH Genetics