Massachusetts
Institute of

## Cancer as an evolutionary process

## Leonid Mirny

leonid@mit.edu

## Impact of deleterious passenger mutations on cancer progression

Christopher D. McFarland ${ }^{\text {a }}$, Kirill S. Korolev ${ }^{\text {b }}$, Gregory V. Kryukov ${ }^{\text {c,d }}$, Shamil R. Sunyaev ${ }^{\text {a,c,d, }}$ and Leonid A. Mirny ${ }^{\text {a,b,c,e, }, ~}$
${ }^{\text {a }}$ Graduate Program in Biophysics, Harvard University, Boston, MA 02115; ${ }^{\text {b }}$ Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02129; 'Broad Institute of MIT and Harvard, Cambridge, MA 02139; dDivision of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and ${ }^{\text {e }}$ Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139

## https://www.pnas.org/content/110/8/2910

## Tug-of-war between driver and passenger mutations in cancer and other adaptive processes

Christopher D. McFarland ${ }^{\text {a }}$, Leonid A. Mirny ${ }^{\text {a,b,c,1 }}$, and Kirill S. Korolev ${ }^{\text {b,d, }}$
${ }^{\text {a }}$ Graduate Program in Biophysics, Harvard University, Boston, MA 02115; ${ }^{\text {b }}$ Department of Physics and ${ }^{\text {C Institute for Medical Engineering and Science, }}$ Massachusetts Institute of Technology, Cambridge, MA 02139; and ${ }^{\text {d Department of Physics and Program in Bioinformatics, Boston University, Boston }}$ MA 02215

Edited* by Herbert Levine, Rice University, Houston, TX, and approved August 7, 2014 (received for review March 7, 2014)
https://www.pnas.org/content/111/42/15138

## Experiments

The Damaging Effect of Passenger Mutations on Cancer Progression
Christopher D. McFarland ${ }^{1}$, Julia A. Yaglom², Jonathan W. Wojtkowiak ${ }^{3}$,
https://cancerres.aacrjournals.org/content/77/18/4763.long

## Main points

1. Cancer is an evolutionary process
2. Cancer genomics allows to look under the hood of this process
3. Treating cancer using its own evolutionary mechanisms

## Evolution

## mutations

diversity
selection

## Evolution

## mutations

## diversity

selection

## Evolution

## mutations

## diversity

selection


# Mutant is new normal 

## mutations

diversity
selection
gradual
change
accumulation
of mutations

## Cancer = evolution



## Cancer = evolution



## Acquired phenotypes of cancer



## The Hallmarks of Cancer

[^0]
# Acquired phenotypes of cancer acquired mutations 

Mutation targets tumor suppressors and oncogenes

## Acquired phenotypes of cancer acquired mutations



## Acquired phenotypes of cancer acquired mutations

## Mutation targets tumor suppressors and oncogenes <br> 

## Mutation targets <br> tumor suppressors and oncogenes [drivers]

## Oncogenes and tumor suppressors

- Oncogenes -- need to be activated
-by mutations (within a gene or regulatory regions)
-by chromosomal alterations
-overexpression/modifications
- Tumor suppressors -- need to be inactivated - mutations, chromosomal loss, modifications
[drivers]


## Cancer: series of driver mutations



## Cancer: is hard to stop because it's an evolutionary process



## Main points

1. Cancer is an evolutionary process
2. Cancer genomics allows to look under the hood of this process
3. Treating cancer using its own evolutionary mechanisms

## Cancer genomics

- Get a sample of cancer sequence
- Get a sample of normal tissue (from the same patient) =>


GСАGСССТТТСТTGССААСАТААТАТGСТТGССТТТТТААТТААТТАСТТСААААGСТGAAGAAGССТGGACTAAAATTATCTTTTTC GATGTTTTATCAGTATCTTTTGACTTTTTAACATTCAAAACACTCCCTACTAATTTCTGCTTTGGTAACAGTACATGCCATGTTAACCJ CTTAGCAGATTCAATATTCCCATCTATCTCCCCT TAT $A$ TAGATGTGAAGAGCACTGTTCTTCAACATTGCAAGGAC TAACACTTСТСТGСАAACCCCAAGCCACAATTATHエA, GTTTTTAATCTGATGTTTTTTCAACTCATATAGTTAAATACAATATACATACAAGTCATTCTCAATGTGGGGAGGGGGAGCAGGAGGCI TTTGCCCCTCCTTCСAСССССАTGATTCATAATGTCTGCAGACATTTTTCACTGTCACAACTGGGGATGCTGCTAAACATCCTACAAAZ AGGACAGTTCTCTAGGTCAAAGCTGTTCTTAGGCAAAAAAGTCAAGTGCCAAAGGTGAGAAATCCTAATATAGAGGAATTTACTGTCTC TGAAAATTTTTCTCAAGCAATTTCATGATTTAAATAATTTCCCAGTCATAGGGTTGAATCCATGAGGTAATGCTAGCAATATGAAACAC GCAGGATTATTAATTATCACTAATTCTTCCAAGGCTACCTAACAGAATATCTCTGCTCTCCACAGGCCCATCAATTTGAAAACTCAAGJ TAAGAGTAAAAAAGTAGATAATGGCTTTGAAGTTTATAAGAAAATTATGCAGCAAAGCTTTTGTTTTACATAAGCTCATGTAAGAATAI AATTTCСTAAATCTGCATAAAACAGTTGTTATTTGGATCCACTTTTACATGTTAAGTTAGAATCTGGCAAATTCTGTCTAAATAGTCCC TTTCACCAGCCCTACAAGATTATTCATGGGAGAGACTATATTAACGAATTTTGTTTCTAAAAATTAAACCTCTCTTTTCCCTACAATA ATAGTCTGCATATTGCTTGCATGCCACCCCCCGCCTACCCAATCACCACAGCGGACGTCTTATTCTTGAAACAATGACCAACCATAAAC ACAAGAGCAATCTTTCACAAAGTGTACGTGAATCACTCAACTGTGCTTGCTCAAAGAAAACAACTACTTTTTTGATGAGTATTAGCTTF AGATGGAGGCACTGTCTGACCATTTTACTGAAAGCATTGTAAACGTGGTCAAACCAAACATACACAGACTGTGGCATTTCTCTGCACTC ATTTAAAGACAAAAGGAAAAAAAGCCTAAGCCATTGTCATATGTTAACAAAGGGCTGCCAACATTGTAATCTTGCCTCGAAATGTCCAC TATTTAAAATTACCCGAACGGAAACATGTAAGTGATATGAGCACACAATTCACAAAGATCAAGGTGCCAATGGTTAGCAGATACAAAAI GTTCAACCTCATCAGTATTCCAGAATATGCACAAAGATTCTATCTTTAAACCTGCAAAATTATCAGAGTACAAGATATACTCTCAAAAJ GCTAGTGCAAACATGTCATAAACTCCTACTACTGTCTGCATAGAATTGTTCATCCAAATGGATTTTTTCAAAGGAAATTTAAAACTCAC AAATGGACAAATGTGGTTTTTTTTTAATAGCAAGCAACATGACAATGAAGAATTGTGTCCTGGTATCTATGTCCTGGTAGGTGGGCCAZ GCAAGAGTGCTCTGCTGATCTGACTTAAATGTGTTTTCTTCAGTGAATCCCTCTGTAGAGGTTTAATTTGGTAGACGTTCTATAGAGAZ CATATACTCTTAGAATTCATTATAGTAAATATGTTTGTTGGAATGCTATATGAGGAAGGAAAAAGCATCTCTTAATTGCATCATTTGAC СААААGССАСАААТААТСТTССААТGСТССТСААТСТССАТАССТАAATAAATCCCACGACAATCCACTGAAACCAGTACCATTGTGTJ AAAAAATAAGATATCATCTTGATCAATTATAAAATGTGTACTTCAATTTCTTGGTTTCTATCATTGCAAATAGCAGTTCATGTTATACF AAACCCAGGTGTGGTCAAATTTCATTGTCAAGGAAAAGGGAACATTTTGGTGCTTCTTGAGATTATCATCATGAAAACACAATAAAAGC СTTAACTTTTCTTGGTAGAGAGGTTATGTGTGCCAATTCATGCACTGGTACATTAATGTCTAGCTCACATCAAATAAAAAGCAACATCJ GATACTGCTATGAATAAAAGACTGTTCTCTACACTTTCCTGTACTGTTTGTAATTTCTGAAGGGAAAAAAGAAGAAATGAATTAGAGAZ AGCTAGAAAGGTAAAAGTATATGAACAACACTTTTCTATTTAGTTCCCTCATTTGTTTCATAGTGCTTTAACTGCCATCATTTCATTAC AAAAAAGGTTAAATCTAACAATATATGCTAAAAACTCAATTTCACTGCAACAAAAGAATGAAAGTCCCAGGCTGGGCGTGGTGGCTCAC ССTGTAATCCCAGCACTTTGGGAGGCCAAAGCAGGCGGATCACCTGAGATCAGGAGTTCGAGACCAGCCCAGCCAACATGGTAAAACCC GTСТССАСТАAAAACACAAAAATCAGCCGCGCGCAGTGGCAGGTGCCTGTAATCCTAGCTACTTAGGAGGCTGAGGCAGGGGAATCAC] GAACCTGGGGGGCGGAGGGTGCAGTGAGCCGAGACTGTGCCACTTCACTCCAGCCTGGGTGAAAGAGTGAAACTCCATCTCAAAAAAA AAAAGAAAAAAAAGAAAGTCTCTTGCATTAGTGTCAAAAGTATAATATAGATATTTCAAGTTCCCCAGATTAATAATATTACCTTAACJ


GСАGСССТТТСТTGССААСАТААТАТGСТТGССТТТТТААТТААТТАСТТСААААGСТGAAGAAGССТGGACTAAAATTATCTTTTTC GATGTTTTATCAGTATCTTTTGACTTTTTAACATTCAAAACACTCCCTACTAATTTCTGCTTTGGTAACAGTACATGCCATGTTAACCJ CTTAGCAGATTCAATATTCCCATCTATCTCCCO
 GTTTTTAATCTGATGTTTTTTCAACTCATATAGTTAAATACAATATACATACAAGTCATTCTCAATGTGGGGAGGGGGAGCAGGAGGCF TTTGССССТССТTССАСССССАТGATTCATAATGTCTGCAGACATTTTTCACTGTCACAACTGGGGATGCTGCTAAACATCCTACAAAZ AGGACAGTTCTCTAGGTCAAAGCTGTTCTTAGGCAAAAAAGTCAAGTGCCAAAGGTGAGAAATCCTAATATAGAGGAATTTACTGTCTC TGAAAATTTTTCTCAAGCAATTTCATGATTTAAATAATTTCCCAGTCATAGGGTTGAATCCATGAGGTAATGCTAGCAATATGAAACAC GCAGGATTATTAATTATCACTAATTCTTCCAAGGCTACCTAACAGAATATCTCTGCTCTCCACAGGCCCATCAATTTGAAAACTCAAGJ TAAGAGTAAAAAAGTAGATAATGGCTTTGAAGTTTATAAGAAAATTATGCAGCAAAGCTTTTGTTTTACATAAGCTCATGTAAGAATAI AATTTCСTAAATCTGCATAAAACAGTTGTTATTTGGATCCACTTTTACATGTTAAGTTAGAATCTGGCAAATTCTGTCTAAATAGTCCC TTTCACCAGCCCTACAAGATTATTCATGGGAGAGACTATATTAACGAATTTTGTTTCTAAAAATTAAACCTCTCTTTTCCCTACAATA ATAGTCTGCATATTGCTTGCATGCCACCCCCCGCCTACCCAATCACCACAGCAGACGTCTTATTCTTGAAACAATGACCAACCATAAAC ACAAGAGCAATCTTTCACAAAGTGTACGTGAATCACTCAACTGTGCTTGCTCAAAGAAAACAACTACTTTTTTGATGAGTATTAGCTTF AGATGGAGGCACTGTCTGACCATTTTACTGAAAGCATTGTAAACGTGGTCAAACCAAACATACACAGACTGTGGCATTTCTCTGCACTC ATTTAAAGACAAAAGGAAAAAAAGCCTAAGCCATTGTCATATGTTAACAAAGGGCTGCCAACATTGTAATCTTGCCTCGAAATGTCCAC TATTTAAAATTACCCGAACGGAAACATGTAAGTGATATGAGCACACAATTCACAAAGATCAAGGTGCCAATGGTTAGCAGATACAAAAI GTTCAACCTCATCAGTATTCCAGAATATGCACAAAGATTCTATCTTTAAACCTGCAAAATTATCAGAGTACAAGATATACTCTCAAAAJ GCTAGTGCAAACATGTCATAAACTCCTACTACTGTCTGCATAGAATTGTTCATCCAAATGGATTTTTTCAAAGGAAATTTAAAACTCAC AAATGGACAAATGTGGTTTTTTTTTAATAGCAAGCAACATGACAATGAAGAATTGTGTCCTGGTATCTATGTCCTGGTAGGTGGGCCAZ GCAAGAGTGCTCTGCTGATCTGACTTAAATGTGTTTTCTTCAGTGAATCCCTCTGTAGAGGTTTAATTTGGTAGACGTTCTATAGAGAZ CATATACTCTTAGAATTCATTATAGTAAATATGTTTGTTGGAATGCTATATGAGGAAGGAAAAAGCATCTCTTAATTGCATCATTTGAC САAAAGCCACAAATAATCTTCCAATGCTCCTCAATCTCCATACCTAAATAAATCCCACGACAATCCACTGAAACCAGTACCATTGTGTV AAAAAATAAGATATCATCTTGATCAATTATAAAATGTGTACTTCAATTTCTTGGTTTCTATCATTGCAAATAGCAGTTCATGTTATACF AAACCCAGGTGTGGTCAAATTTCATTGTCAAGGAAAAGGGAACATTTTGGTGCTTCTTGAGATTATCATCATGAAAACACAATAAAAGC СTTAACTTTTCTTGGTAGAGAGGTTATGTGTGCCAATTCATGCACTGGTACATTAATGTCTAGCTCACATCAAATAAAAAGCAACATCJ GATACTGCTATGAATAAAAGACTGTTCTCTACACTTTCCTGTACTGTTTGTAATTTCTGAAGGGAAAAAAGAAGAAATGAATTAGAGAZ AGCTAGAAAGGTAAAAGTATATGAACAACACTTTTCTATTTAGTTCCCTCATTTGTTTCATAGTGCTTTAACTGCCATCATTTCATTAC AAAAAAGGTTAAATCTAACAATATATGCTAAAAACTCAATTTCACTGCAACAAAAGAATGAAAGTCCCAGGCTGGGCGTGGTGGCTCAC ССTGTAATCCCAGCACTTTGGGAGGCCAAAGCAGGCGGATCACCTGAGATCAGGAGTTCGAGACCAGCCCAGCCAACATGGTAAAACCC GTСТССАСТАAAAACACAAAAATCAGCCGCGCGCAGTGGCAGGTGCCTGTAATCCTAGCTACTTAGGAGGCTGAGGCAGGGGAATCAC] GAACCTGGGGGGCGGAGGGTGCAGTGAGCCGAGACTGTGCCACTTCACTCCAGCCTGGGTGAAAGAGTGAAACTCCATCTCAAAAAAA AAAAGAAAAAAAAGAAAGTCTCTTGCATTAGTGTCAAAAGTATAATATAGATATTTCAAGTTCCCCAGATTAATAATATTACCTTAACJ


GСАGСССТТТСТTGССААСАТААТАТGСТТGССТТТТТААТТААТТАСТТСААААGСТGAAGAAGССТGGACTAAAATTATCTTTTTC GATGTTTTATCAGTATCTTTTGACTTTTTAACATTCAAAACACTCCCTACTAATTTCTGCTTTGGTAACAGTACATGCCATGTTAACCJ CTTAGCAGATTCAATATTCCCATCTATCTCCCCT TAT $A$ TAGATGTGAAGAGCACTGTTCTTCAACATTGCAAGGAC TAACACTTСТСТGСАAACCCCAAGCCACAATTATHエA, GTTTTTAATCTGATGTTTTTTCAACTCATATAGTTAAATACAATATACATACAAGTCATTCTCAATGTGGGGAGGGGGAGCAGGAGGCI TTTGCCCCTCCTTCСAСССССАTGATTCATAATGTCTGCAGACATTTTTCACTGTCACAACTGGGGATGCTGCTAAACATCCTACAAAZ AGGACAGTTCTCTAGGTCAAAGCTGTTCTTAGGCAAAAAAGTCAAGTGCCAAAGGTGAGAAATCCTAATATAGAGGAATTTACTGTCTC TGAAAATTTTTCTCAAGCAATTTCATGATTTAAATAATTTCCCAGTCATAGGGTTGAATCCATGAGGTAATGCTAGCAATATGAAACAC GCAGGATTATTAATTATCACTAATTCTTCCAAGGCTACCTAACAGAATATCTCTGCTCTCCACAGGCCCATCAATTTGAAAACTCAAGJ TAAGAGTAAAAAAGTAGATAATGGCTTTGAAGTTTATAAGAAAATTATGCAGCAAAGCTTTTGTTTTACATAAGCTCATGTAAGAATAI AATTTCСTAAATCTGCATAAAACAGTTGTTATTTGGATCCACTTTTACATGTTAAGTTAGAATCTGGCAAATTCTGTCTAAATAGTCCC TTTCACCAGCCCTACAAGATTATTCATGGGAGAGACTATATTAACGAATTTTGTTTCTAAAAATTAAACCTCTCTTTTCCCTACAATA ATAGTCTGCATATTGCTTGCATGCCACCCCCCGCCTACCCAATCACCACAGCGGACGTCTTATTCTTGAAACAATGACCAACCATAAAC ACAAGAGCAATCTTTCACAAAGTGTACGTGAATCACTCAACTGTGCTTGCTCAAAGAAAACAACTACTTTTTTGATGAGTATTAGCTTF AGATGGAGGCACTGTCTGACCATTTTACTGAAAGCATTGTAAACGTGGTCAAACCAAACATACACAGACTGTGGCATTTCTCTGCACTC ATTTAAAGACAAAAGGAAAAAAAGCCTAAGCCATTGTCATATGTTAACAAAGGGCTGCCAACATTGTAATCTTGCCTCGAAATGTCCAC TATTTAAAATTACCCGAACGGAAACATGTAAGTGATATGAGCACACAATTCACAAAGATCAAGGTGCCAATGGTTAGCAGATACAAAAI GTTCAACCTCATCAGTATTCCAGAATATGCACAAAGATTCTATCTTTAAACCTGCAAAATTATCAGAGTACAAGATATACTCTCAAAAJ GCTAGTGCAAACATGTCATAAACTCCTACTACTGTCTGCATAGAATTGTTCATCCAAATGGATTTTTTCAAAGGAAATTTAAAACTCAC AAATGGACAAATGTGGTTTTTTTTTAATAGCAAGCAACATGACAATGAAGAATTGTGTCCTGGTATCTATGTCCTGGTAGGTGGGCCAZ GCAAGAGTGCTCTGCTGATCTGACTTAAATGTGTTTTCTTCAGTGAATCCCTCTGTAGAGGTTTAATTTGGTAGACGTTCTATAGAGAZ CATATACTCTTAGAATTCATTATAGTAAATATGTTTGTTGGAATGCTATATGAGGAAGGAAAAAGCATCTCTTAATTGCATCATTTGAC СААААGССАСАААТААТСТTССААТGСТССТСААТСТССАТАССТАAATAAATCCCACGACAATCCACTGAAACCAGTACCATTGTGTJ AAAAAATAAGATATCATCTTGATCAATTATAAAATGTGTACTTCAATTTCTTGGTTTCTATCATTGCAAATAGCAGTTCATGTTATACF AAACCCAGGTGTGGTCAAATTTCATTGTCAAGGAAAAGGGAACATTTTGGTGCTTCTTGAGATTATCATCATGAAAACACAATAAAAGC СTTAACTTTTCTTGGTAGAGAGGTTATGTGTGCCAATTCATGCACTGGTACATTAATGTCTAGCTCACATCAAATAAAAAGCAACATCJ GATACTGCTATGAATAAAAGACTGTTCTCTACACTTTCCTGTACTGTTTGTAATTTCTGAAGGGAAAAAAGAAGAAATGAATTAGAGAZ AGCTAGAAAGGTAAAAGTATATGAACAACACTTTTCTATTTAGTTCCCTCATTTGTTTCATAGTGCTTTAACTGCCATCATTTCATTAC AAAAAAGGTTAAATCTAACAATATATGCTAAAAACTCAATTTCACTGCAACAAAAGAATGAAAGTCCCAGGCTGGGCGTGGTGGCTCAC ССTGTAATCCCAGCACTTTGGGAGGCCAAAGCAGGCGGATCACCTGAGATCAGGAGTTCGAGACCAGCCCAGCCAACATGGTAAAACCC GTСТССАСТАAAAACACAAAAATCAGCCGCGCGCAGTGGCAGGTGCCTGTAATCCTAGCTACTTAGGAGGCTGAGGCAGGGGAATCAC] GAACCTGGGGGGCGGAGGGTGCAGTGAGCCGAGACTGTGCCACTTCACTCCAGCCTGGGTGAAAGAGTGAAACTCCATCTCAAAAAAA AAAAGAAAAAAAAGAAAGTCTCTTGCATTAGTGTCAAAAGTATAATATAGATATTTCAAGTTCCCCAGATTAATAATATTACCTTAACJ


## Finding driver events



Mutation tally


Rates of somatic mutation vary across cancers: [G.Getz]



Figure 1 | Somatic mutation frequencies observed in exomes from 3,083 tumour-normal pairs. Each dot corresponds to a tumour-normal pair, with vertical position indicating the total frequency of somatic mutations in the exome. Tumour types are ordered by their median somatic mutation frequency, with the lowest frequencies (left) found in haematological and paediatric tumours, and the highest (right) in tumours induced by carcinogens
such as tobacco smoke and ultraviolet light. Mutation frequencies vary more than 1,000 -fold between lowest and highest across different cancers and also within several tumour types. The bottom panel shows the relative proportions of the six different possible base-pair substitutions, as indicated in the legend on the left. See also Supplementary Table 2.

## Cancer genomics

- Whole-genome sequences (cancer vs normal)
- Whole-exome sequences (cancer vs normal)

Chromosomal alterations


GCAGCCCTTTCTTGCCAACATAATATGCTTGCCTTTTTAATTAATTACTTCAAAAGCTGAAGAAGCCTGGACTAAAATTATCTTTTTCF GATGTTTTATCAGTATCTTTTGACTTTTTAACATTCAAAACACTCCCTACTAATTTCTGCTTTGGTAACAGTACATGCCATGTTAACCJ CTTAGCAGATTCAATATTCCCATCTATCTCCCCT TAT $F$ TVATGATGAAGAGCACTGTTCTTCAACATTGCAAGGAC
 GTTTTTAATCTGATGTTTTTTCAACTCATATAGTTAAATACAATATACATACAAGTCATTCTCAATGTGGGGAGGGGGAGCAGGAGGCF TTTGССССТССТTССАСССССАТGATTCATAATGTCTGCAGACATTTTTCACTGTCACAACTGGGGATGCTGCTAAACATCCTACAAAI AGGACAGTTCTCTAGGTCAAAGCTGTTCTTAGGCAAAAAAGTCAAGTGCCAAAGGTGAGAAATCCTAATATAGAGGAATTTACTGTCTC TGAAAATTTTTCTCAAGCAATTTCATGATTTAAATAATTTCCCAGTCATAGGGTTGAATCCATGAGGTAATGCTAGCAATATGAAACAC GCAGGATTATTAATTATCACTAATTCTTCCAAGGCTACCTAACAGAATATCTCTGCTCTCCACAGGCCCATCAATTTGAAAACTCAAGJ TAAGAGTAAAAAAGTAGATAATGGCTTTGAAGTTTATAAGAAAATTATGCAGCAAAGCTTTTGTTTTACATAAGCTCATGTAAGAATAI AATTTCCTAAATCTGCATAAAACAGTTGTTATTTGGATCCACTTTTACATGTTAAGTTAGAATCTGGCAAATTCTGTCTAAATAGTCCC TTTCACCAGCCCTACAAGATTATTCATGGGAGAGACTATATTAACGAATTTTGTTTCTAAAAATTAAACCTCTCTTTTCCCTACAATAJ ATAGTCTGCATATTGCTTGCATGCCACCCCCCGCCTACCCAATCACCACAGCGGACGTCTTATTCTTGAAACAATGACCAACCATAAAC ACAAGAGCAATCTTTCACAAAGTGTACGTGAATCACTCAACTGTGCTTGCTCAAAGAAAACAACTACTTTTTTGATGAGTATTAGCTTF AGATGGAGGCACTGTCTGACCATTTTACTGAAAGCATTGTAAACGTGGTCAAACCAAACATACACAGACTGTGGCATTTCTCTGCACTC ATTTAAAGACAAAAGGAAAAAAAGCCTAAGCCATTGTCATATGTTAACAAAGGGCTGCCAACATTGTAATCTTGCCTCGAAATGTCCAC TATTTAAAATTACCCGAACGGAAACATGTAAG

## deletion

 СTTAACTTTTCTTGGTAGAGAGGTTATGTGTGCCAATTCATGCACTGGTACATTAATGTCTAGCTCACATCAAATAAAAAGCAACATCJ GATACTGCTATGAATAAAAGACTGTTCTCTACACTTTCCTGTACTGTTTGTAATTTCTGAAGGGAAAAAAGAAGAAATGAATTAGAGAF AGCTAGAAAGGTAAAAGTATATGAACAACACTTTTCTATTTAGTTCCCTCATTTGTTTCATAGTGCTTTAACTGCCATCATTTCATTAC AAAAAAGGTTAAATCTAACAATATATGCTAAAAACTCAATTTCACTGCAACAAAAGAATGAAAGTCCCAGGCTGGGCGTGGTGGCTCAC ССTGTAATCCCAGCACTTTGGGAGGCCAAAGCAGGCGGATCACCTGAGATCAGGAGTTCGAGACCAGCCCAGCCAACATGGTAAAACCC GTСТССАСТАAAAACACAAAAATCAGCCGCGCGCAGTGGCAGGTGCCTGTAATCCTAGCTACTTAGGAGGCTGAGGCAGGGGAATCAC] GAACCTGGGGGGCGGAGGGTGCAGTGAGCCGAGACTGTGCCACTTCACTCCAGCCTGGGTGAAAGAGTGAAACTCCATCTCAAAAAAA AAAAGAAAAAAAAGAAAGTCTCTTGCATTAGTGTCAAAAGTATAATATAGATATTTCAAGTTCCCCAGATTAATAATATTACCTTAACJ

GATGTTTTATCAGTATCTTTTGACTTTTTAACATTCAAAACACTCССTACTAATTTCTGCTTTGGTAACAGTACATGCCATGTTAACC CTTAGCAGATTCAATATTCCCATCTATCTCCCCTTTATTAAGTTTATTGATTGAATGTGAAGAGCACTGTTCTTCAACATTGCAAGGAC

 TTTGССССТССТTССАСССССАTGATTCATAATGTCTGCAGACATTTTTCACTGTCACAACTGGGGATGCTGCTAAACATCCTACAAAI AGGACAGTTCTCTAGGTCAAAGCTGTTCTTAGGCAAAAAAGTCAAGTGCCAAAGGTGAGAAATCCTAATATAGAGGAATTTACTGTCTC TGAAAATTTTTCTCAAGCAATTTCATGATTTAAATAATTTCCCAGTCATAGGGTTGAATCCATGAGGTAATGCTAGCAATATGAAACAC GCAGGATTATTAATTATCACTAATTCTTCCAAGGCTACCTAACAGAATATCTCTGCTCTCCACAGGCCCATCAATTTGAAAACTCAAGJ TAAGAGTAAAAAAGTAGATAATGGCTTTGAAGTTTATAAGAAAATTATGCAGCAAAGCTTTTGTTTTACATAAGCTCATGTAAGAATAZ AATTTCCTAAATCTGCATAAAACAGTAAAAAGCCTAAGCCATTGTCATATGTTAACAAAGGGCTTGTTATTTGGATCCACTTTTACATC TAAGTTAGAATCTGGCAAATTCTGTCTAAATAGTCCCATTTCACCAGCCCTACAAGATTATTCATGGGAGAGACTATATTAACGAATTV GTTTCTAAAAATTAAACCTCTCTTTTCССTACAATATTATAGTCTGCATATTGCTTGCATGCCACCCCCCGCCTACCCAATCACCACAC GGACGTCTTATTCTTGAAACAATGACCAACCATAAAGCACAAGAGCAATCTTTCACAAAGTGTACGTGAATCACTCAACTGTGCTTGCJ AAAGAAAACAACTACTTTTTTGATGAGTATTAGCTTAGAGATGGAGGCACTGTCTGACCATTTTACTGAAAGCATTGTAAACGTGGTCF AССАAACATACACAGACTGTGGCATTTCTCTGCACTGCATTTAAAGACAAAAGGAAAAAAAGCCTAAGCCATTGTCATATGTTAACAAI GGCTGCCAACATTGTAATCTTGCCTCGAAATGTCCACATATTTAAAATTACCCGAACGGAAACATGTAAGTGATATGAGCACACAATTC CAAAGATCAAGGTGCCAATGGTTAGCAGATACAAAAATGTTCAACCTCATCAGTATTCCAGAATATGCACAAAGATTCTATCTTTAAAC TGCAAAATTATCAGAGTACAAGATATACTCTCAAAATTGCTAGTGCAAACATGTCATAAACTCCTACTACTGTCTGCATAGAATTGAAZ AGCCTAAGCCATTGTCATATGTTAACAAAGGGCTTTCATCCAAATGGATTTTTTCAAAAAAAAGCCTAAGCCATTGTCATATGTTAACE AGGGCTGGAAATTTAAAACTCACTAAATGGACAAATGTGGTTTTTTTTTAATAGCAAGCAACATGACAATGAAGAATTGTGTCCTGGTI CTATGTCCTGGTAGGTGGGCCAAAGCAAGAGTGCTCTGCTGATCTGACTTAAATGTGTTTTCTTCAGTGAATCCCTCTGTAGAGGTTTI TTTGGTAGACGTTCTATAGAGAACCATATACTCTTAGAATTCATTATAGTAAATATGTTTGTTGGAATGCTATATGAGGAAGGAAAAAC ATCTCTTAATTGCATCATTTGACTCAAAAAAAAAGCCTAAGCCATTGTCATATGTTAACAAAGGGCTGCCACAAATAATCTTCCAATGC ССТСААТСТССАТАССТАAATAAATCCCACGACAATCCACTGAAACCAGTACCATTGTGTTTAAAAAATAAGATATCATCTTGATCAAJ ATAAAATGTGTACTTCAATTTCTTGGTTTCTATCATTGCAAATAGCAGTTCATGTTATACAGAAACCCAGGTGTGGTCAAATTTCATTC CAAGGAAAAGGGAACATTTTGGTGCTTCTTGAGATTATCATニ』TGAAAACACAATAAAAGCACTTAACTTTTCTTGGTAGAGAGGTTAI
 СTAСAСTTTССТGTACTGTTTGTAATTTCTGAAG FAAAAAAGAAGAAATGAATTAGAGAAAAGCTAGAAAGGTAAAAGTATATGAAC2 САСТTTTCTATTTAGTTCCCTCATTTGTTTCATAGTGCTTTAACTGCCATCATTTCATTACCAAAAAAGGTTAAATCTAACAATATATC TAAAAACTCAATTTCACTGCAACAAAAGAATGAAAGTCCCAGGCTGGGCGTGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCC AAGCAGGCGGATCACCTGAGATCAGGAGTTCGAGACCAGCCCAGCCAACATGGTAAAACCCCGTCTCCACTAAAAACACAAAAATCAGC GCGCGCAGTGGCAGGTGCCTGTAATCCTAGCTACTTAGGAGGCTGAGGCAGGGGAATCACTTGAACCTGGGGGGCGGAGGGTGCAGTGZ CCGAGACTGTGCCACTTCACTCCAGCCTGGGTGAAAGAGTGAAACTCCATCTCAAAAAAAGGAAAAGAAAAAAAAGAAAGTCTCTTGCZ ТАGTGTСААААЯТАТААТАТАЯАТАТТТСААЯТТССССАЯАТТААТААТАТТАССТТААСТАААЯTTGGTGTСАGTGGGTTGGTATACI

## Somatic Copy Number Alterations (SCNAs)



Fig. A.



## Finding oncogenes and tumor suppressors



## Deletions Amplifications tumor suppressors and oncogenes <br> 

## Cancer genomics

Finding new oncogene and tumor suppressors
Whole mutational landscape of cancer Precision medicine:
mutations in each patient


## Main points

1. Cancer is an evolutionary process
2. Cancer genomics allows to look under the hood of this process
3. Treating cancer using its own evolutionary mechanisms

## Cancer genomics

|00-400 amino acid substitutions
I0-40 chromosomal alterations
2-5 drivers
the rest are passengers

Can some passengers
... be deleterious to cancer cells?
... affect progression?

## Passengers hitchhike of drivers



Passengers hitchhike to fixation

## Impact of deleterious passenger mutations on cancer progression

Christopher D. McFarland ${ }^{\text {a }}$, Kirill S. Korolev ${ }^{\text {b }}$, Gregory V. Kryukov ${ }^{\text {c,d }}$, Shamil R. Sunyaev ${ }^{\text {a,c,d, }}$ and Leonid A. Mirny ${ }^{\text {a,b,c,e, }, ~}$
${ }^{\text {a }}$ Graduate Program in Biophysics, Harvard University, Boston, MA 02115; ${ }^{\text {b }}$ Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02129; 'Broad Institute of MIT and Harvard, Cambridge, MA 02139; dDivision of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and ${ }^{\text {e }}$ Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139

## https://www.pnas.org/content/110/8/2910

## Tug-of-war between driver and passenger mutations in cancer and other adaptive processes

Christopher D. McFarland ${ }^{\text {a }}$, Leonid A. Mirny ${ }^{\text {a,b,c,1 }}$, and Kirill S. Korolev ${ }^{\text {b,d, }}$
${ }^{\text {a }}$ Graduate Program in Biophysics, Harvard University, Boston, MA 02115; ${ }^{\text {b }}$ Department of Physics and ${ }^{\text {C Institute for Medical Engineering and Science, }}$ Massachusetts Institute of Technology, Cambridge, MA 02139; and ${ }^{\text {d Department of Physics and Program in Bioinformatics, Boston University, Boston }}$ MA 02215

Edited* by Herbert Levine, Rice University, Houston, TX, and approved August 7, 2014 (received for review March 7, 2014)
https://www.pnas.org/content/111/42/15138

## Experiments

The Damaging Effect of Passenger Mutations on Cancer Progression
Christopher D. McFarland ${ }^{1}$, Julia A. Yaglom², Jonathan W. Wojtkowiak ${ }^{3}$,
https://cancerres.aacrjournals.org/content/77/18/4763.long


## Passengers slowdown cancer

New Experiment: Her2+ breast cancer mouse model:
mildly elevated mutation rate ( $\mathrm{H} 2 \mathrm{AX}+/-$ ) normal mutation rate (control)



## Passenger-based treatment



## Mutagenic chemo

- requires very high mutation rate
- likely relapse


## Passenger-based treatment



Going with evolution, not against it [hackers lingo:
passneger load is an exploit]

## Main points

1. Cancer is an evolutionary process
2. Cancer genomics allows to look under the hood of this process
3. Treating cancer using its own evolutionary mechanisms

MIT Physical Sciences-Oncology Center


Chris McFarland
Stanford University


Kirill Korolev,
Boston University

## Experiments

Julia Yaglom Michael Sherman BU Medical School

Metastatic potential

David Morse, MOFFITT Jacob Scott Jonathan Wojtkowiak David Basanta

## Genomics

Gregory Kryukov
Broad Institute Shamil Sunyaev
BWH Genetics


[^0]:    Douglas Hanahan* and Robert A. Weinberg ${ }^{\dagger}$

