
1.5 Population genetics of Cancer

In this section, we shall use the general results obtained so far to develop a simple model
for progression of cancer. In particular, let us reexamine Haldane’s’s result for fixation of a
newly acquired mutation, y = 1/(2N) in Eq. (1.162),

Π∗
1(y) =

1− e−s

1− e−2Ns
. (1.137)

in more detail. We shall distinguish between three classes of mutations: (i) Near neutral
mutations with |s| ≪ 1/(2N), for which the fixation probability is 1/(2N), irrespective of
whether the mutation is advantageous or deleterious. (ii) Weakly advantageous mutations
with 1 ≫ s ≫ 1/(2N) in which case Π∗

1 ≈ 1 − e−s ≈ s. (iii) Even weakly deleterious
mutations with −1 ≪ s ≪ −1/(2N) are efficiently removed from them population, as the
fixation probability is exponentially small (∼ e−2n|s|).

We can also inquire about the rate of near neutral evolution across the entire gene/genome?
The initial mutation can appear in any of the 2N chromosome at rate µ for a total rate of
2Nµ. As a near neutral mutation is fixed with probability of 1/(2N), the rate at which such
mutations are fixed in the population is itself µ, independent of N ! Note, however, that what
constitutes a near neutral mutation depends on the size of the population, and is different
for say human (Neff ∼ 103 − 104) and mouse (Neff ∼ 105).8

1.5.1 Hallmarks of Cancer

Tumors of cancer are formed following uncontrolled division and growth of cells. The impor-
tant steps for how normal cells transform to such malignant form are nicely summarized in
the classic paper: Hallmarks of Cancer: The Next Generation, D. Hanahan and R. Weinberg,
Cell 144(5) 646-74 (2011). Some important steps include uncontrolled division, evasion of
apoptosis (programmed cell death), and finally invasion and metastasis. Mutations that
can cause these changes include: (i) Single site mutations causing changes in proteins; (ii)
Chromosomal rearrangements, such as elimination or duplication of a section of DNA, or
even scrambling of different segments of DNA; (iii) Mutations that do not affect genes, but
modify their level of expression or activity.

The genes implicated in cancer can be roughly separated into two categories: Oncogenes
which are typically expressed at high levels in tumor cells (even when present as a single
copy); and Tumor suppressors whose inactivation is generally implicated with disease, such
as the p53 protein involved in DNA repair. For the purposes of the model to be developed
shortly, both types will be denoted as drivers, in contrast to passenger mutations, whose
appearance does not advance cancer tumors.

8As the numbers refer to the population bottleneck, the argument applies to fixation of mutations ap-
pearing prior to the bottleneck. Different argumentation applied to exponentially increasing populations.
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1.5.2 Model of Cancer progression

Mutation rates are abnormally high in caner cells. Let us recall the earlier estimate of
µ ∼ 2 − 5 × 10−8 per basepair in each human generation. Given the roughly 100 cell
divisions per generation from parent to progeny (in the germline, oocyte/sperm), this suggest
µ ∼ 10−9−10−10 per basepair in a healthy cell division. For cancer cells this number increases
to µ ≈ 10−6− 10−8. This high mutation rate also creates passenger mutations which are not
advantageous to cancer. In the following, we develop a mode for the competition between
driver and passenger mutations.

Let us focus on single basepair mutations, assume to occur randomly (and independently)
over the entire genome. The driver target space Td, in units of basepairs is defined as the set
of DNA sites whose mutation favors progression of cancer. Since there are roughly 100 driver
genes, with 10 to 50 vulnerable sites per gene, we estimate Td ∼ 5× 103. The corresponding
target space Tp for passenger mutations should be much larger, as most mutations are likely
to reduce the fitness of healthy cells. Assuming that there are of the order of 104 actively
expressed genes within a cell, each with around 103 possible sites for (non-synonymous)
mutations, leads to an estimate of Tp ∼ 105 − 107 basepairs. The rates at which the two
types of mutations appear in the cell line are µd = Td × µ, and µp = Tp × µ, respectively.

The appearance of mutations modifies the fitness (reproductive capacity) of the cell,
which we shall denote by f(nd, np) in the presence of nd driver and np passanger mutations.
We shall posit that each driver mutation independently increases fitness by a factor of (1+sd),
while each passenger mutation decreases it by (1−sp) ≈ 1/(1+sp), for an overall contribution
of f(nd, np) ∝ (1+sd)

nd/(1+sp)
np.9 We shall further assume sd ≫ sp > 0, i.e. the (frequent)

passenger mutations are nearly neutral, while the (rare) driver mutations are advantageous.
Indeed, recent experiments suggest sd ∼ 10−1.

A commonly used model to describe the increase in the number of tumor cells (or any
other growing population) is the logistic equation

dN

dt
= BN −D(N)N = rN

(

1−
N

K

)

. (1.138)

Cells initially grow exponentially at a rate r = B (birth rate), which is then limited by
the competition for resources captured by the (death) rate D(N) = rN/K. The growing
population then saturates at limt→∞ N(t) = K, known as the carrying capacity. To apply
the logistic map to the model of cancer cells, we shall assume a (normalized) mutation-
dependent birth rate of B(nd, np) = (1+ sd)

nd/(1+ sp)
np , but a mutation-independent death

rate of D = N/K. Within this model, the cell line will grow to a maximum size of

N(nd, np) =
B(nd, np)

K
=

(1 + sd)
nd

K(1 + sp)np
, (1.139)

and then stop.

9The combined effect of distinct mutations on fitness is termed epistasis. The model used here corresponds
to multiplicative epistasis.
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For the tumor to continue to grow, additional mutations have to occur. The appearance
of an extra mutation leads to a new cell line, growing to a maximum size N(nd + 1, np) or
N(nd, np + 1), such that

∆Nd ≡ N(nd + 1, np)−N(nd, np) ≈ N(nd, np)sd ,

∆Np ≡ N(nd, np + 1)−N(nd, np) ≈ −N(nd, np)sp . (1.140)

Such incremental growth can either eventually stop (if fitness continues to decrease with
accumulation of passenger mutations), or grow unbounded (if driver mutations dominate).
As an indicator of the possible outcomes, we examine the average “velocity”

v =

〈

∆N

∆t

〉

≡ vd − vp = ∆NdRd +∆NpRp = N(nd, np)(sdRd − spRp) , (1.141)

where Rd and Rp are the rates at which new driver or passenger mutations are fixed in
the population, each being a product of the rate of appearance of the mutation and the
probability of its fixation. The probability of a new driver mutation in a population of size
N = N(nd, np) is µTdN , and the ‘advantageous’ mutation is fixed with probability 1−e−sd ≈
sd, leading to Rd = µTdNsd. Correspondingly, the near neutral passenger mutations are fixed
with probability 1/N , while appearing at rate µTpN , resulting in Rp = µTpN/N = µTp.
Putting these results together gives

v = µTdN
2s2d − µTpNsp . (1.142)
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