
1.4 Forward Kolmogorov equation

Let us now consider evolving probabilities for a generic situation where the states are ordered
along a line, such as in the previous examples with population size n = 0, 1, 2 · · · , N . The
general form of the Master equation is

dpn
dt

= +
∑

m̸=n

Rnmpm −
∑

m̸=n

Rmnpn . (1.42)

In many relevant circumstances the number of states is large, and the probability varies
smoothly from one value of n to the next. In such cases it is reasonable to replace the
discrete index n with a continuous variable x, the probabilities pn(t) with a probability
density p(x, t), and the rates Rmn with a rate function R(x′, x). The rate function R depends
on two variables x and x′, denoting respectively the start and end positions for a transition
along the line. We have the option of redefining the two arguments of this function, and it
is useful to reparameterize it as R(x′ − x, x) indicating the rate at which, starting from the
position x, a transition is made to a position ∆x = x′−x away. As in the case of mutations,
there is usually a preference for changes that are local, i.e. with rates that decay rapidly
when the separation x′ − x becomes large.

These transformations and relabelings,

n→ x, pn(t)→ p(x, t), Rmn → R(x′ − x, x) , (1.43)

enable us to transform Eq. (1.42) to the continuous integral equation

∂

∂t
p(x, t) = +

∫ ∗

dx′R(x− x′, x′)p(x′, t)−
∫ ∗

dx′R(x′ − x, x)p(x, t) . (1.44)

Some care is necessary in replacing the sums with integrals, as the summations in Eq. (1.42)
exclude the term with m = n. To treat this restriction in the continuum limit, we focus on
an interval y around any point x, and consider the change in probability due to incoming
flux from x− y and the outgoing flux to x+ y, thus arriving at

∂

∂t
p(x, t) =

∫

dy [R(y, x− y)p(x− y)−R(y, x)p(x)] . (1.45)
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Note that the contribution for y = 0 is now clearly zero. The flux difference for small y
is now estimated by a Taylor expansion of the first term in the square bracket, but only
with respect to the location of the incoming flux, treating the argument pertaining to the
separation of the two points as fixed, i.e.

R(y, x− y)p(x− y) = R(y, x)p(x)− y
∂

∂x
(R(y, x)p(x)) +

y2

2

∂2

∂x2
(R(y, x)p(x)) + · · · . (1.46)

While formally correct, the above expansion is useful only in cases where typical values of
y are small (i.e. when only almost local transitions occur). Keeping terms up to the second
order, Eq. (1.45) can be rewritten as

∂

∂t
p(x, t) = −

∫

dy y
∂

∂x
(R(y, x)p(x)) +

1

2

∫

dy y2
∂2

∂x2
(R(y, x)p(x)). (1.47)

The integrals over y can be taken inside the derivatives with respect to x,

∂

∂t
p(x, t) = −

∂

∂x

[

p(x)

(
∫

dy yR(y, x)

)]

+
1

2

∂2

∂x2

[

p(x)

(
∫

dy y2R(y, x)

)]

, (1.48)

after which we obtain

∂p(x, t)

∂t
= −

∂

∂x
[v(x) p(x, t)] +

∂2

∂x2
[D(x)p(x, t)] . (1.49)

We have introduced

v(x) ≡

∫

dy yR(y, x) =
⟨∆(x)⟩

∆t
, (1.50)

and

D(x) ≡
1

2

∫

dy y2R(y, x) =
1

2

⟨∆(x)2⟩

∆t
. (1.51)

Equation (1.49) is a prototypical description of drift and diffusion which appears in many
contexts. The drift term v(x) expresses the rate (velocity) with which transitions change
(on average) the position from x. Given the probabilistic nature of the process, there are
variations in the rate of change of position captured by the position dependent diffusion
coefficient D(x).4 The drift–diffusion equation is known as the forward Kolmogorov equation
in the context of populations. As a description of random walks it appeared earlier in physics
literature as the Fokker–Planck equation.

In the context of population dynamics, it is convenient to introduce the variable x = n/N ,
such that in the continuum limit x is limited to the interval [0, 1]. The rates in Eq. (1.23)
change n by ±1, and hence

v(x) =
⟨∆n⟩

N
=

Rn+1,n × (+1) +Rn−1,n × (−1)

N
=

1

N
[µ1(N − n)− µ2n] = µ1(1− x)− µ2x ,

(1.52)
while

D(x) =
⟨∆n2⟩

2N2
=

Rn+1,n +Rn−1,n

2N2
=

1

2N2
[µ1(N − n) + µ2n] =

µ1(1− x) + µ2x

2N
. (1.53)

4The diffusion coefficient is usually associated with the variance,
〈

∆(x)2
〉

c
≡
〈

∆(x)2
〉

−⟨∆(x)⟩2. However,
in the limit of ∆t→ 0, the squared mean is of second order in ∆t, and can be ignored.
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1.4.1 Binomial selection

Consider a population with two forms of an allele, say A1 and A2 corresponding to blue or
brown eye colors. The probability for a spontaneous mutation to occur that changes the
allele for eye color is extremely small, and effectively µ1 = µ2 = 0 in Eq. (1.24). Yet the
proportions of the two alleles in the population does change from generation to generation.
One reason is that some individuals do not reproduce and leave no descendants, while others
reproduce many times and have multiple descendants. This is itself a stochastic process and
the major source of rapid changes in allele proportions. In principle this effect also leads
to variations in population size. In practice, and to simplify computations, it is typically
assumed that the size of the population is fixed.

In the model of binomial selection, the process or reproduction from one generation to
the next is assumed to be as follows: Let us assume that in a population of N alleles, N1 = n
are A1, and N − n are A2. The population at the next generation may have m individuals
with allele A1, and the probability for such a transition is

Πmn =
( n

N

)m (

1−
n

N

)N−m
(

N
m

)

. (1.54)

The process leading to such probability is like reaching into a bag with n balls of blue color
and N −m balls of brown color, recording the color of the selected ball and throwing it back
to the bag. After repeating such selection N times, the probability that the blue color is
recorded m times is given by the above binomial distribution. (The probability of getting
a blue ball in each trial is simply n/N , and 1 − n/N for brown.) Clearly some balls can
be picked up multiple times (multiple descendants), while some balls are never picked (no
offspring).

Regarding Rmn as the probability to obtain the random variable m, given an initial value
of n, it is easy to deduce from standard properties of the binomial distribution that

⟨m⟩ = N ×
n

N
= n , i.e ⟨(m− n)⟩ = 0 , (1.55)

while
〈

m2
〉

c
=
〈

(m− n)2
〉

= N ×
n

N

(

1−
n

N

)

. (1.56)

We can construct a continuum evolution equation by setting x = n/N ∈ [0, 1], and replacing
p(n, t+1)− p(n, t) ≈ dp(x)/dt, where t is measured in number of generations. Clearly, from
Eq. (1.55), there is no drift

v(x) = ⟨(m− n)⟩ = 0 , (1.57)

while the diffusion coefficient is given by

Dhaploid(x) =
1

2N2

〈

(m− n)2
〉

=
1

2N
x(1 − x) . (1.58)

Since each allele in the above example is treated as a single individual, the process is
similar to reproduction in haploid organisms, where each individual carrier one copy of the
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genetic information. A slight modification of binomial selection is also applicable to diploid
organisms, where each member carries two copies of an allele. Given two alleles, there are
three possible variants (so-called genotypes) of A1A1, A1A2, and A2A2 in proportions of
x11, x12, and x22 respectively. The offspring from mating of two diploids randomly acquire
one copy of the allele from each parent. To mimic a mating event, pick one allele of one
individual, another allele from a second individual. Set aside the resulting offspring and
return the parents to the initial pool. Repeat the process N times to construct the new
generation. For each offspring the probability of selecting allele A1 is x11+x12/2, while allele
A2 is selected with probability x22 + x12/2. If the initial population is in Hardy–Weinberg
equilibrium, the relative genotype frequencies are related to the proportions of the two alleles
simply by x11 = x2, x12 = 2x1x2, and x22 = x2

2. The mating process is thus again equivalent
to the process we considered earlier for haploids with A1 and A2 chosen with probabilities
of x and 1 − x respectively. Since, in a diploid population of N individuals, the number of
alleles is 2N , the previous result is simply modified to

Ddiploid(x) =
1

4N
x(1− x) . (1.59)

1.4.2 Chemical analog & Selection

Through the reactions in Eq. (1.26), we introduced a chemical mixture that mimicks a
mutating population. Consider a system where a reaction between molecules A and B can
lead to two outcomes:5

A+ B ⇀c A+ A or A + B ⇁d B + B , (1.60)

at rates c and d. In a “mean-field” approximation the number of A molecules changes as

dNA

dt
= (c− d)NANB = (c− d)NA(N −NA) . (1.61)

Equation (1.61) predicts steady states N∗
A = 0 for c < d, N∗

A = N for c > d, while any com-
position is permitted for the symmetric case of c = d. As we shall demonstrate, fluctuations
modify the latter conclusion.

As before, let us denote NA = n, NB = N − NA, and follow the change in composition
after a single reaction. The number of A species may change by ±1 with rates

Rn,n+1 = d(n+ 1)(N − n− 1), and Rn,n−1 = c(n− 1)(N − n+ 1) , (1.62)

where the product is over the number of possible pairs of A-B particles that can participate
in the reaction. The diagonal terms are again obtained from the normalization condition in

5These reactions mimic an important element of the mating process which stochastically modifies the
proportion of alleles in a fixed–size population: The offspring from mating a heterozygote (a diploid organ-
ism with different alleles A1 and A2) with a homozygote (say with two copies of allele A1) may be either
heterozygote (A1A2) or homozygote (A1A1).
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Eq. (1.14) resulting in the Master equation

dp(n, t)

dt
= d(n+1)(N−n−1)p(n+1)+c(n−1)(N−n+1)p(n−1)−dn(N−n)p(n)−cn(N−n)p(n) ,

(1.63)
for 0 < n < N , and with boundary terms

dp(0, t)

dt
= d(N − 1)p(1), and

dp(N, t)

dt
= c(N − 1)p(N − 1) . (1.64)

When the number N is large, it is reasonable to take the continuum limit and construct
a Kolmogorov equation for the fraction x = n/N ∈ [0, 1]. The rates in Eq. (1.62) change n
by ±1, and hence

v(x) =
⟨∆n⟩

N
=

Rn+1,n − Rn−1,n

N
=

1

N
[cn(N − n)− dn(N − n)]

= N(c− d)x(1− x) , (1.65)

while

D(x) =
⟨∆n2⟩
2N2

=
Rn+1,n +Rn−1,n

2N2
=

1

2N2
[cn(N − n) + dn(N − n)]

=
c+ d

2
x(1− x) . (1.66)

Comparison with Eqs.(1.57) and Eq. (1.59) indicates that the above reaction has the same
behavior as binomial selection provided that c = d = 1/(4N). Indeed the superficial differ-
ence in factor of N between the two cases is because in the latter we followed the reactions
one at a time (at rate c = d), while in the former we computed the transition probabilities
after a whole generation (N steps of reproduction and removal). The selection process char-
acterized by Eq.(1.54) treats the two alleles as completely equivalent. In reality one allele
may provide some advantage to individuals carrying it. If so, there should be a selection pro-
cess by which individuals with this allele are more likely to reproduce, on average increasing
their population in the next generation. Such advantage then leads to a drift in the appro-
priate Kolmogorov equation. The process of selection in population genetics was described
in a previous section. Indeed the result in Eq. (1.91), can be mathematically reproduced in
the binary reaction of Eq. (1.60) with c ̸= d, given by

c =
1

4N
(1 + s) and d =

1

4N
(1− s) . (1.67)

In the following, we shall employ the nomenclature of population genetics, such that

v(x) =
s

2
x(1− x) , and D(x) =

1

4N
x(1− x) . (1.68)
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1.4.3 Steady states

While it is usually hard to solve the Kolmogorov equation as a function of time, it is relatively
easy to find the steady state solution to which the population settles after a long time. Let
us denote the steady-state probability distribution by p∗(x), which by definition must satisfy

∂p∗(x)

∂t
= 0. (1.69)

Therefore, setting the right-hand side of Eq. (1.49) to zero, we get

−
∂

∂x
[v(x)p∗(x)] +

∂2

∂x2
[D(x)p∗(x)] = 0. (1.70)

The most general solution admits steady states in which there is an overall current and the
integral over x of the last equation leads to a constant flow in probability. It is not clear how
such a circumstance may arise in the context of population genetics, and we shall therefore
focus on circumstances where there is no probability current, such that

−v(x)p∗(x) +
∂

∂x
(D(x)p∗(x)) = 0. (1.71)

We can easily rearrange this equation to

1

D(x)p∗
∂

∂x
(D(x)p∗(x)) =

∂

∂x
ln (D(x)p∗(x)) =

v(x)

D(x)
. (1.72)

This equation can be integrated to

lnD(x)p∗(x) =

∫ x

dx′ v(x
′)

D(x′)
+ constant, (1.73)

such that

p∗(x) ∝
1

D(x)
exp

[
∫ x v(x′)

D(x′)

]

, (1.74)

with the proportionality constant set by boundary conditions.
Let us examine the case of the dynamics of a fixed population, including mutations, and

reproduction with selection. Adding the contributions in Eqs. (1.52), (1.53) and (1.68), we
have

v(x) =
s

2
x(1− x) + µ1(1− x)− µ2x , (1.75)

while

D(x) =
1

4N
x(1− x) +

µ1(1− x) + µ2x

2N
≈

1

4N
x(1− x) . (1.76)

The last approximation of ignoring the contribution from mutations to diffusion is common
to population genetics, where mutation rates are much smaller than one. It enables a closed

19



form solution to the steady state, as

logD(x)p∗(x) =

∫ x

dx′ v(x
′)

D(x′)

= 4N

∫ x

dx′

[

µ1

x′
−

µ2

1− x′
+

s

2

]

= 4N
[

µ1 ln x+ µ2 ln(1− x) +
s

2
x
]

+ constant,

resulting in

p∗(x) ∝
1

x(1− x)
× x4Nµ1 × (1− x)4Nµ2 × e2Nsx . (1.77)

In the special case of no selection, s = 0 and (for convenience) µ1 = µ2 = µ, the steady-
state solution (1.77) simplifies to

p∗(x) ∝ [x(1− x)]4Nµ−1 . (1.78)

The shape of the solution is determined by the parameter 4Nµ. If 4Nµ > 1, then the
distribution has a peak at x = 1/2 and diminishes to the sides. On the other hand, if the
population is small and 4Nµ < 1, then p∗(x) has peaks at either extreme—a situation where
genetic drift is dominant.

In deriving Eqs. (1.74,1.77), we neglected two important issues: boundary conditions,
and normalizability of the probability distributions. These topics will be discussed next.
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