
5.1.2 Steady state

Because of the conservation of probability in Eqs. (5.1.2) and (5.1.13), the transition proba-

bility matrix π, and by extension the rate matrixR have a left-eingenvector
←−
v∗ = (1, 1, · · · , 1)

with eigenvalues of unity and zero respectively, i.e.

←−
v∗π =

←−
v∗ , and

←−
v∗R = 0. (5.1.4)

For each eigenvalue of a matrix there is both a left eigenvector and a right eigenvector. The
matrices π and R thus must also have a right-eigenvector

−→
p∗ such that

π
−→
p∗ =

−→
p∗ , and R

−→
p∗ = 0. (5.1.5)

The elements of the vector
−→
p∗ represent the steady state probabilities for the process. These

probabilities no longer change with time. In many cases, the Perron–Frobenius theorem
ensures that the vector

−→
p∗ is unique, with positive elements as appropriate to probabilities.1

Since the matrix π is not symmetric, the remaining eigenvalues need not be real, but must
occur in complex conjugate pairs. These remaining eigenvalues of the transition matrix have
magnitude less than unity, and determine how an initial vector of probabilities approaches
the steady state.

From Eq. (5.1.3) we observe that a particular steady state
−→
p∗ can be achieved through

transition probabilities that satisfy the so-called condition of detailed balance,

παβp
∗
β = πβαp

∗
α . (5.1.6)

This condition holds for systems in thermal equilibrium, where the steady-state probabilities
are constrained to satisfy the Boltzmann distribution (p∗α ∝ exp(−βEα)). Equation (5.1.6)
requires equal probability fluxes between any pair of states. More general steady states can
be formed with the probability flux circulating along triplets and larger sets. Indeed, such
circulation of flux can be used as indicator of non-equilibrium steady states.

1A condition for the validity of the above is that it any state should be accessible (through a set of
transitions) from any other states. Consequences of violation of this condition will be explored later in
connection with genetic drift and absorbing states.


