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The construction of the central nervous system (CNS)
results from a series of events that begins with neural
induction and cellular proliferation, and ends with
synapse formation and circuit refinement1. Each step in
the developmental sequence results from an interplay
between cell-intrinsic and cell-extrinsic signalling mech-
anisms2. Over the past half-century, many secreted mol-
ecules have been identified and shown to significantly
influence individual developmental programmes.
Neurotransmitters are a class of secreted molecules that
might be important signals during nervous system devel-
opment.Although neurotransmitters are generally asso-
ciated with neuronal communication in the mature
brain, multiple transmitter systems have been shown to
influence different aspects of neuronal maturation in
various experimental systems3–6.

The amino acid GABA has long been considered
to be the main inhibitory neurotransmitter in the
adult mammalian brain. However, GABA-mediated
signalling has also been implicated in the regulation
of nearly all the key developmental steps, from cell
proliferation to circuit refinement. Considering that
nearly all organisms, ranging from bacteria to
humans, can synthesize GABA, it would be surprising
if multiple functions for GABA had not evolved7–9.
Here, we address the role of GABA-mediated signalling
during brain development. We first provide a brief

historical introduction to the establishment of GABA as
a neurotransmitter substance, as well as an overview of
the components of the GABA signalling system. Then
we discuss ontogenetic changes in GABA signalling
and potential developmental functions of GABA,
focusing primarily on the mammalian neocortex,
although other brain regions are also considered.

GABA as a neurotransmitter
The discovery of direct synaptic inhibition, with GABA
being the first clear example of an inhibitory neuro-
transmitter substance, markedly altered views of synap-
tic transmission, which had previously allowed for only
excitatory signalling molecules10. GABA was first identi-
fied in the mammalian brain over half a century
ago11,12. During the 1950s and 1960s, strong evidence
accumulated that GABA was acting as an inhibitory
neurotransmitter in both vertebrate and invertebrate
nervous systems13. For example, extracts from the
mammalian brain contained a substance, termed fac-
tor I, that blocked impulse generation in crayfish
stretch receptor neurons14. Factor I was subsequently
shown to be GABA15. In crustaceans, GABA was found
to be approximately 100 times more concentrated in
inhibitory axons than in excitatory ones16,17, and in
response to nerve stimulation, inhibitory nerve termi-
nals were found to secrete GABA18. Similar, although

IS THERE MORE TO GABA THAN
SYNAPTIC INHIBITION?
David F. Owens* and Arnold R. Kriegstein‡

In the mature brain, GABA (γ-aminobutyric acid) functions primarily as an inhibitory
neurotransmitter. But it can also act as a trophic factor during nervous system development to
influence events such as proliferation, migration, differentiation, synapse maturation and cell
death. GABA mediates these processes by the activation of traditional ionotropic and
metabotropic receptors, and probably by both synaptic and non-synaptic mechanisms.
However, the functional properties of GABA receptor signalling in the immature brain are
significantly different from, and in some ways opposite to, those found in the adult brain. 
The unique features of the early-appearing GABA signalling systems might help to explain how
GABA acts as a developmental signal.

*Laboratory of Molecular
Biology, National Institute of
Neurological Disorders and
Stroke, Building 36, Room
3C09, 36 Convent Drive,
Bethesda, Maryland 20892-
4092, USA.
‡Department of Neurology,
Columbia University College
of Physicians & Surgeons,
630 West 168th Street, Box
31, New York, New York
10032, USA.
Correspondence to A.R.K.
e-mail:
ark17@columbia.edu
doi:10.1038/nrn919

© 2002        Nature  Publishing Group



716 |  SEPTEMBER 2002 | VOLUME 3 www.nature.com/reviews/neuro

R E V I E W S

less compelling, findings of GABA being concentrated
and released from inhibitory neurons were also made
in the vertebrate brain19. The identification of biosyn-
thetic and metabolic pathways for GABA showed that
the production, release, reuptake and metabolism of
this substance occurred in the nervous system13. When
GABA was applied to nerve and muscle cells of both
vertebrates and invertebrates, it was generally found to
have inhibitory effects15,20–22 and to produce conduc-
tance changes with ion sensitivities similar to those
observed after the activation of inhibitory nerves21,23–27.
Finally, in the 1970s, GABA was localized to mam-
malian nerve terminals28, and antibodies raised against
GABA-biosynthetic enzymes were shown to be 
localized preferentially to known inhibitory neurons13.

The GABA neurotransmitter system
FIGURE 1a provides a summary of the GABA neurotrans-
mitter system. In the mammalian brain, GABA is syn-
thesized primarily from glutamate in a reaction that is
catalysed by two glutamic acid decarboxylase (GAD)
enzymes, GAD65 and GAD67 (REF. 29). GABA is loaded
into synaptic vesicles by a vesicular neurotransmitter
transporter (VGAT)30 and is liberated from nerve termi-
nals by calcium-dependent exocytosis. However, non-
vesicular forms of GABA secretion (for example, by
reverse transporter action) have also been described and
might be particularly important during development31,32.
The effects of GABA can be mediated by the activation
of either IONOTROPIC or METABOTROPIC receptors, which can
be localized either pre- or postsynaptically. GABA sig-
nals are terminated by reuptake of the neurotransmitter
into nerve terminals and/or into surrounding glial
cells by a class of plasma-membrane GABA trans-
porters (GATs)33; thereafter, GABA is metabolized by a
transamination reaction that is catalysed by GABA
transaminase (GABA-T)13.

GABA neurons. There is a wide variety of GABA-
producing neurons in the brain. In the neocortex, most
GABA-containing neurons are local interneurons with
few, if any, dendritic spines, and are therefore classified as
sparsely spiny, aspiny or smooth cells34–36. These cells are
further classified into one of several basic groups, such as
basket cells, chandelier cells, double bouquet cells, local
plexus neurons or neurogliaform cells (FIG. 1b). These
subtypes differ in their morphology, neurochemical com-
position, somatic location and terminal arborization35,37.
GABA-containing cells are distributed throughout the
cortical lamina37–39. In addition, GABA interneurons can
be classified by intrinsic membrane properties and
synaptic connectivity 40,41. Interestingly, experimental
data have indicated that most, if not all, neocortical
GABA neurons are generated and migrate not from cor-
tical, but rather from subcortical locations42. However,
this property might differ across species, as recent work
in humans suggests that approximately 65% of neocorti-
cal GABA neurons arise from the neocortical prolifera-
tive zone43. Finally, in addition to local circuit neurons,
direct GABA afferents project to the cortex from the
basal forebrain and the ZONA INCERTA44–46.
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Figure 1 | Components of the GABA signalling pathway. a | Schematic diagram of the
synthesis and transport of GABA (γ-aminobutyric acid) at synapses. GABA is synthesized in
inhibitory neurons from glutamate by the enzyme glutamic acid decarboxylase (GAD), and is
transported into vesicles by a vesicular neurotransmitter transporter (VGAT). GABA can be
released either vesicularly or non-vesicularly (by reverse transport). GABA receptors are located at
pre- and postsynaptic sites. GABAB receptors are metabotropic receptors that cause presynaptic
inhibition by suppressing calcium influx and reducing transmitter release, and achieve postsynaptic
inhibition by activating potassium currents that hyperpolarize the cell. Reuptake of GABA by
surrounding neurons and glia occurs through the activity of GABA transporters (GAT).
Subsequently, GABA is metabolized by a transamination reaction that is catalysed by GABA
transaminase (GABA-T). The metabolism of GABA occurs in both neurons (not shown) and glia. 
b | Cortical GABA interneurons are phenotypically diverse, as illustrated here by classification on
the basis of morphological features. This figure illustrates (left to right) an interneuron with axonal
arcades, a double bouquet cell, three types of basket cell, two chandelier cells, a cell spanning all
cortical layers and a neurogliaform cell. c | GABA receptors differ in subunit composition and
assembly. GABAA and GABAC receptors are closely related pentameric receptors that carry
chloride; however, whereas GABAA receptors are composed of combinations of several subunit
types, GABAC receptors are composed of only single or multiple ρ-subunits. GABAB receptors are
metabotropic receptors that exist as R1a, R1b and R2 isoforms, and are associated with 
G proteins. Native GABAB receptors are dimers composed of one R1 subunit and the R2 subunit.
Modified, with permission, from REF. 179 © 1987 The Institute of Mind and Behavior.
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During the late 1970s and early 1980s, evidence was
found for a bicuculline-insensitive, chloride-independent
GABA response in the brain, mediated by a metabotropic
receptor that was termed the GABA

B
receptor60–62.

Metabotropic receptor signalling occurs by the activation
of heterotrimeric G proteins63. G proteins transduce sig-
nals through the positive or negative regulation of pri-
mary effectors, second messengers and their associated
enzymes, which can, in turn, modulate channel and
receptor function62. GABA

B
receptors are localized both

pre- and postsynaptically, and they use different mecha-
nisms at these locations to regulate cell excitability 
(FIG. 1a). Presynaptic inhibition occurs through  a GABA

B
-

receptor-mediated reduction in calcium current at the
nerve terminal and a subsequent reduction in transmitter
release, whereas postsynaptic inhibition occurs by
GABA

B
-receptor-mediated activation of potassium 

currents that hyperpolarize the neuron49.
The cloning of the GABA

B
receptor has revealed a

putative seven-transmembrane G-protein-coupled
receptor that exists as two isoforms, R1a and R1b64.
This receptor shows sequence homology with the
metabotropic glutamate receptors (mGluRs)64.
Interestingly, functional native receptors seem to be
heterodimers that are composed of the R1a or R1b
subunit, and the more recently identified R2 subunit65

(FIG. 1a,c). It has been suggested that the R1a and R1b
isoforms localize preferentially to presynaptic and
postsynaptic membranes, respectively66.

Ontogeny of cortical GABA-mediated signalling
Receptor expression. After terminal cell division, newly
‘born’ neurons migrate away from proliferative regions
and are deposited in the developing cortical plate (CP).
Components of the GABA signalling system appear
very early in corticogenesis and persist for the lifetime of
the organism (see FIG. 2). Functional GABA

A
receptors

are expressed by mitotically active precursor cells in the
neocortical proliferative zone67–70. Recent data indicate
that the GABA-responsive precursor cells are neuro-
genic radial glia71. WHOLE-CELL RECORDINGS made from
embryonic and early postnatal cells have shown that the
early-expressed GABA

A
receptors change significantly

with development (FIG. 2). In the neocortex, GABA
A

receptors expressed by proliferating precursor cells
(radial glia) have a higher apparent affinity for GABA
and are relatively insensitive to receptor desensitization
compared with receptors expressed by postmigratory
neurons in the cortical plate70. Consistent with these
findings are studies showing that dissociated neuro-
epithelial cells contain a population of GABA

A
receptors

that have relatively long channel open times72.
The differences in GABA

A
receptor properties in pre-

cursor cells and postmitotic neurons might be due to dif-
ferences in subunit composition. Immunohistochemical
and in situ hybridization methods have revealed a chang-
ing pattern of GABA

A
receptor subunit expression in the

developing neocortex73–78. In the neocortical proliferative
zone, α4-, β1- and γ1-subunits seem to be expressed
most prominently73,75–78; however, messenger RNA for
other GABA

A
receptor subunits has also been localized to

GABA synapses. Initial electron-microscopic analyses of
neocortical synapses resulted in the classification of two
general synaptic types on the basis of differences in ultra-
structure; these were termed type 1 and type 2 synapses47.
Generally, type 1 synapses have an asymmetrical mem-
brane density at the synaptic cleft and are considered to be
excitatory, whereas type 2 synapses have a symmetrical
appearance and are generally thought to be inhibitory48.
Symmetrical synapses make up about 15% of adult corti-
cal synapses and contain GABA38,39. GABA synapses are
present in all neocortical layers,and are observed most fre-
quently on cell somata, proximal dendrites and axon ini-
tial segments36–39. However, like asymmetrical synapses,
GABA synapses can also be found on distal dendrites and
dendritic spines36. Two general types of GABA-mediated
postsynaptic potential have been described on the basis of
distinctive pharmacological sensitivity, ionic selectivity
and kinetic properties. Fast responses are mediated 
by ionotropic GABA

A
receptors and slow responses by

metabotropic GABA
B

receptors49–51.

GABA receptors. GABA
A

receptors are members of the
ligand-gated ion channel superfamily that includes nico-
tinic acetylcholine receptors (nAChRs), glycine receptors
and the serotonin (5-hydroxytryptamine) 5-HT

3
recep-

tor. For this class of receptors, ligand binding is followed
by a conformational change in the channel protein that
allows a net inward or outward flow of ions through the
membrane-spanning pore of the channel, depending on
the electrochemical gradient of the particular permeant
ion. GABA

A
receptors carry primarily chloride (Cl–)

ions; however, other anions, such as bicarbonate
(HCO

3
–), can also permeate the channel pore, although

less efficiently51,52. Chloride-dependent GABA
A
-receptor-

mediated synaptic inhibition can occur either pre- or
postsynaptically (FIG. 1a). GABA

A
receptors are believed to

be heteropentameric proteins that are constructed from
subunits derived from several related genes or gene fami-
lies53. At present, six α-subunits, three β-subunits, three
γ-subunits, one δ-subunit, one ε-subunit, one π-subunit
and one θ-subunit have been identified53–55 (FIG. 1c). This
multiplicity of subunits provides a daunting number of
potential subunit combinations; however, it seems that
certain subunit combinations are preferred56. Native
receptors contain at least one α-, one β- and one γ-sub-
unit, with the δ-, ε-, π- and θ-subunits able to substitute
for the γ-subunit56. In addition, receptors with different
subunit compositions seem to be distributed to different
cellular locations, where they are positioned to mediate
primarily synaptic or primarily extrasynaptic signalling57.

A related ionotropic GABA receptor, sometimes
termed the GABA

C
receptor, has also been identified.

This receptor is a chloride-selective ion channel, but is
insensitive to the GABA

A
receptor antagonist bicu-

culline58. GABA
C

receptors are believed to be homo- or
heteropentameric proteins that are composed of a sin-
gle or multiple ρ-subunits (FIG. 1c). As the ρ-subunits
share considerable sequence homology with the other
identified GABA

A
receptor subunits, GABA

C
receptors

can be considered as pharmacological variants of
GABA

A
receptors55,59.

IONOTROPIC

A term that describes a receptor
that exerts its effects through the
modulation of ion channel
activity.

METABOTROPIC

A term that describes a receptor
that exerts its effects through
enzyme activation.

ZONA INCERTA

A thin layer of grey matter that is
situated in the dorsal region of
the subthalamus.

WHOLE-CELL RECORDING

A high-resolution
electrophysiological recording
technique in which a very small
electrode tip is sealed onto a
patch of cell membrane and,
with suction, the membrane
patch is ruptured to allow low-
resistance electrical access to the
cell interior. Electrical currents
flowing across the cell
membrane can then be
recorded, but the ion
composition of the cell interior
is altered to that of the electrode-
filling solution. By contrast, in
gramicidin-perforated-patch
recordings, suction is not
applied to rupture the patch.
Instead, gramicidin in the
electrode-filling solution creates
tiny pores in the membrane
patch. The pores allow low-
resistance electrical access for
whole-cell recording, but do not
allow the passage of anions, and
so leave [Cl–]

i
unchanged.
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cortical neurons have shown that the increase in 
α1-subunit expression correlates with an increase in the
decay kinetics of GABA

A
-receptor-mediated synaptic

currents82. Moreover, developmental changes in the
channel kinetics seem to be a general phenomenon for
ligand-gated ion channels. In addition to GABA

A
recep-

tors, nAChRs83, ionotropic glutamate receptors84 and
glycine receptors85 have all been shown to have slower
synaptic decay kinetics and/or longer channel open
times in immature cells. The relatively prolonged
synaptic actions of transmitters in young neurons
probably increase the efficacy of transmission in cells
with immature membrane properties.

It should also be noted that differences in the physio-
logical state of the cell, and not simply GABA receptor
subunit composition, could also contribute to differ-
ences in GABA

A
receptor function in different cell types.

For example, intracellular calcium concentration
([Ca2+]

i
), degree of receptor phosphorylation and asso-

ciation with cytoskeletal anchoring proteins have all
been shown to alter ligand affinity, peak current size and
the rate of desensitization of GABA

A
receptors86–88.

Interestingly, when receptors with the same subunit
composition are unclustered, they have higher ligand
affinity and slower off kinetics than when they are clus-
tered86, and these properties match those of VZ GABA

A

receptors. Possibly, then, VZ GABA
A

receptors might
simply be unclustered receptors.

the ventricular zone (VZ)75,78. At present, it is uncertain
which of the detected subunits form native channels, and
whether there is a differential expression of specific 
subunits in proliferative and newly born postmitotic neu-
rons. Nevertheless, there is a clear shift in subunit expres-
sion between proliferative and postmitotic zones. In the
embryonic CP, which contains almost exclusively post-
mitotic neurons,α3,β2/3 and γ3 seem to be the predomi-
nant subunits76. Other α-subunits (α1, α2 and α5), the
γ2-subunit75 and the δ-subunit78 have also been localized
to the perinatal CP, but are expressed at lower levels.
Interestingly, expression studies have shown that addition
of the γ2-subunit can increase the desensitization rate of
recombinant receptors79. In addition, the γ2-subunit is
crucial for the postsynaptic clustering of GABA

A
recep-

tors and the formation of functional synapses in cultured
cortical neurons80. It seems, then, that most GABA

A

receptors in young postnatal neurons are composed of
combinations of α2/3/5-,β2/3- and γ2/3-subunits75.

As is the case for cells of the proliferative zone, it is
uncertain which subunits form native channels in devel-
oping neurons. However, one consistent theme is that
receptors expressed by more immature cells tend to have
synaptic currents with slower decay kinetics81,82, and this
property correlates with the presence or absence of cer-
tain subunits. For example, α1-subunit expression is low
in the cortex perinatally, but increases significantly with
postnatal development74. Experiments with cultured
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Figure 2 | Physiological responses to GABA differ in
precursor cells and immature neurons. a | The
immunohistochemical localization of GABA (γ-aminobutyric
acid)-positive cells in the embryonic cortex is shown on the left,
indicating abundant sources of GABA at early ages. On the
right, the lower panel shows the relatively long-lasting current
induced by GABA application to cells in the ventricular zone
(VZ), and the outward current shift in response to GABAA

receptor blockade by bicuculline, which points to tonic GABA
receptor activation by endogenous ligand. In the upper panel,
GABA application to neurons in the cortical plate (CP) produces
more rapidly desensitizing current responses, and these cells
show bicuculline-sensitive spontaneous synaptic currents. IZ,
intermediate zone; MZ, marginal zone; SP, subplate; SVZ,
subventricular zone. b | GABA dose–response characteristics.
GABA receptors in the VZ are activated by lower levels of GABA
than those expressed by CP neurons, as shown by the leftward
shift in the current–response curve. Modified, with permission,
from REF. 70 © 1999 The American Physiological Society.
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Systematic physiological studies have not been carried
out on radially migrating neurons in the INTERMEDIATE

ZONE (IZ); however, recordings from tangentially
migrating IZ neurons show the expression of functional
GABA

A
receptors96. Furthermore, calcium-imaging

studies indicate that GABA
A

receptors are expressed on
both radially and tangentially migrating IZ cells97. The
synaptic activation of GABA

A
receptors is unlikely to

occur during neuronal migration, as no synapses have
been detected in the IZ at an ultrastructural level93.
However, as in the case of VZ cells, non-synaptically
released ligand could activate GABA receptors that are
expressed by migrating neurons, and several studies have
indicated a possible role for GABA in neuronal migra-
tion (see below). There are several potential cellular
sources of GABA as an IZ signal. Immunohistochemical
studies have revealed a differential distribution of
GABA-positive cells throughout the embryonic cortical
wall. For example, there are many GABA-positive cells at
the top of the VZ, and in the SUBPLATE and MARGINAL ZONE,
at E17 in the rat89–91, as well as a GABA-containing axon
plexus in the marginal zone44 that is contributed, at least
in part, by cells of the zona incerta46. These cells could
secrete GABA and establish GABA gradients in the corti-
cal environment that a cell might sense as it migrates
from the VZ to the CP.

Not until cells have completed migration is synaptic
transmission likely to have a role in GABA

A
receptor

activation. GABA
A
-receptor-mediated spontaneous

postsynaptic currents have been observed in embryonic
CP neurons70 (FIG. 2). In fact, the first physiologically
detectable cortical synapses are GABA-mediated and
arise from spontaneously active local GABA neu-
rons70,98,99. Moreover, ultrastructural analyses of the
developing somatosensory cortex of mice and rats have
identified GABA-containing synaptic contacts at the
earliest ages studied (postnatal day 4), confirming that
these synapses are anatomically as well as physiologically
developed in the neonate38,39. The analysis of ultrastruc-
tural features, combined with immunohistochemistry,
has indicated that GABA-releasing synapses might com-
prise close to 50% of the synapses in the early postnatal
cortex, a number that declines to 15% in the adult39.

Although immature cortical GABA neurons are spon-
taneously active, they are not easily activated by afferent
stimulation. Little or no GABA

A
-receptor-dependent

synaptic potentials are evoked with stimulation of corti-
cal afferents in the perinatal cortex100–103 (FIG. 3). During
the first few postnatal days, the activation of cortical affer-
ents can produce polysynaptic responses that include
GABA

A
-receptor-mediated components, but only after

high-intensity stimulation104. However, GABA
A
-receptor-

mediated polysynaptic responses in the perinatal period
fatigue easily with repeated stimulation, indicating that
afferent drive of cortical GABA interneurons is weak.
So, although GABA-containing interneurons form func-
tional synapses and are spontaneously active in the early
neocortex, afferent activation of these cells by excitatory
feedback and feedforward pathways is poorly developed
(FIG. 3). By contrast, a GABA axon plexus is present in
layer I at birth, and stimulation of this plexus can reliably

Receptor activation. In addition to GABA
A

receptors,
other components of the GABA signalling system,
including GABA-producing neurons (FIG. 2) and GABA
transporters, are expressed early in development89–92.
However, it is unlikely that synaptic activation of GABA

A

receptors occurs in cells of the proliferative zone.
Anatomically defined synaptic contacts have not been
detected in the cortical proliferative zone, in contrast to
the CP, where they have been observed as early as embry-
onic day (E) 16 (REF. 93). Consistent with anatomical
studies, physiological studies have also failed to detect
synaptic potentials in VZ cells70,94. Nevertheless, evidence
has indicated that endogenous GABA

A
receptor activa-

tion does occur in the proliferative zone68,95. WHOLE-CELL

RECORDINGS of VZ cells show outward current shifts in
response to the application of a GABA

A
receptor antago-

nist, indicating the presence of a tonically released
ligand68 (FIG. 2). This finding implies that GABA

A
recep-

tors on VZ cells might be activated by a PARACRINE mecha-
nism70. In addition, the physiological properties of
GABA

A
receptors in VZ cells — namely, the relatively

high apparent affinity for GABA and the relative lack 
of desensitization — would increase the likelihood of
receptor activation by low levels of non-synaptically
released ligand. Immunostaining has shown that GABA-
positive cells are localized directly above as well as in the
VZ89–91 (FIG. 2). Growth cones that arise from these cells
could be the source of endogenous GABA release32.

PARACRINE

A mechanism of signalling
between cells that relies on the
diffusion of signalling molecules
through the intercellular spaces.

INTERMEDIATE ZONE

A transient layer in the
developing cortex through
which neurons migrate on their
way from the proliferative zone
to the cortical plate. With
maturation, this zone is replaced
by the subcortical white matter.

SUBPLATE

A transient layer of cells in the
fetal brain that lies beneath the
cortical plate.

MARGINAL ZONE

The embryonic equivalent of
layer I. This is the most
superficial layer of the
developing cortex.

Thalamocortical

Spontaneous

Layer I

Layer I

Thalamocortical

Low
[Cl–]i

Immature Mature

High
[Cl–]i

Figure 3 | Developmentally regulated changes in GABA actions in the cortical circuitry.
Presumed changes in cortical circuitry, shown diagrammatically in the centre panel, are reflected
by developmental changes in the pyramidal cell response to stimulation of cortical afferents in layer I
(shown above) and of the thalamocortical pathway (shown below). In the immature brain,
stimulation of layer I elicits a pure GABA (γ-aminobutyric acid)-mediated synaptic response that is
depolarizing and can activate action potential firing. In the mature cortex, layer I stimulation evokes
a largely glutamate-mediated synaptic response (orange), triggering multiple action potentials.
Thalamocortical activation in the immature cortex produces a glutamate-mediated synaptic
potential (orange), whereas similar stimulation in the mature cortex elicits early glutamate excitation
(orange) followed by early GABAA-receptor-mediated and later GABAB-receptor-mediated
inhibitory potentials (blue, shown here for a cell with the membrane potential depolarized above
rest). In the immature cortex, spontaneous synaptic activity consists entirely of depolarizing GABA-
mediated events (blue); by contrast, in the mature cortex, spontaneous GABA activity is less
depolarizing, and frequent excitatory glutamate-mediated synaptic potentials (orange) are present.
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depolarization or no change in membrane potential,
depending on the experimental conditions25,26,50,120,121.
However, in nearly all cases, GABA-mediated signalling in
adult cortical cells produces inhibition. Collectively, these
observations indicate that the direction of membrane
potential change might not be the most important factor
in the inhibitory process. As Stephen Kuffler stated in
1960,“Since the inhibitory potentials may be repolarizing
[that is, hyperpolarizing] or depolarizing or may be
absent if the cell is at the inhibitory equilibrium level, it
follows that the electrical potential changes themselves are
secondary and are not an essential part of inhibition”22.
The key element in synaptic inhibition is the increase in
membrane conductance, as this will act to shunt the abil-
ity of excitatory potentials to depolarize the membrane to
spike threshold, provided that the inhibitory equilibrium
potential is below this value. This formulation generally
applies to fast chloride-dependent GABA

A
-mediated

synaptic inhibition. In adult cells, the equilibrium poten-
tial (or reversal potential) for chloride ions (E

Cl
) is –60 to

–70 mV, usually well below the threshold for action
potential generation (–40 to –50 mV). By contrast,
GABA

B
-receptor-mediated postsynaptic potentials are

potassium dependent, and they generally hyperpolarize
the membrane towards the equilibrium potential 
for potassium ions (below –70 mV). These potentials typ-
ically produce less change in membrane conductance
than GABA

A
potentials, but are strongly inhibitory

because they keep the membrane potential further from
the spike threshold121.

It should therefore be stressed that, in adult cortical
neurons, GABA

A
-receptor-mediated synaptic inhibition

can be produced effectively by membrane depolariza-
tion. However, in immature neurons, the situation can be
different. In developing neurons, activation of GABA

A

receptors produces robust membrane depolarization
that can, in some cases, directly evoke action potential
discharge44,69,70,122–126 (FIG. 4). The more intense depolariz-
ing actions of early GABA

A
receptor activation are due to

the relatively high intracellular chloride concentration
([Cl–]

i
) of immature neurons and resting membrane

potentials that are significantly more negative than E
Cl

(REFS 69,122–124,127) (FIG. 4).
As development proceeds, neuronal [Cl–]

i
decreases

and the GABA
A

reversal potential (E
GABAA

) becomes more
negative69 (FIG. 4), allowing the effect of GABA to become
progressively inhibitory. This is reflected in the ability of
the GABA

A
receptor antagonist bicuculline to induce

epileptiform activity by blocking inhibition, an effect that
develops during the latter part of the first postnatal
week128,129. In the neocortex, the most depolarized values
of E

GABAA
are found in cortical precursor cells in the

embryonic VZ68,69. Among cortical neurons, E
GABAA

was
found to shift negatively by more than 20 mV over a
three-week developmental period. This shift corresponds
to an approximately 20-mM drop in [Cl–]

i
(REF. 69) (FIG. 4).

These data indicate that, during development, cells might
go from a stage of chloride accumulation to one of chlo-
ride extrusion. Consistent with this idea, cation–chloride
co-transporters are expressed differentially in the cortex
at different stages of development130,131. The inwardly

activate synaptic GABA
A

receptors on the distal dendrites
of pyramidal neurons44 (FIG. 3). In addition, functional
GABA

A
-receptor-mediated synaptic responses have been

found in cells of the marginal zone (that is, layer I) and
the subplate105,106. These cortical regions contain transient
cell types that might provide regulatory signals that are
used by migrating cells and fibres to navigate the develop-
ing cortex107,108. Some of these signals are possibly medi-
ated by fleeting synaptic connections with marginal zone
and subplate neurons107.

GABA
B

receptors. Functional GABA
B
-receptor-mediated

postsynaptic responses do not occur in the neocortex
until after the second postnatal week101, although pre-
synaptic receptor activation occurs by the first week109.A
similar situation occurs in the hippocampus, where pre-
synaptic GABA

B
receptor function is present perinatally,

but postsynaptic receptor function is delayed until about
one week later110,111. These findings are consistent with
GABA

B
receptor expression patterns, which show that

the presynaptically localized R1a subunit is expressed
earlier than the R1b subunit112. However, immuno-
histochemical studies have shown that both R1 and R2
subunits are present in the embryonic cortex, and
GABA

B
receptor activation can influence the movement

or migration of immature cortical neurons (see below),
indicating that expression and activation of GABA

B

receptors occur during the embryonic period91,113–115.
Functional GABA-mediated signalling is thus in

place early in neocortical development, but there are
maturational changes in the physiological and pharma-
cological properties of GABA receptors and in the mode
of endogenous receptor activation. The effect of GABA

A

receptor activation on membrane potential also changes
during development (see below). By around the third
postnatal week, thalamocortical afferent stimulation will
produce the stereotypical adult postsynaptic response
of a fast glutamatergic excitatory postsynaptic poten-
tial (EPSP), followed by a fast and a slow inhibitory
postsynaptic potential (IPSP), mediated by GABA

A
and

GABA
B

receptors, respectively50,101 (FIG. 3).

Excitation and inhibition. In the adult mammalian brain,
GABA has been associated primarily with the mediation
of synaptic inhibition. However, there are several ways in
which synaptic inhibition can be produced, and this has
resulted in some confusion in the classification of GABA
receptor actions in immature neurons. The first intra-
cellular recordings in the vertebrate CNS showed that
activation of inhibitory neurons resulted in membrane
hyperpolarization, leading to the suggestion that inhibi-
tion resulted by driving the membrane potential further
from the action potential threshold116–118. On the other
hand, experiments in the crustacean nervous system
showed that inhibition could be produced by an increase
in membrane conductance that was associated with
either no change in membrane potential or even depolar-
ization22,27,119. Recordings from adult cortical neurons
have shown that activation of GABA

A
receptors, either

synaptically or by the application of exogenous GABA
A

receptor agonists, can result in hyperpolarization,

© 2002        Nature  Publishing Group



NATURE REVIEWS | NEUROSCIENCE VOLUME 3 | SEPTEMBER 2002 | 721

R E V I E W S

recruitment of GABA-containing interneurons100,101,104.
In addition, as early GABA

A
-receptor-mediated synaptic

potentials invariably depolarize postsynaptic cells, it has
been suggested that, in the immature brain, fast excita-
tory synaptic transmission is mediated by GABA

A

receptors135,136. However, as stated above, depolarization
and excitation are not necessarily equivalent. Even when
GABA

A
receptor activation can depolarize the mem-

brane potential above spike threshold and excite a cell, it
is still able to shunt and inhibit other inputs137,138.
Therefore, in the embryonic and early postnatal brain,
when GABA

A
receptor activation can, by itself, be exci-

tatory, the resulting change in conductance can modu-
late other excitatory inputs as well, either inhibiting or
facilitating them depending on their timing137.

GABA as a developmental signal
Early studies. One of the first indications that GABA
might act as a trophic substance during nervous system
development came from studies by Wolff et al.139 in the
rat superior cervical ganglia (SCG). Here, it was shown
that the continuous application of GABA could promote
dendritic growth in vivo, influence ganglion cell sensitiv-
ity to acetylcholine and alter the development of pre-
synaptic specializations139,140. Furthermore, only in the
presence of GABA could an ectopic nerve innervate 
the SCG. From these studies, it was concluded that
GABA acts to promote synaptogenesis or the synapto-
genic capacity of the SCG140. During the 1980s, several
studies showed that the application of GABA could
influence aspects of neuronal differentiation in vitro5,141.
For example, in cultured cerebellar granule cells, GABA
treatment increased the number of neurite-extending
cells and the density of cytoplasmic organelles142. In
addition, GABA application was found to result in a
change in expression of the GABA receptor itself 143.
Similar results were found in chick cortical and retinal
neurons144 and in NEUROBLASTOMA CELLS145, leading to the
conclusion that GABA could act as a general neuro-
developmental factor5,141. Although the mechanisms of
GABA’s trophic actions were not elucidated, they seemed
to be mediated by the activation of GABA receptors, as
GABA

A
receptor antagonists could block the effects. It

was further suggested that GABA-mediated membrane
hyperpolarization was an important step5. This contrasts
with more recent studies, which indicate that the trophic
actions of GABA probably result from the depolarizing
effects of GABA

A
receptor activation in immature cells.

Functional consequences of early depolarizing actions.
GABA

A
-receptor-mediated membrane depolarization

has been observed in developing cells from many brain
regions, indicating a general role for GABA-mediated
depolarization during development146. This depolariza-
tion is sufficient to increase [Ca2+]

i
by the activation of

voltage-gated calcium channels (VGCCs)68,69,147–149.
These results indicate that one potential downstream
consequence of early GABA

A
receptor activation is the

activation of calcium-dependent second-messenger
pathways135. These findings, coupled with evidence that
endogenous GABA receptor activation occurs early in

directed co-transporter NKCC1 (for Na+–K+–2Cl– co-
transporter 1), a chloride accumulator, is first expressed
in the embryonic CP. By contrast, the outwardly directed
co-transporter KCC2 (for K+–Cl– co-transporter 2), a
chloride extruder, begins to be expressed perinatally and
shows a marked increase in expression after the first
postnatal week (FIG. 4).Antisense knockdown and genetic
deletion of the KCC2 protein have confirmed the link
between transporter function and the shift in GABA
membrane effects, as both manipulations retard or pre-
vent the negative shift in E

GABAA
(REFS 131,132). These

data support earlier suggestions that poorly developed
chloride extrusion could account for higher [Cl–]

i
in

young neocortical neurons101, and provide a mechanistic
explanation for the developmental shift in [Cl–]

i
.

It is often stated that, during cortical development,
GABA-mediated synaptic inhibition lags behind the
development of glutamate-mediated excitation102,103,133.
Although this might be the case, it does not apply to
GABA-mediated synaptic transmission per se. Local
spontaneous GABA

A
-receptor-mediated synaptic trans-

mission seems to dominate over glutamate-mediated
synaptic activity during the first postnatal week70,122,134,
and GABA-containing synapses might actually be the
first to form70,98. So, the lack of functional inhibition
during the first few postnatal days is not due to a delay
in the formation of GABA synapses (see above), but is
probably attributable to a lack of synaptic drive or to

NEUROBLASTOMA CELLS

An immortalized cell line
derived from tumours that arise
from the neural crest.
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was sufficient to inhibit DNA synthesis, and the effect of
GABA was abolished when the chloride gradient was
altered so that GABA was no longer depolarizing.

More compelling evidence that GABA
A

receptor
activation regulates DNA synthesis during cortical
development came from experiments in which explants
were exposed to only the GABA

A
receptor antagonist

bicuculline. In the presence of bicuculline, there was a
significant increase in DNA synthesis in cortical precur-
sor cells, indicating that GABA is released endogenously
and influences the rate of DNA synthesis68. The bicu-
culline-induced increase in DNA synthesis was seen
readily at E19, but was absent in younger (E14–E16)
cortical explants68. This implies that endogenous
GABA

A
receptor activation affects only late-stage neuro-

genesis and/or gliogenesis. However, GABA
A
-receptor-

mediated reduction of cell proliferation might occur
indirectly by interactions with other factors. Experiments
in dissociated cell culture have shown that activation of
GABA

A
receptors can inhibit the proliferative effect that

basic fibroblast growth factor (bFGF) exerts on neo-
cortical precursor cells, but has no effect when applied
alone150. So, it is possible that the observed effects in
intact tissue represent an indirect action of GABA

A

receptor activation — namely, the regulation of bFGF
responsiveness. More recent studies point to a more
complicated situation. In experiments with embryonic
mouse cortical slices maintained under tissue-culture
conditions, GABA

A
receptor activation led to an

increase in the number of BrdU-labelled cells in the VZ,
but to a decrease in the number of BrdU-labelled cells
in the subventricular zone95. So, depending on the
experimental conditions, GABA might have differential
effects on cortical cell proliferation. A somewhat analo-
gous situation has been observed in cerebellar granule
cells, in which potassium-induced depolarization could
either increase or decrease cell proliferation depending
on the experimental conditions151,152. Although these
experiments all support a role for GABA signalling dur-
ing cell proliferation, ultimately, it will be important to
determine whether GABA does indeed influence the
cellular composition of the cortex (see below).

GABA receptor activation has also been proposed to
regulate neuronal migration. In a series of studies 
carried out in both dissociated-cell and slice cultures,
GABA receptor activation was shown to influence 
the movement and migration of immature cortical 
neurons91,113,114. In cultured slices of rat brain, it was
determined that GABA

C
and GABA

B
receptor activation

promoted migration out of the VZ and the IZ, respec-
tively, whereas GABA

A
receptor activation provided a

stop signal once cells reached the CP113 (FIG. 5). Selectively
blocking GABA

C
and GABA

B
receptors for two days

could retard migration, but this effect could be overcome
with longer culture periods. These results indicate that,
although GABA-mediated signalling might influence
neuronal migration, it is not essential for this process, or
can be compensated for if absent. Interestingly, in similar
studies with cultured slices of mouse brain, GABA
seemed to have little, if any, role in neuronal migration153.
Rather, NMDA (N-methyl-D-aspartate)-type glutamate

development (in some cases before synapse formation)
have provided a signalling framework in which GABA-
mediated cell communication can influence many
processes in brain development, from cell proliferation
to synaptogenesis and circuit formation (FIG. 4).

In precursor cells in the neocortical proliferative zone,
activation of GABA

A
receptors has been shown to influ-

ence DNA synthesis68,95 (FIG. 5). Activating GABA
A

recep-
tors in intact rat neocortical explants led to a significant
decrease in DNA synthesis, as assessed by TRITIATED-

THYMIDINE INCORPORATION, and a reduction in the number of
5-BROMODEOXYURIDINE (BrdU)-labelled cells68. Depolarizing
cells by exposing cortical explants to elevated potassium

TRITIATED-THYMIDINE

INCORPORATION

An assay in which a
radiolabelled form of thymidine
is incorporated into the DNA of
dividing cells. These cells can
then be detected by
autoradiography.

5-BROMODEOXYURIDINE

An analogue of thymidine that
can be incorporated into
replicating DNA. It is used to label
dividing cells, which can then be
detected with an antibody.
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depolarization and mimicked when the chloride gradient is attenuated with furosemide. Modified,
with permission, from REF. 115 © 2001 Society for Neuroscience.
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activity has been shown to depolarize cells and relieve the
magnesium block of NMDA channels, allowing calcium
to flow into the cell160. The resulting increase in [Ca2+]

i

might activate downstream signalling pathways that are
crucial for neuronal maturation and synaptogenesis136.

Finally, a recent study in cultured hippocampal 
neurons provides intriguing evidence that GABA

A
-

receptor-mediated signalling itself seems to produce the
developmental [Cl–]

i
switch161. In this study, the authors

found that application of GABA produced increases in
[Ca2+]

i
through GABA

A
-receptor-mediated membrane

depolarization and activation of VGCCs in young neu-
rons. When GABA

A
receptors were chronically blocked

with specific receptor antagonists, the authors found that
the GABA-induced [Ca2+]

i
increases persisted and that

E
GABAA

remained at a relatively depolarized value in older
neurons (FIG. 6). Evidence was provided that GABA

A
-

receptor-mediated MINIATURE SYNAPTIC POTENTIALS were the
endogenous source of GABA

A
receptor activation. KCC2

levels were reduced in cells that had been chronically
treated with GABA

A
receptor antagonists, indicating

that the activation of GABA
A

receptors is required to
upregulate the expression of the KCC2 co-transporter 
and decrease [Cl–]

i
. Moreover, the GABA-mediated

upregulation of KCC2 expression was dependent on the
activation of VGCCs and calcium influx.

Genetic studies. It seems that early GABA-mediated sig-
nalling is involved in many aspects of brain development.
But surprisingly, examination of mice with null muta-
tions in key genes of the GABA pathway has revealed
relatively few developmental abnormalities in the CNS.
For example, the fetal brains of mice lacking both
GABA-synthesizing enzymes, GAD65 and GAD67, have
0.02% of the normal content of GABA, and these mice
die at birth, yet they have no obvious structural brain
abnormalities162. However, no quantitative measurement
of cell density or detailed analysis of cellular ultrastruc-
ture was carried out in this study. Considering that the
endogenous influence of GABA

A
receptor activation on

DNA synthesis or cell-cycle progression occurs relatively
late in cortical cell proliferation, the effects of GAD65/67
deletion might be subtle, and a more rigorous analysis
of these mice might uncover defects. It is noteworthy
that a study examining the effect of GABA

A
receptor 

β3-subunit deletion found no gross morphological
deformities, although several more subtle development
differences were found on more detailed inspection163.

Many GABA-deficient mutant mice have a lower
seizure threshold164 or spontaneous seizures165, as do
mice with targeted deletion of the GABA

A
receptor β3-

subunit166, reflecting the importance of GABA-mediated
inhibition in regulating excitability in mature cortical
circuits. In addition, although there are no major struc-
tural abnormalities involving the CNS, these mice do
have significant craniofacial deformities. GABA seems
to be important for normal palate development, as most
mutant animals with impaired GABA function develop
CLEFT PALATE162,164,167,168. Most of these animals die at birth,
and although the cleft palate is often blamed, this might
not be the cause of death, as 30% of mice with severely

receptors appeared to promote migration in this system.
The reason for the differences between these two rodent
species is unclear, but these studies indicate, once again,
that the results and conclusions of a study might depend
on the experimental conditions.

In addition to proliferation and migration, aspects of
neuronal differentiation might be regulated by early
GABA-mediated signalling. In cultured embryonic
hippocampal and neocortical neurons, GABA

A
receptor

activation has been shown to promote neurite out-
growth and maturation of GABA interneurons115,154,155

(FIGS 5,6). These effects depend on GABA
A
-receptor-

mediated membrane depolarization and increases in
[Ca2+]

i
(REFS 115,156), as do GABA’s effects on the survival

of rat embryonic striatal neurons in vitro157. In the case of
interneuron development, GABA might exert its trophic
effects by stimulating an increase in brain-derived neu-
rotrophic factor (BDNF) expression and release from
target neurons, an effect that diminishes with develop-
ment155,158 (FIG. 6). The observation that the enhancement
by GABA of interneuron growth is diminished when
using cells derived from BDNF-knockout mice supports
the link between GABA growth effects and BDNF155,156.

Early GABA signalling might also interact with
NMDA receptor activation to regulate synapse matura-
tion136. NMDA receptors are believed to be involved in
synaptic plasticity and development; however, in develop-
ing neurons, NMDA receptors are often functionally
silent at negative membrane potentials due to blockade of
the channel by magnesium159. So, an endogenous depo-
larizing influence must be present at immature synapses
to relieve the magnesium block of the NMDA receptor, a
role that has been attributed to non-NMDA receptor
activation in the more mature brain. In the developing
hippocampus, GABA

A
-receptor-mediated synaptic

MINIATURE SYNAPTIC

POTENTIALS

Synaptic potentials observed in
the absence of presynaptic
action potentials; they are
thought to correspond to the
response elicited by a single
vesicle of transmitter.

CLEFT PALATE

A congenital craniofacial defect
in which the palatal shelves fail
to fuse, leaving an opening in the
roof of the mouth.
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by transmitter signalling might be exclusively medi-
ated by non-vesicular release. It would therefore be
interesting in future work to examine the effect of
membrane depolarization and/or downstream signal
transduction on early developmental events, as this
approach might reveal more pronounced effects than
those produced by manipulations of an individual
transmitter system.

Conclusions
Early GABA-mediated signalling might be a general fea-
ture of brain development that has been evolutionarily
conserved. Components of the GABA signalling system,
both receptor and ligand, have been observed in brain
development in many vertebrate species, and GABA-
containing neurons are present in or near the cortical
proliferative, migratory and differentiation zones during
embryonic development in species ranging from reptiles
to primates90,175–178. These observations are comple-
mented by evidence from various in vitro model systems
indicating that GABA can influence proliferation,
migration and neuronal differentiation.

The early developmental roles of GABA are unrelated
to its importance as a mediator of adult fast synaptic
inhibition; instead, they probably reflect GABA-
mediated membrane depolarization that results from a
relatively high [Cl–]

i
in immature cells. Interestingly, in

invertebrates, GABA exerts a growth-promoting effect
through membrane depolarization8. It is therefore possi-
ble that a GABA signalling pathway arose in ancient
organisms to serve a trophic role, the effects of which on
growth or gene expression were dependent on depolariz-
ing membrane actions. Many of these growth-related
effects seem to rely on non-synaptic or paracrine receptor
activation. In addition, early-appearing GABA receptors
favour tonic activation by low levels of agonist because of
higher agonist affinity and longer-lasting activation
kinetics. After GABA synapses form, receptor activation
produces faster, shorter-acting currents, and results in lit-
tle or no membrane depolarization owing to a relatively
low [Cl–]

i
. As neural assemblies evolved, GABA might

have acquired a new role as a synaptic transmitter with
inhibitory circuit effects as a consequence of a change in
neuronal chloride homeostasis.

A challenge for future study will be to reconcile the
proposed roles of GABA signalling in brain develop-
ment with the relatively normal outcomes that have
been observed in GABA-deficient mutant mice. One
approach might be to investigate the mechanism by
which membrane depolarization by various transmit-
ters can influence developmental events. Such studies
could reveal redundant roles for early-appearing trans-
mitter systems and help to define the true contribution
of GABA to brain development. Advances in our under-
standing of how GABA signalling exerts its effects on
neuronal precursor cells and immature neurons have
shifted our attention to questions of why GABA path-
ways are established early and why they undergo such
marked developmental changes. These questions will
probably drive the next wave of discovery in exploring
the role of GABA in brain development.

impaired GABA
A

receptor function that die at birth do
not have cleft palate166.

One caveat of all the knockout experiments is that
they involve germ-line mutations and are subject to
developmental compensation that could reduce the
severity of the brain phenotype. For example, glutamate,
glycine and taurine can depolarize embryonic cortical
neurons in a manner similar to that of GABA at early
ages68,169, and pathways involving one or more of these
transmitters could potentially reduce the severity of the
GABA loss-of-function mutations. However, the brains
of mice that are null for two isoforms of the synaptic
vesicle protein Munc13 are devoid of both GABA- and
glutamate-mediated vesicular release, but brain histo-
genesis and synapse development also appear to be
normal170. Similar results have been reported for
Munc18-knockout animals171. So, if transmitters have
developmental effects, they are probably mediated by
non-vesicular release mechanisms32,169.

As described above, expression of the potassium–
chloride co-transporter KCC2 normally lowers [Cl–]

i

and underlies the developmental shift towards less
depolarizing effects of GABA131. Mice with targeted dis-
ruption of the KCC2 gene have no obvious structural
CNS abnormalities, but they have increased muscle tone
and die perinatally of respiratory failure due to hyper-
active brainstem motor neurons132. These animals also
show frequent spontaneous seizures, presumably due to a
relative lack of functional GABA inhibition in the cortex
and hippocampus172.

Recently, mice with non-functional GABA
B

receptors
have been generated173,174. They develop spontaneous
epilepsy and behavioural abnormalities, including
hyperalgesia and impaired performance on memory
tasks, but their brain morphology appears to be grossly
normal173,174.

Nearly all the genetic experiments completed so far
have shown few, if any, developmental defects when per-
turbing the GABA system. The most common CNS
problem might be diminished inhibition and seizure
generation, which can be observed after birth. Therefore,
GABA signalling specifically, and vesicular neurotrans-
mitter release in general, seem to have little effect on
early structural brain development. A more rigorous
analysis involving stereological approaches, as well as an
evaluation of cellular morphology and circuit forma-
tion, might uncover developmental defects in some of
these knockout mice. In addition, to demonstrate a role
for early GABA signalling, it might be necessary to
generate CONDITIONAL MUTANT LINES that allow disruption
of the temporal pattern of GABA signalling to circum-
vent compensatory mechanisms that might arise in
non-conditional mutants.

Developmental neurotransmitters might provide
tonic, non-vesicular depolarization that keeps cells
healthy or responsive to other environmental signals.
It might be that developing cells are promiscuous in
their use of transmitter signals, and that any signalling
system that induces membrane depolarization can 
be used to influence developmental programmes.
Moreover, modulation of proliferation and migration

CONDITIONAL MUTANT LINES

Mutant mouse lines in which a
gene is inactivated in a
temporally and/or spatially
restricted fashion.
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