Study of Thermal Decomposition of CH₃CHO Using a Miniature Tubular Flow Reactor

AnGayle Vasiliou^{1,2}, Krzysztof M. Piech¹, Xu Zhang³, Mark R. Nimlos², Mushaid Ahmed⁴, Amir Golan⁴, Oleg Kostko⁴, David L. Osborn⁵, John W. Daily⁶, John F. Stanton⁷ and <u>G.Barney Ellison¹</u>

¹Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA ²National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401, USA ³Jet Propulsion Laboratory California Institute of Technology, 4800 Oak Grove Drive, Pasadenda, California 91109-8099, USA ⁴Chemical Sciences Division, Lawrence Berkeley National Laboratory, MS 6R-2100, Berkeley, California 94720, USA ⁵Combustion Research Facility, Sandia National Laboratories, P.O. Box 969, MS 9055, Livermore, California 94551-0969, USA ⁶Center for Combustion and Environmental Research, Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309-0427, USA ³Institute for Theoretical Chemistry, Department of Chemistry, University of Texas, Austin, Texas 78712, USA

