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Core hydrocarbons include all gaseous fuels 

● Natural gas 

– 425,000 wells in the US 

– 105 trillion cubic feet worldwide 

● Syngas, coal gas 

– From gasification of coal, biomass 

– In-situ coal gasification 

● Biofuels 

– Ethanol, butanol 

 

● H2, C1-C4 hydrocarbons 

– Selected oxygenates A coal-gas powered taxicab in England, 1920. 

Natural gas well, 1907. 
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Core hydrocarbons chemistry is core to 

heavier liquid fuels 

Hydrogen C1 

C2 

C3 

C4 

Liquid hydrocarbon combustion and emissions 

Oxygenated species 

 

NOx chemistry 

Unsaturated species 

 

PAH precursors 
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Typical issues with many existing reaction 

mechanisms 

1. Applicability  

– Not comprehensive enough 

2. Accuracy 

– Not accurate enough for broad range of conditions 

3. Extensive validation 

– Limited validation range and types of experiments  
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Core chemistry in large mechanisms may 

not be accurate or validated 

 

Data  from Jomaas et al. 
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● Predictions for unsaturated components are worse 

● LLNL n-heptane 

mechanism 

overpredicts 

ethane flame 

speeds 
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Often mechanisms are validated for one or 

two types of experiments 

Flow reactor 

Shock tube 

Stirred reactor 

Opposed-flow reactor 

Laminar flames 

RCM 

● Together they cover the conditions in practical 

applications (engines, turbines) 
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Legacy fuel models are not suitable for 

applications at high-P and low-T 

 Natural Gas Components Composition 

Methane 70-90 % 

Ethane, Propane, Butane 0-20 % 

CO2 0-8 % 

N2, H2S 0-5 % 

Core hydrocarbons (C0-C4) 

– GRI-mech limited to methane 

Complex Negative Temperature Coefficient (NTC) 

behavior <1000 K 

– Autoignition of fuels critical for engines and turbines 
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Existing core mechanisms may not be 

comprehensive 

● Dependencies between various small species 

– e. g. ethylene chemistry also involves C4 species 

 

– e.g. 

 

● Missing components and inconsistencies 

may affect predictive nature 

– Be careful in merging various mechanisms 

CH4   CH3      CH3O  
O2 

H 

CH3 
CH3OCH3 

CH3OH  

Need comprehensive, accurate, and validated 

core reaction mechanism 
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Comprehensive 

mechanism 

The mechanism is generated in a systematic 

way 

Validation 

Reactions 

Rate Parameters  

Thermo  

Transport 

Initial sub-mechanisms 

from publications 

- Add missing or necessary 

reactions 

- Enforce self-consistency 

- Update k and thermo 

- Optimize k within the 

uncertainty 

Accurate 

mechanism 
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RD2010 core mechanism is comprehensive 

● Starting component sub-mechanisms from 

various sources 

– Merged to a consistent base 

● Included low- and high-temperature pathways 

● Updated rate constants based on recent 

studies 

– Pressure-dependent rate constants for important 

reaction systems 

● 18 fuel components 

– 1161 species and 5622 elementary reactions 

– Saturated, un-saturated, oxygenates 

– NOx, soot precursors up to benzene 
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The core mechanism is optimized for 

accuracy 

● Optimized rate constants for less than 5% 

of the reactions 

– Within the expected uncertainty 

 Reaction A n Ea Ref. 

H+O2 = O+OH 3.55E+15 -0.406 1.66E+04 [12] 

CO+OH = CO2+H 2.20E+05 1.89 -1.16E+03 [12], A*1.24 

HCO+M = H+CO+M 4.75E+11 0.7 1.49E+04 [11]a 

H+OH+M = H2O+M 4.50E+22 -2 0.00E+00 [19]a 

C3H5-a+H(+M) =  C3H6(+M) 2.00E+14 0 0.00E+00 [13] 

Low pressure limit: 1.33E+60 -12 5.97E+03 

Troe parameters: 0.02, 1.10E+03, 1.10E+03, 6.86E+03 

CH3+CH3(+M) = C2H6(+M)  9.21E+16 -1.17 6.36E+02 [12]a 

Low pressure limit: 1.14E+36 -5.246 1.71E+03 

Troe parameters:       0.405, 1.12E+03, 69.6, 1.00E+10 

CH3+HO2 = CH3O+OH 1.00E+12 0.269 -6.88E+02 [12] 

CH4+H = CH3+H2 6.14E+05 2.5 9.59E+03 [12] 

HO2+HO2 = H2O2+O2 4.20E+14 0 1.20E+04 [18]b 

1.30E+11 0 -1.63E+03 

CH4+HO2 = CH3+H2O2 1.13E+01 3.74 2.10E+04 [12] 

Collision efficiencies: CH4  2.0, CO  1.9, CO2  3.8, C2H6  3.0, H2O 6.0, H2 2.0, Ar  0.7 
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Example of the CO+OH = CO2+H rate 

constants 

● 118 records in the NIST 

database 

– 91 experimental data 

– 20 theoretical calculations 

– 7 review recommendations 

– 1981-2007 data fit 

 k = 2e11 * exp(-300/RT) 

● Recent data  

– Agree within 25% 

● Typical uncertainty ~ 

factor of 2 



ICCK 2011 16 

Outline 

● What are core hydrocarbons? 

● Issues with existing reaction mechanisms 

● Modeling approach 

● Extensive model validation 

● Concluding remarks 



ICCK 2011 17 

Fundamental data are the best for reaction 

mechanism validation 

● Reduced impact of transport ➔ 

More focus on chemistry 

 Neat fuels 

Laminar 

flame speed 

Shock 

tube 

Flow 

reactor 

Stirred 

reactors 

Burner 

flames 

Hydrogen √* √     

Formaldehyde   √   

Methane √ √  √ 

Methanol       √ 

Ethane   √    √ 

DME √ √ √   

Ethanol √       

Propane √       

n-Butane √ √     

iso-Butane   √     

n-Butanol  √ √   √ 

NOx √ √ 1
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Broad range of conditions covered 

Experiment type 
T (K) P (atm)  

Dilution of 

oxidizer %* 

Laminar flame 

speeds 
295 to 453 1 to 5 0.6 to 1.6 0 to 15 

Shock-tubes 650 to 1800 1 to 340 
Pyrolysis, 

0.3 to 3 
0 to >98 

Flow reactors 500 to 948 1.5 to 12.5 0.005 to 1.19 97.6 to 98.8 

Stirred reactors 700 to 1100 1-10 0.1 to 1 97.1 to 97.9 

Burner-stabilized 

flames 
300 1 to 14.6 0.6 to 0.8 

N2/O2 : 2.2/1 for 

oxidizer 

● Dilution with N2, Ar, or H2O with air or O2 as oxidizer. 

● Saturated fuels 
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Broad range of conditions covered for un-

saturated components and blends 

● Un-saturated fuels 

Experiment type 
T (K) P (atm)  

Dilution of 

oxidizer % 

Laminar flame 

speeds 
298 1-5 0.6-2 0-16.5 

Shock-tubes 1050-2250 0.85-9 0.5-2 0-97 

Flow reactors 700-1350 1 0.05-1.4 97.9-99.7 

Stirred reactors 700-1100 1-10 0.1-1.5 96-99.5 

Experiment type 
T (K) P (atm)  

Dilution of 

oxidizer % 

Laminar flame 

speeds 
298 1-2 0.5-4.5 0-16.5 

Shock-tubes 1020-1750 1-256 0.5-3 92-99.9 

Stirred reactors 950-1450 1-10 0.3-2 66.1-98.5 

● Fuel blends 
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Over 90+ comparison plots for validation 

● A comparison plot contains one or more 

data sets  

 

● Overview of comparisons 

– Grouped by experiment types 

 

● Lines – predictions 

● Symbols – published experimental data 
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Laminar flame speeds:  
Fuel, T, P, and  effects captured 
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Laminar flame speeds:  

Diluents and composition effects captured 

● H2 with N2 or Ar 
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Autoignition delay times: 
Effects of fuel, T, P, and  captured 
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Autoignition delay times: 

Effects of loading and diluents captured 
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Species profiles: Shock-tube 

Accurate predictions at very high pressures 

● Pyrolysis at 340 bar 
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Species profiles: Flow-reactor 
Effect of  on propyne oxidation captured 

● Products acetylene 

and allene predicted 

well 

– Important PAH 

precursors 
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Species profiles: Stirred-reactor 

Products evolution in methanol captured 

● Methanol oxidation at 10 atm in a stirred-reactor 

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

700 800 900 1000 1100
Inlet temperature (K)

M
o

le
 f

ra
c

ti
o

n

Dyma et al., CH3OH

Model, CO

Dyma et al., CO

Model, CO

Dyma et al., CO2

Model, CO2

Dyma et al., CH2O

Model, CH2O

 0.6,  1 s  8000 ppm fuel, 800 ppm H2O 



ICCK 2011 28 

NOx emissions from premixed flames:  
Pressure and  effects captured 

● High-pressure premixed flames 

– Radiation heat losses included in CHEMKIN-PRO 

Methane with 

N2/O2 in 2.2/1 ratio 

Tflame: 1750-1900 K 

Fuel-rich 
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Accurate predictions need comprehensive 

core mechanism 

● Sensitivity analysis for autoignition delay time 

-0.15 -0.1 -0.05 0 0.05 0.1

CH3+O2 = CH2O+OH

CH3O2+CH3 = 2CH3O

CH3+HO2 = CH3O+OH

CH4+HO2 = CH3+H2O2

CH3+HO2 = CH4+O2

HCO+HO2 = CH2O+O2

H+O2(+M) = HO2(+M)

CH4+H = CH3+H2

2HO2 = H2O2+O2

2CH3(+M) = C2H6(+M)

Temperature sensitivity coefficient

Methane/air,  3 

140 atm, 1400 K  

Methane Ethane 
Formaldehyde 

Ethanol 
Ethylene Acetaldehyde 
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Comprehensiveness of the core mechanism 

even more important for blends 
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Chemistry of unsaturated fuels is more 

involved than their saturated counterparts 

● Allene oxidation in a stirred-reactor  

– 1000 K, 10 atm, 1.5 s, and phi of 1.5 

● Reactions of C1 and C2 most sensitive 

● Reactions of C4 and C5 also important 

– C5H6+H <= C2H2+C3H5-a 
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Summary 

● Successful development of a detailed core 

(H2, C1-C4) reaction mechanism 

– Comprehensive: 18 neat fuels and their 8+ blends 

 Includes oxygenated fuels 

 NOx, and PAH precursors 

 

● Successful validation using broad range of 

conditions and experiments 

– Over 90+ comparison plots using 30 years of the data 

from the publications 

 

* Results on saturated components to appear in                                     

J. Eng. Gas Turbines Power 
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Thank You 


