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Slow Manifolds Arising from Timescale Separation

The wide range of dissipative timescales found in chemical kinetics problems result in
convergence to low dimensional manifolds. This representative 3D system rapidly converges
to a 2D plane and then a 1D line. The distance moved along the line is negligible in the
time span associated with movement to the line.
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Model Simplification vs. Model Reduction

There are two complementary approaches to reducing the computational expense of
chemical kinetics simulations:

I Remove unimportant species and reactions — sometimes termed simplification.

I Decrease the chemical source term stiffness or otherwise improve computational
efficiency — sometimes termed reduction.

This work focuses on model simplification.

Computational Singular Perturbation (CSP)

Physical representation of ODE for state y in terms of reaction rates Ri(y) and
stoichiometric vectors si(y):

dy

dt
= g(y) =

NR∑
i=1

si(y)R i(y)

CSP fast/slow representation in terms of new basis vectors ai :

dy

dt
=gfast(y) + gslow(y) gfast(y) =

M∑
i=1

aif
i(y) gslow(y) =

N∑
i=M+1

aif
i(y)

where mode amplitudes are found using dual basis vectors bi :

f i(y) = bi · g(y) bi · aj = δij

Importance Indices

These projections of stoichiometric vectors in fast and slow directions can be used to
understand the impact of reactions on different species.

(I ik)slow =

∣∣∣∣∣∣∣
∑N−Nc

s=M+1[as]i(bs · sk)F k∑NR

j=1

∣∣∣∑N−Nc

s=M+1[as]i(bs · sj)F j
∣∣∣
∣∣∣∣∣∣∣ (I ik)fast =

∣∣∣∣∣∣∣
∑M

s=1[as]i(bs · sk)F k∑NR

j=1

∣∣∣∑M
s=1[as]i(bs · sj)F j

∣∣∣
∣∣∣∣∣∣∣

Valorani CSP Deterministic Simplification Algorithm - 2006

This state of the art scheme uses target species and thresholds on importance indices.

Select threshold and target species set S0

Select next time

or initial condition

Set loop counter i = 0 i = i + 1 New species set Si = S0

Calculate importance indices

Select reactions with

importance index above

threshold for any Si species

Add all species from

these reactions to Si
Test Si = Si−1

Any more states or

initial conditions?

New mechanism is union of all Si over all times and conditions

no

yesyes

no
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Uncertainty in Arrhenius parameters

Previous simplification schemes have been entirely deterministic; we have investigated the
impact of uncertainty in Arrhenius rate parameters. Even low uncertainty can result in large
variations in ignition time, as shown with this 5% change to EA for one reaction in a
hydrogen-oxygen mechanism.
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Two Possible Objectives Under Uncertainty

I Use uncertainty as an opportunity to allow more error when using nominal parameter values.

Error criterion is:
|tFign−tRign|

σF

tign tign

= Reduced pdf

= Full pdf

= tFign

= tRign

= σF

I Simplify while ensuring that the pdf remains reasonable or even reproduces the full model
pdf. Error criterion is Kullback-Leibler divergence:

DKL(P |Q) =

∫ ∞
0

p(tign) log
p(tign)

q(tign)
dtign where

{
p is full pdf

q is reduced pdf

tign tign

= Full pdf
= Reduced pdf

Conditional Value at Risk (CVaR)

I Uncertain rate parameters yield a distribution of importance indices.

I Threshold selection is somewhat arbitrary and sensitive to the quality of sampling.

I Even a small risk of exceeding the threshold by a large amount could be undesirable.

We addressed these issues by modifying the Valorani algorithm to applying thresholds to the
CVaR of importance indices.
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For confidence level α:

CVaR = E(I ik | I ik > η)

η (the VaR) satisfies:

P(I ik > η) = α

CVaR results

The CVaR algorithm often gives better pdf reproduction for small reduced mechanisms than
the original Valorani algorithm when applied to the GRIMech-3.0 mechanism.
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This example is for uncertainty only in the reactions directly involving methane.
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Diagnostics

Detailed diagnostics may give insight into techniques to more fully take advantage of
uncertainty and develop uncertainty-aware algorithms that are more predictable than the
heuristic CVaR modification, while also potentially decreasing computational cost. Some
initial investigations are presented here.

Global Sensitivity Analysis

This variance-based sensitivity analysis determines components of the output variance that
are explained by different input parameters ξ. Of particular interest are:

I First order sensitivity Si is the variance explained by ξi when acting alone:

Si =
varξi

(
Eξ∼i [u | ξi ]

)
varξ(u)

I Total effect sensitivity STi
is the variance explained by ξi when acting both alone and in

combination with other variables:

STi
= 1−

varξ∼i (Eξi [u | ξ∼i ])
varξ(u)

Sensitivity and Importance

The output is insensitive to most reactions, even those that are important. An
uncertainty-aware simplification scheme therefore need only consider the small number of
sensitive reactions, making the problem more tractable.

These figures demonstrate importance and output sensitivity for the GRI-Mech 3.0 mechanism with uncertainty only in the

hydrogen-oxygen reactions.
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Near unity sums of Si and STi
indicate negligible impact on the output from the combined

effects of uncertain inputs acting together. A simplification scheme may therefore be able to
consider a series of 1D uncertainty models rather than a single high-dimensional model.

Specific Sensitivity and Importance Examples

Two important reactions from the above are shown; the output is only sensitive to one.
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Dimension-Adaptive Sparse Quadrature

Sparse quadrature techniques can be used to explore parameter space without resorting to
tensor products of 1D quadrature rules. Nested grids can be refined as shown until the
desired level of accuracy is attained; axes here represent different rate parameters.
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Dimension-adaptive sparse quadrature improves on this approach by anisotropically refining
the grid in directions of greatest non-linearity.

Reduction at Quadrature Points
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Union/intersect difference
Union of mechanisms
Intersect of mechanisms

How do deterministic simplified models vary
over parameter space?

The difference in size of the intersection and
union of these mechanisms gives an indication
of the number of degrees of freedom in the
choice of simplified mechanism - this is
generally relatively low.

International Conference on Chemical Kinetics tcoles@mit.edu, ymarz@mit.edu July 11, 2011


