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Use of complex kinetic

mechanisms UNIVERSITY OF LEEDS

» Many examples of areas where complex kinetic mechanisms are used
In engineering and environmental design and control:

design of efficient, clean combustion devices

safety applications for range of fuels and hydrocarbons
atmospheric response to pollution control measures
systems biology

drug design

* In practical applications, complex kinetics linked to detailed models of
fluid flow and other physical processes.




Development of complex kinetic

mechanisms UNIVERSITY OF LEED

Complex chemical mechanisms built by:

1. proposing a set of rules for the interaction between species —
mechanism protocol

2. developing effective parameterisations for the kinetics described
within the mechanism.

« Our ability to specify protocols is well developed in e.g.
hydrocarbon oxidation.

« Large comprehensive mechanisms e.g. biodiesel surrogate methyl
decanoate: 3012 species and 8820 reactions (Herbinet et al., 2008).

That’s a lot of parameters!

« Many have to be estimated using rules related to chemical structure.
 Does this lead to a robust mechanism? How can we check?



Evaluation of kinetic mechanisms UNIVERSITY OF LEED

« Comparison of model with experiment for simple to complex scenarios.

Then what? |

« Agreement for the right reasons? Confidence in simulations?
* If discrepancies, then how do we find the contributing causes?
« Sensitivity and uncertainty analysis can help to answer these guestions.

* Do we have enough fundamental experiments to cover the conditions
experienced in practical devices for all fuels of interest?

* Raises questions for the optimisation of complex fuel mechanisms — il
conditioned problem for larger fuels.

« Can carry out sensitivity analysis over any modelled conditions.

Need strong feedback loop between model
evaluation and methods for model improvement.




Typical methodology (?) UNIVERSITY OF LEED

* Develop mechanism using protocols.

 Compare mechanism against experiments for key targets
such as ignition delays, species profiles, flame speeds, etc.

e Maybe using local sensitivity analysis try tweaking some
parameters to improve fit with experiment OR optimise against
target data sets (much less common).

e Publish comparisons and mechanism (fully documented??)

 Linear sensitivities can certainly be useful but if simulation
time was not an issue we could do much better by exploring
the full feasible input space for parameters.




Screening methods UNIVERSITY OF LEEDS

* Methods such as linear sensitivity analysis or the global Morris method
can be used for screening out unimportant parameters before more
complex global sensitivity methods are used.

» Often the parameter space to be investigated is enormous:
- large no. of parameters n
- large uncertainty ranges.

* In a linear brute force method each parameter is
changed in turn by a small amount (5-25%) and the
model response recorded.

e The parameters are then ranked according to
effects on the model response.

» Global screening explores wider input space
requiring more runs.




Comparison of sampling

methods for 3 parameter system UNIVERSITY OF LEED

Morris global screening
(two trajectories r)
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Assessing results (Morris) UNIVERSITY OF LEED

Elementary effect of parameter k; on variable c; given by:
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Example from propane ignition study:
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Sampling based methods UNIVERSITY OF LEED

» Conceptually straightforward.
e Based on random or quasi random sampling of input parameter space.
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How do we deal with the tyranny

of parameters? UNIVERSITY OF LEEDS

« Choice of sensitivity/uncertainty methods:

Partial derivative - | Brute force linear | Global Full Global
linear Screening

Cheap 1 Expensive | Expensive |

Restricted to Restricted to Explores full Explores full
chosen values | chosen values | input space 1 Inputspace

No interactions | No interactions | Non-linear Parameter
but no interactions 1
interactions

Not always Relates to Relates to Relates to

directly related to targets 1 targets 1 targets 1

targets |



Monte Carlo (MC) simulations UNIVERSITY OF LEED

o Interpretation of results difficult for large input space.
» Scatter plots used for each parameter to see overall effect.
 Large scatter often obscures mean effect of individual parameter.

e Linear effects can be shown using Pearson correlations, non-linear
effects using rank correlation (Spearman correlations).

 Calculation of full sensitivity coefficients VERY expensive!
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flame calculation:
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High Dimensional Model

Representations (HDMR) UNIVERSITY OF LEEDS

* Developed to reduce the sampling effort required for full global analysis.
o QOutput is expressed as a finite hierarchical function expansion:

f(x)=f, +Zf(x )+ D f (XX ) R+ Ty (X X X, )

I<i<j<n

» Usually second-order expression provides satisfactory results.

« Model replacement built using quasi random sample and approximation
of component functions by orthonormal polynomials.

* Model replacement can be used to generate full Monte Carlo statistics.

e 15t & 2" order sensitivity indices easily calculated from polynomial
coefficients.

Required sample size determined by accuracy of model fit.



Requirements of the method UNIVERSITY OF LEED

» Feasible input ranges for the parameters under investigation.
Can these be provided with the mechanisms?

» Understanding of correlations — transformations have to be
made to deal with these.

e Quasi-random number sequence.
« Model simulations over the quasi-random sample.

« Usually boot-strap until simulated target output distribution
and sensitivity coefficients converge.

» Higher order terms usually require much bigger sample size.

HDMR fit is usually quick — simulations may not be.



Examples from HDMR code:

butane mole frac in JSR: 750 K. UNIVERSITY OF LEEDS

First-order metamodel accuracy for output: 1

Results
Scatter plot Metamodel (red)
1st-order
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The right shows broad pdf of simulated concentration.

In this case the 15t order model is not a perfect fit to the data.



2"d order effects

UNIVERSITY OF LEEDS

Second-order metamodel accuracy for autput: 1

Results
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Including second order effects improves the model fit and the
overall accuracy of the calculated sensitivity indices.



UNIVERSITY OF LEEDS

Methanol oxidation



Sensitivity of ignition delays UNIVERSITY OF LEED

 Mechanism - Li et al. (2007); 18 species, 93 reactions.

« Target output - ignition delay time (1) for stoichiometric mixtures of
methanol and oxygen over a range of temperatures and pressures.

» Enthalpies of formation and A-factors varied over random sample.

 Using initial ranges one reaction dominated (up to 90% of total output
variance). FEEE—— | .
Low scatter

CH30H+HO2 Indicates low
Stage 1 influence of all
0.00044{ .

other parameters

0.0006 -

T(sec)

0.0002 4

Nominal
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Results of model updates UNIVERSITY OF LEED

Stage 1 — Li mech
Stage 2 — CH;0H +HO, updated TST

Stage 3 - CH;0H +0O, updated TST
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UNIVERSITY OF LEED

Butane oxidation in a jet stirred
reactor



Performance of EXGAS

mech. UNIVERSITY OF LEED

Isothermal jet-stirred rorta®
reactor

1 atmosphere

30 —

Residencetime: 6 s

Equivalence ratio of 1

20 —

xbutane

4% butane as inlet
mole fraction.

EXGAS mechanism -
1304 uncertain A-
factors for forward
reactions studied.

10 —

T/K
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Results from linear
screening (25%
decrease in A
factors).




Global analysis (750 K) UNIVERSITY OF LEED

Evidence of 31 A-factors selected for global runs.

nonlinearity, higher

order parameter

. . Scatter plot Metamodel (red)
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First order effects +

component functions UNIVERSITY OF LEEDS

Ranking 1. 2. 3. 4, 5.
Imput 24 26 29 1 30 Sum Si = 0.9463
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2"d-order component functions UNIVERSITY OF LEEDS

Ranking 1. 2. 3. 4. L
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Reactions with high sens at

high T UNIVERSITY OF LEED

e 274 oxygen addition reactions to form O,QOOH species

» also sensitivity to enthalpy of formation of these species but recent
calculations have been made.

e Decomposition of O,QOO0OH to OH and C,H;O,AP.
¢ HCHO + HO, = CHO + H,0,
e HCHO + OH = CHO + H,O

e H,O, (+M) = OH + OH (+M) ( the third body efficiencies for this reaction vary
between mechanisms from different groups for H,O, CH,, C,H)

The following have high sens at both low and high T
« H,0,+ OH =H,0 + HO,

e HO, +HO, =H,0, + 0O,
 CH;0,+H,0,=CH;O0H+HO,



xbutene

Effects of sensitivity studies: reduce A-

factor for 2"d O, addition by factor of 2

1
800

T
750

T T
650 700
T/K

550 600

For butene rate of reaction
channels for

C,HgY + OH are also very
important .

UNIVERSITY OF LEED

Reduction not inconsistent
with recent work from
Bozzelli's group.
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Discussion UNIVERSITY OF LEED

« Often only a small number of parameters drive output uncertainty.

 Local/global sensitivity methods provide useful step in model evaluation
by identifying this parameter set and exploring feasible range of
predictions.

Not always according to the experienced chemists intuition.....

 Further ab initio studies can then be focussed on key parameters
Improving model performance.

» Tuning should probably only be carried out with good reason and should
be documented.

* Where simulations including uncertainties don’t overlap with experiments
— possible evidence of missing pathways/uncertainties.



Discussion 2 —

requirements? UNIVERSITY OF LEED

e In order to put error bars on model predictions and to
compute global sensitivity coefficients requires:

» Uncertainty ranges AND (joint?) pdf’s for all input parameters.
Sometimes available from evaluations such as Baulch but otherwise
should be estimated by mechanism generators.

» And provided to users....
 Information about correlations between inputs also required

- at least where structural arguments have been used and
Arrhenius parameters for several rates are related.

» Should these parameters be sampled together since they come from
common sources or are calculated using same methods?

e Could mechanisms be automatically extended to provide
such information to users?



Open questions UNIVERSITY OF LEED

 How to estimate uncertainties from for example TST
calculations.

» Apply global sensitivity analysis to these methods?

* It is wrong to restrict to only A-factors and enthalpies of
formation and to ignore joint probability distributions but for
how may systems do we have better information?

» Does it matter just for key parameter identification i.e. If not using
optimisation?

Sensitivity + high Optimisation

against all
level theory / _ a\g/ailable 2 5
experiment

experiments



Model Optimisation: no cost

function related to nominal value  UNIVERSITY OF LEED

B Theory

Bl Wang;2009
Sheen et al. (2009) 5 . . . | | . .
for Ethylene i GH3+DH
Combustion 31

This approach has

now been % HO +H HCO+H
superseded : ’ E
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Model Optimisation: including cost function

UNIVERSITY OF LEED

related deviation from nominal value

Approach used in:

Sheen et al. (2011)
You et al. (2011)

Still sensitive to
nominal value
used...

k/k

Reference

B Theory
B Wang; 2011




Comparison for different

systems B Ethylene UNIVERSITY OF LEED
B Heptane

Reference

k/K

AR 1 B

09 | U**J | ‘

0.8 |
0.7 |
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Discussion UNIVERSITY OF LEED

 There should be error bars on both sets of data — this is
something we should work on...

* Include theoretical values in optimization procedure?

« Would require uncertainties in both experimental and
theoretical values to be available.
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