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Use of complex kinetic 
mechanisms 

• Many examples of areas where complex kinetic mechanisms are used 
in engineering and environmental design and control:  
 

 design of efficient, clean combustion devices 
 safety applications for range of fuels and hydrocarbons 
 atmospheric response to pollution control measures 
 systems biology 
 drug design 
 
• In practical applications, complex kinetics linked to detailed models of 
fluid flow and other physical processes.  



Development of complex kinetic 
mechanisms 

Complex chemical mechanisms built by:  
1. proposing a set of rules for the interaction between species – 

mechanism protocol 
2. developing effective parameterisations for the kinetics described 

within the mechanism. 
 
• Our ability to specify protocols is well developed in  e.g. 

hydrocarbon oxidation.  
• Large comprehensive mechanisms e.g. biodiesel surrogate methyl 

decanoate: 3012 species and 8820 reactions (Herbinet et al., 2008). 
    
 

• Many have to be estimated using rules related to chemical structure.  
• Does this lead to a robust mechanism? How can we check?  
 
 
 
 

That’s a lot of parameters! 



Evaluation of kinetic mechanisms 

• Comparison of model with experiment for simple to complex scenarios. 

 
• Agreement for the right reasons? Confidence in simulations?  
• If discrepancies, then how do we find the contributing causes?  
• Sensitivity and uncertainty analysis can help to answer these questions. 

 
• Do we have enough fundamental experiments to cover the conditions 
experienced in practical devices for all fuels of interest? 
• Raises questions for the optimisation of complex fuel mechanisms – ill 
conditioned problem for larger fuels.  
• Can carry out sensitivity analysis over any modelled conditions.  

BUT! 

Then what? 

Need strong feedback loop between model 
evaluation and methods for model improvement. 



Typical methodology (?) 

• Develop mechanism using protocols. 

• Compare mechanism against experiments for key targets 
such as ignition delays, species profiles, flame speeds, etc. 

• Maybe using local sensitivity analysis try tweaking some 
parameters to improve fit with experiment OR optimise against 
target data sets (much less common). 

• Publish comparisons and mechanism (fully documented??) 

• Linear sensitivities can certainly be useful but if simulation 
time was not an issue we could do much better by exploring 
the full feasible input space for parameters.  

Which may of course be huge! 



Screening methods  

• Methods such as linear sensitivity analysis or the global Morris method 
can be used for screening out unimportant parameters before more 
complex global sensitivity methods are used. 
• Often the parameter space to be investigated is enormous: 
 - large no. of parameters n 
 - large uncertainty ranges.  
 
 
 
 
 
 
 

• In a linear brute force method each parameter is 
changed in turn by a small amount (5-25%) and the 
model response recorded.  
• The parameters are then ranked according to 
effects on the model response.  
• Global screening explores wider input space 
requiring more runs. 

 



Comparison of sampling 
methods for 3 parameter system 

Local (   nominal values) 

Cost 1 OR Np 

Morris global screening  
(two trajectories r) 
Cost (Np+1) x r 

k1min k1max 

k2max 

k3max 

etc... 



Assessing results (Morris) 

Elementary effect of parameter kj  on variable ci given by:  

Mean effect of factor kj  on variable ci : 

 

 

 

Variance of effect:  
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Example from propane ignition study:  
(Hughes PCCP 2006, 593K 101.3kPa) 

Response of time to ignition and 
cool flame temperature to 
changes in enthalpy of formation 
of species. 
 
Larger absolute mean – larger 
effect.  
 
Larger standard deviation – 
larger nonlinear/interactive 
effects. 



Sampling based methods 

• Conceptually straightforward. 
• Based on random or quasi random sampling of input parameter space.  
 
 • Perform many simulations until 
output mean/variances converge.  
• No. of necessary runs depends 
on number of important 
parameters. 
• Unlike Morris, MC methods may 
not increase in cost with input 
space dimension. 
• Cost may still be prohibitive 
especially if interactive effects 
between parameters are present. 



How do we deal with the tyranny 
of parameters? 

• Choice of sensitivity/uncertainty methods: 
  

Partial derivative - 
linear 

Brute force linear Global 
Screening 

Full Global 

Cheap ↑ ~ Np ↨ Expensive ↓ Expensive ↓ 

Restricted to 
chosen values ↓ 

Restricted to 
chosen values ↓ 

Explores full 
input space ↑ 

Explores full 
input space ↑ 

No interactions  ↓ No interactions  ↓ Non-linear 
but no 
interactions  

Parameter 
interactions  ↑ 

Not always 
directly related to 
targets ↓ 

Relates to 
targets ↑ 

Relates to 
targets ↑ 

Relates to 
targets ↑ 



Monte Carlo (MC) simulations 

• Interpretation of results difficult for large input space. 
• Scatter plots used for each parameter to see overall effect.  
• Large scatter often obscures mean effect of individual parameter. 
• Linear effects can be shown using Pearson correlations, non-linear 
effects using rank correlation (Spearman correlations). 
• Calculation of full sensitivity coefficients VERY expensive! 
  Example from 

flame calculation: 
NOx prediction. 

Highly 
nonlinear 



High Dimensional Model 
Representations (HDMR) 

• Developed to reduce the sampling effort required for full global analysis. 

• Output is expressed as a finite hierarchical function expansion: 

•  Usually second-order expression provides satisfactory results. 
•  Model replacement built using quasi random sample and approximation 
of component functions by orthonormal polynomials. 
•  Model replacement can be used to generate full Monte Carlo statistics. 
•  1st & 2nd order sensitivity indices easily calculated from polynomial 
coefficients. 
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Required sample size determined by accuracy of model fit.  



Requirements of the method 

• Feasible input ranges for the parameters under investigation. 

 Can these be provided with the mechanisms? 
• Understanding of correlations – transformations have to be 
made to deal with these. 

• Quasi-random number sequence. 

• Model simulations over the quasi-random sample. 

• Usually boot-strap until simulated target output distribution 
and sensitivity coefficients converge.  

• Higher order terms usually require much bigger sample size. 

HDMR fit is usually quick – simulations may not be. 



Examples from HDMR code: 
butane mole frac in JSR: 750 K. 

The right shows broad pdf of simulated concentration. 

In this case the 1st order model is not a perfect fit to the data. 



2nd order effects 

Including second order effects improves the model fit and the 
overall accuracy of the calculated sensitivity indices. 



Methanol oxidation 



Sensitivity of ignition delays 

• Mechanism - Li et al. (2007); 18 species, 93 reactions.  

• Target output - ignition delay time (τ) for stoichiometric mixtures of 
methanol and oxygen over a range of temperatures and pressures. 

• Enthalpies of formation and A-factors varied over random sample. 

• Using initial ranges one reaction dominated (up to 90% of total output 
variance).  

 

 

(T,P,φ)=(1150K,5bar,1) 

Low scatter 
indicates low 
influence of all 
other parameters 



Results of model updates 

Stage 1 – Li mech 
Stage 2 – CH3OH +HO2 updated TST 
Stage 3 - CH3OH +O2 updated TST 

P = 1.5 bar (T,P,φ)=(1150K,5bar,1) 



Butane oxidation in a jet stirred 
reactor 



Performance of EXGAS 
mech. 

Isothermal jet-stirred 
reactor 

1 atmosphere 

Residence time :  6 s 

Equivalence ratio of  1 

4% butane as inlet 
mole fraction. 

EXGAS mechanism -  
1304 uncertain A-
factors for forward 
reactions studied. 
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C4H10+OH=>H2O+R20C4H9
R33C4H9O2P+O2=R41C4H9O4UP

R41C4H9O4=OH+C4H8O3
HCHO+HO2=CHO+H2O2

H2O2(+M)=OH+OH(+M)
C4H8Y+R1H=>R20C4H9

HO2+CH3CHO=R14CH3CO+H2O2
CH3O2+H2O2=CH3OOH+HO2

C4H10+HO2=>H2O2+R20C4H9
C4H10+HO2=>H2O2+R26C4H9

R37C4H9O2P+O2=R46C4H9O4UP
C4H10+OH=>H2O+R26C4H9

C4H8Y+R1H=>R20C4H9
R7CH3O+M=HCHO+R1H+M

CO+HO2=CO2+OH
R29C4H9O2U+HO2=>C4H10O2P+O2

R17C2H5OO+HO2=O2+C2H5OOH
R29C4H9O2U=>HO2+CH48Y
R29C4H9O2U=>HO2+CH48Y

O2+R7CH3O=HCHO+HO2
O2+R11C2H5=C2H4Z+HO2

C4H8Y+OH=>R19C3H7+HCHO
HO2+HO2=H2O2+O2

R20C4H9+O2=>C4H8+HO2
R28C4H9O2U=>HO2+CH48Y

HCHO+OH=R5CHO+H2O
HO2+HO2=H2O2+O2
H2O2+OH=H2O+HO2

675 K
750 K
775 K

Results from linear 
screening (25% 
decrease in A 
factors). 



Global analysis (750 K) 

Evidence of 
nonlinearity, higher 
order parameter 
interactions. 
 
512 runs sufficient 
to get main first 
order effects. 
Higher order 
effects require 
several thousand 
runs. 
 
 

Exp 
value 

31 A-factors selected for global runs.  

Experimental value very infrequent 
unless significant variability in 2 
butane+OH rates is allowed (>f=0.2) 



First order effects + 
component functions 

HCHO+HO2=CHO+H2O2 HO2 + HO2 = H2O2 + O2 

Not really one dominant reaction 



2nd-order component functions 

HO2+HO2 HCHO+HO2 C4H9O2+O2 
C4H9O2+O2 



Reactions with high sens at 
high T 

• 2nd oxygen addition reactions to form O2QOOH species 
 also sensitivity to enthalpy of formation of these species but recent 

calculations have been made. 

• Decomposition of O2QOOH to OH and C4H8O3AP. 

• HCHO + HO2  = CHO + H2O2   

• HCHO + OH = CHO + H2O 

• H2O2 (+M) = OH + OH (+M) ( the third body efficiencies for this reaction vary 
between mechanisms from different groups for H2O, CH4, C2H6) 

The following have high sens at both low and high T 
• H2O2+ OH =H2O + HO2  

• HO2 + HO2 = H2O2 + O2 

• CH3O2+H2O2=CH3OOH+HO2 

 

 



Effects of sensitivity studies: reduce A-
factor for 2nd O2 addition by factor of 2 

For butene rate of reaction 
channels for  
C4H8Y + OH are also very 
important . 

Reduction not inconsistent 
with recent work from 
Bozzelli’s group. 



Discussion 

• Often only a small number of parameters drive output uncertainty. 
• Local/global sensitivity methods provide useful step in model evaluation 
by identifying this parameter set and exploring feasible range of 
predictions. 
 Not always according to the experienced chemists intuition..... 
 
• Further ab initio studies can then be focussed on key parameters 
improving model performance.   
• Tuning should probably only be carried out with good reason and should 
be documented.  
• Where simulations including uncertainties don’t overlap with experiments 
– possible evidence of missing pathways/uncertainties.   
 



Discussion 2 – 
requirements? 

• In order to put error bars on model predictions and to 
compute global sensitivity coefficients requires:  
 Uncertainty ranges AND (joint?) pdf’s for all input parameters. 

Sometimes available from evaluations such as Baulch but otherwise 
should be estimated by mechanism generators.  

 And provided to users.... 

• Information about correlations between inputs also required  
- at least where structural arguments have been used and 
Arrhenius parameters for several rates are related.   
 Should these parameters be sampled together since they come from 

common sources or are calculated using same methods?  

• Could mechanisms be automatically extended to provide 
such information to users? 



Open questions 

• How to estimate uncertainties from for example TST 
calculations.  
 Apply global sensitivity analysis to these methods?  

• It is wrong to restrict to only A-factors and enthalpies of 
formation and to ignore joint probability distributions but for 
how may systems do we have better information?  
 Does it matter just for key parameter identification i.e. If not using 

optimisation? 

Sensitivity + high 
level theory / 
experiment  

Optimisation 
against all 
available 
experiments 

Both ? ? ? 



31 

Model Optimisation: no cost 
function related to nominal value   

 

 
 

 

 
 
 

Sheen et al. (2009)  
for Ethylene 
Combustion 
 
This approach has 
now been 
superseded 



32 

Model Optimisation:  including cost function 
related deviation from nominal value  

 
 

Approach used in:  
 
Sheen et al. (2011)  
You et al. (2011)  
 
Still sensitive to 
nominal value 
used… 



Comparison for different 
systems 



Discussion 

• There should be error bars on both sets of data – this is 
something we should work on... 

• Include theoretical values in optimization procedure?  

• Would require uncertainties in both experimental and 
theoretical values to be available.  
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