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Experimentai evidences of the formation of hydroperoxides
during autoignition

Links between the concentration of hydroperoxides
and the appearance of cool flame
shown using iodometric method,
but the structure of the involved species could not be determined by this way
(Burgess and Laughlin, 1967)

Ketohydroperoxides detected
after trapping at the outlet of a CFR engine
(experiments never repeated)
and of a flow reactor
(very low temperatures (498-518 K) and with very large excess in oxygen
(oxygen/hydrocarbon ratio was 1176
while the stoichiometric ratio for a complete combustion is 18.5)
(Sahetchian et al., 1991-2001)




A new method to detect hydroperoxides
under conditions close to those observed prior autoignition

Hydroperoxides
are very reactive species:

need to minimize
possible reactions
between their formation

and their detection.

Use a
molecular beam




A new method to detect hydroperoxides
under conditions close to those observed prior autoignition

Molecular beam

Nozzle Skimmer

B




A new method to detect hydroperoxides
under conditions close to those observed prior autoignition

Molecular beam

Nozzle Skimmer

Hydroperoxides
formed in very low amounts
amongst a large number

of other oxidation products :

use of a high sensitivity
mass spectrometer
with a very low ionization energy
to avoid the fragmentation

1

Time-of-flight
mass spectrometer
combined with tunable vacuum
ultraviolet synchrotron (SVUV)

photoionization




A new method to detect hydroperoxides
under conditions close to those observed prior autoignition

TOF-MS with SVUV

Molecular beam . i
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A new method to detect hydroperoxides

under conditions close to those observed prior autoignition

TOF-MS with SVUV
Molecular beam photoionization
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A new method to detect hydroperoxides
under conditions close to those observed prior autoignition

Spherical quartz Molecular beam TOF-MS with SVUV
jet-stirred reactor (JSR) photoionization
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Chemistry: Enols are common intermediates in hydrocarbon oxidation




Coupling of a mass spectrometer combined with tunable synchrotron
vacuum ultraviolet photoionization to a JSR through a molecular-

beam sampling system

il

Isotherm
q u artZ lon trajectory
jet-stirred " ‘ |
Time of flight
reactor ~
. MCP detector
at atmospherlc pressure

RTOF MS

Quartz cone-like nozzle
with a 75 um hole
at the tip

Heated quartz jet-stirred Molecular beam
reactor fed by a n-butane/O_/Ar 2 L /
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The coupling through a molecular-beam sampling system between a
JSR and a mass spectrometer combined with tunable synchrotron

vacuum ultraviolet photoionization made in Hefel

The cone, with the reactor and its heating system

A cone, the tip of which is pierced with a has been connected to the MS chamber

75 um hole has been inserted in the reactor
(made in France)




Study of the low-temperature
oxidation of n-butane
In a jet-stirred reactor under
conditions

close to that observed prior
ignition




Study of the low-temperature oxidation of n-butane
In a jet-stirred reactor under conditions
close to that observed prior ignition

Conversion of n-butane
P=1bar,®=1,t1=6s,, 4% n-butane
(3.1 % for a stoichiometric n-butane/air mixture)

In Hefei:
Quantification by
assuming no reaction
below 580K

In Nancy:
on-line
gas chromatographic

analysis of outlet gas ® Exp. Hefei
B Exp. Nancy (GC analysis)

= simulation

M ole fraction

Simulation:
Using a model generated u | | | |

using EXGAS software 600 650 700 750 800
Temperature (K)




Study of the low-temperature oxidation of n-butane
In a jet-stirred reactor under conditions
close to that observed prior ignition

Main combustion products
P=1bar,®=1,1=6s,, 4% n-butane

- :
B Exp. Nancy

® Exp. Hefei
— Simu.

Reference is argon (16.2 eV)

Mole fraction
Mole fraction

( 800 600 _ 700 800
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Study of the low-temperature oxidation of n-butane
In a jet-stirred reactor under conditions
close to that observed prior ignition

Main combustion products
P=1bar,®=1,t=6s,, 4% n-butane

Propene, M=42
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For the measurements made in Hefei,
reference is ethylene (11 eV) and butene (10 eV)
measured at 650 K in Nancy




Study of the low-temperature oxidation of n-butane
In a jet-stirred reactor under conditions
close to that observed prior ignition

Light oxygenated products

P=1bar, ®=1,t=6Ss,, 4% n-butane
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Study of the low-temperature oxidation of n-butane
In a jet-stirred reactor under conditions
close to that observed prior ignition

Hydrogen peroxide
P=1bar, ®=1,t=6Ss,, 4% n-butane

H,0,, M=34
Simulated mole fractions /50
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PIE (10.65 eV) in good agreement with literature

Reference is ethylene (11 eV), o is estimated
Herbinet et al., PCCP, 2011.




Study of the low-temperature oxidation of n-butane
In a jet-stirred reactor under conditions
close to that observed prior ignition

Main C, products
P=1bar, ® =1, t =6s, 4% n-butane

Butenes Oxygenated compounds
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Study of the low-temperature oxidation of n-butane

close to that observed prior ignition

Details of C,HzO products
P=1bar, ® =1, t =6s, 4% n-butane (GC Nancy)
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Study of the low-temperature oxidation of n-butane
In a jet-stirred reactor under conditions
close to that observed prior ignition

Obtained mass spectrum
P=1bar,®=1,1t=6Ss, 4% n-butane, 590 K, 10 eV

72: C, oxygenated compounds
58: Butane / "o
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Study of the low-temperature oxidation of n-butane

In a jet-stirred reactor under conditions
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Zero-point energy corrected adiabatic IEs have been calculated from the CBS-QB3 method using Gaussian03.




Study of the low-temperature oxidation of n-butane
In a jet-stirred reactor under condltlons
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Evolution of hydroperoxides signal with temperature
P=1bar,®=1, t=6s, 4% n-butane, 10 eV
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Battin-Leclerc et al., Angewante Chemie Int. Ed., 2010.




Study of the low-temperature oxidation of n-butane
In a jet-stirred reactor under conditions
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Quantification of C, hydroperoxides
P=1bar,®=1,1t=6Ss, 4% n-butane
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Study of the low-temperature oxidation of n-butane
In a jet-stirred reactor under conditions
close to that observed prior ignition

Other peaks on the obtained mass spectrum
P=1bar,®=1,1t=6s, 4% n-butane, 590 K, 10 eV

72: C, oxygenated

58: Butane \
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Battin-Leclerc et al., Proc. Combust. Inst., 2011.




Study of the low-temperature oxidation of n-butane
In a jet-stirred reactor under conditions
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Study of the low-temperature oxidation of n-butane
In a jet-stirred reactor under conditions
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Quantification of C, dioxygenated compounds
P=1bar,®=1,1t=6s, 4% n-butane
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Study of the low-temperature oxidation of n-butane
In a jet-stirred reactor under conditions
close to that observed prior ignition

Minor peaks on the obtained mass spectrum
P=1bar, ® =1, t=6s, 4% n-butane, , 10 eV
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Study of the low-temperature oxidation of n-butane
In a jet-stirred reactor under conditions
close to that observed prior ignition

Selectivity of products at 590 K (13% conversion)
P=1bar,®=1,t=6Ss, 4% n-butane
15%
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Study of the low-temperature
oxidation of n-heptane
In a jet-stirred reactor under
conditions

close to that observed prior
ignition




Study of the low-temperature oxidation of n-heptane
In a jet-stirred reactor under conditions
close to that observed prior ignition

Conversion of n-heptane
P=1bar,®=1,t=2s, 0.5% n-heptane

In Hefei:
Quantification by
assuming no reaction - o Exp. Hofel

below 580K B Exp. Nancy
— Simulation

In Nancy:

on-line

gas chromatographic
analysis of outlet gas

Mole Fraction

Simulation:
Using a model generated
using EXGAS software
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Study of the low-temperature oxidation of n-heptane
In a jet-stirred reactor under conditions
close to that observed prior ignition
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Study of the low-temperature oxidation of n-heptane
In a jet-stirred reactor under conditions
close to that observed prior ignition

Obtained mass spectrum
P=1bar, ®=1,t=2s, 0.5% n-heptane, 530 K, 9.5 eV

100: Heptane

98: Heptenes

(mostly hexanones)

N\
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114: C, oxygenated

compounds 128
heptadiones

! 146:

Ketohydro
peroxides

No hydroperoxide smaller than ketohydroperoxides




Study of the low-temperature oxidation of n-heptane
In a jet-stirred reactor

Analysis of diones and hydroperoxides
P=1bar,®=1,1t=2s, 0.5% n-heptane
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Are diones seen in Nancy partly due to

Diones (Mass = 128, good PIE) ketohydroperoxides decomposed in GC ?




Study of the low-temperature
oxidation of propane
In a jet-stirred reactor under
conditions

close to that observed prior
ignition




Study of the low-temperature oxidation of propane
In a jet-stirred reactor under conditions
close to that observed prior ignition

In Hefei:
Quantification by
assuming no reaction
below 580K

In Nancy:

on-line

gas chromatographic
analysis of outlet gas

Conversion of propane
P=1bar,®=1,t=6Ss, 12% propane

Propane
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Study of the low-temperature oxidation of propane
In a jet-stirred reactor under conditions
close to that observed prior ignition

Obtained mass spectrum
P=1bar,®=1,t=6s, 12% propane, 635 K, 11 eV

| | 58: C, oxygenated

44: Propane compounds
(mostly acetaldehyde)\ 60: Acetic 76: Propyl

acid +Propanols  hydroperoxides

74: Propan-2one
-3-0l (seen by GC)

12:
Propadione

No hydroperoxide other than propylhydroperoxides




Conclusion

Use of a new type of apparatus coupling through a molecular beam
a jet stirred reactor and a tunable synchrotron vacuum ultraviolet
photoionization mass spectrometer

Evidence of the formation of hydroperoxides compounds,
especially ketohydroperoxides

during the low-temperature oxidation of n-butane and n-heptane:
mainly 2,4 and 3,5-ketohydroperoxides formed from n-heptane

Evidence of the formation of products deriving from ketohydroperoxides:
diones

Next work

Study of the low-temperature oxidation of a series of branched alkanes
to better understand the influence of the structure of the molecule
on the formation of hydroperoxide compounds
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