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E i t l id f th f ti fE i t l id f th f ti f h d idh d idExperimental evidences of the formation of Experimental evidences of the formation of hydroperoxideshydroperoxides
during during autoignitionautoignition

Links between the concentration of hydroperoxides 
and the appearance of cool flame

h i i d i h dshown using iodometric method, 
but the structure of the involved species could not be determined by this way

(Burgess and Laughlin, 1967)

Ketohydroperoxides detected
after trapping at the outlet of a CFR enginepp g g

(experiments never repeated)
and of a flow reactor 

(very low temperatures (498-518 K) and with very large excess in oxygen 
(oxygen/hydrocarbon ratio was 1176 

while the stoichiometric ratio for a complete combustion is 18.5)
(Sahetchian et  al., 1991-2001)



A new method to detect hydroperoxidesA new method to detect hydroperoxides
d diti l t th b d i t i itid diti l t th b d i t i itiunder conditions close to those observed prior autoignition under conditions close to those observed prior autoignition 

Hydroperoxides
are very reactive species:y p

need to minimize 
possible reactions

between their formation 
and their detection.

Use a 
molecular beam
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Molecular beam
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Molecular beam

Hydroperoxides
formed in very low amounts 

amongst a large number g g
of other oxidation products :

use of a high sensitivity 
mass spectrometermass spectrometer 

with a very low ionization energy
to avoid the fragmentation

Time-of-flight 
mass spectrometermass spectrometer 

combined with tunable vacuum
ultraviolet synchrotron (SVUV) 

photoionization
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Molecular beam TOF-MS with SVUV 
photoionization

Spherical quartz 
jet stirred reactor (JSR) photoionizationjet-stirred reactor (JSR)



Recent applications of mass spectrometry with SVUV 
photoionisationphotoionisation

C.A.Taatjes, N. Hansen, A. McIlroy, J.A .Miller, J.P. Senosiain, S.J. Klippenstein, F. Qi, L. Sheng, Y. Zhang, 
T A Cool J Wang P R Westmoreland M E La T Kasper K Kohse Hoïngha sT.A. Cool, J. Wang, P.R. Westmoreland, M.E. Law, T. Kasper, K. Kohse-Hoïnghaus, 
Chemistry: Enols are common intermediates in hydrocarbon oxidation
Science, 308, 1887 (2005).



Coupling of a mass spectrometer combined with tunable synchrotron 
vacuum ultraviolet photoionization to a JSR through a molecular-
beam sampling system

Isotherm 
quartz

jet-stirred 
reactor

at  atmospheric pressure 
(JSR)



The coupling through a molecular-beam sampling system between a 
JSR and a mass spectrometer combined with tunable synchrotron 
vacuum ultraviolet photoionization made in Hefei

The cone, with the reactor and its heating system
has been connected to the MS chamberA cone, the tip of which is pierced with a

75 m hole has been inserted in the reactor
(made in France)

has been connected to the MS chamber



Study of the lowStudy of the low--temperature temperature 
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conditionsconditionsconditions conditions 

close to that observed prior close to that observed prior pp
ignitionignition



Study of the low-temperature oxidation of n-butane
in a jet-stirred reactor under conditionsin a jet stirred reactor under  conditions 
close to that observed prior ignition

Conversion of Conversion of nn--butanebutane
P = 1 bar,  = 1,  = 6 s, , 4% n-butane 

(3.1 % for a stoichiometric n-butane/air mixture)
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Study of the low-temperature oxidation of n-butane
in a jet-stirred reactor under conditionsin a jet stirred reactor under  conditions 
close to that observed prior ignition

Main combustion productsMain combustion productspp
P = 1 bar,  = 1,  = 6 s, , 4% n-butane

0.4 CO M=28
0.3

0.2

0 1M
ol

e 
fr

ac
tio

n O2, M=32

 Exp. Nancy

3.0x10-2

2.0

1 0e 
fr

ac
tio

n

CO, M=28

0.1

0.0

M

800700600
T/K

 Exp. Hefei
 Simu.

1.0

0.0

M
ol

e

800700600
T/K

1.2x10-2

1.0
0.8
0 6fr

ac
tio

n CO2, M=44 4x10-2

3

2ac
tio

n

H2O, M=18Reference is argon (16.2 Reference is argon (16.2 eVeV))

0.6
0.4
0.2
0.0

M
ol

e 
f

800700600

2

1

0

M
ol

e 
fr

a

800700600800700600
T/K

800700600
T/KExp. Hefei Exp. Nancy Simu.



Study of the low-temperature oxidation of n-butane
in a jet-stirred reactor under conditionsin a jet stirred reactor under  conditions 
close to that observed prior ignition

Main combustion productsMain combustion productsMain combustion productsMain combustion products
P = 1 bar,  = 1,  = 6 s, , 4% n-butane
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Study of the low-temperature oxidation of n-butane
in a jet-stirred reactor under conditions Not usuallyin a jet stirred reactor under  conditions 
close to that observed prior ignition

Light oxygenated productsLight oxygenated products

considered in 
models
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Study of the low-temperature oxidation of n-butane
in a jet-stirred reactor under conditionsin a jet stirred reactor under  conditions 
close to that observed prior ignition

Hydrogen peroxideHydrogen peroxidey g py g p
P = 1 bar,  = 1,  = 6 s, , 4% n-butane
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PIE (10.65 PIE (10.65 eVeV) in good agreement with literature) in good agreement with literature
Reference is Reference is ethylene (11 ethylene (11 eVeV), ),  is estimatedis estimated

Herbinet et al., PCCP, 2011.



Study of the low-temperature oxidation of n-butane
in a jet-stirred reactor under conditionsin a jet stirred reactor under  conditions 
close to that observed prior ignition

Main CMain C productsproducts

ButenesButenes Oxygenated compoundsOxygenated compounds

Main  CMain  C44 productsproducts
P = 1 bar,  = 1,  = 6 s, 4% n-butane
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Study of the low-temperature oxidation of n-butane
in a jet-stirred reactor under conditionsin a jet stirred reactor under  conditions 
close to that observed prior ignition

DetailsDetails of Cof C44HH88O O productsproducts
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Study of the low-temperature oxidation of n-butane
in a jet-stirred reactor under conditions

Obtained mass spectrumObtained mass spectrum

in a jet stirred reactor under  conditions 
close to that observed prior ignition

200

pp
P = 1 bar,  = 1,  = 6 s, 4% n-butane, 590 K, 10 eV
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Study of the low-temperature oxidation of n-butane
in a jet-stirred reactor under  conditions 
close to that observed prior ignition

Ionization energy (IE) measurementsIonization energy (IE) measurements
P = 1 bar,  = 1,  = 6 s, 4% n-butane, 590 K

close to that observed prior ignition

, , , ,

IE of CH3OOH
=

9.83 eV

IE of C2H5OOH
=

9.61 eV

IE of C4H9OOH
=

IE of ketohydro
peroxides

9.33-9.36 eV =
9.34-9.39 eV

Zero-point energy corrected adiabatic IEs have been calculated from the CBS-QB3 method using Gaussian03.



Study of the low-temperature oxidation of n-butane
in a jet-stirred reactor under  conditions 
close to that observed prior ignition

Evolution ofEvolution of hydroperoxideshydroperoxides signal with temperaturesignal with temperature

close to that observed prior ignition

Evolution of Evolution of hydroperoxideshydroperoxides signal  with temperature signal  with temperature 
P = 1 bar,  = 1,  = 6 s, 4% n-butane, 10 eV
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Study of the low-temperature oxidation of n-butane
in a jet-stirred reactor under  conditions 
close to that observed prior ignition

Quantification of CQuantification of C44 hydroperoxideshydroperoxides

close to that observed prior ignition

P = 1 bar,  = 1,  = 6 s, 4% n-butane
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Reference is Reference is butenebutene (10 (10 eVeV, 650 K),, 650 K),
ii taken equal to that of taken equal to that of tetrahydrofuranetetrahydrofurane



Study of the low-temperature oxidation of n-butane
in a jet-stirred reactor under conditions

Other peaks on the obtained mass spectrumOther peaks on the obtained mass spectrum

in a jet stirred reactor under  conditions 
close to that observed prior ignition

p pp p
P = 1 bar,  = 1,  = 6 s, 4% n-butane, 590 K, 10 eV
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Study of the low-temperature oxidation of n-butane
in a jet-stirred reactor under  conditions 
close to that observed prior ignition

Possible ways of formation of CPossible ways of formation of C44 dioxygenateddioxygenated compoundscompounds

close to that observed prior ignition
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Study of the low-temperature oxidation of n-butane
in a jet-stirred reactor under  conditions 
close to that observed prior ignition

Quantification of CQuantification of C44 dioxygenateddioxygenated compoundscompounds
P = 1 bar  = 1 = 6 s 4% n butane

close to that observed prior ignition

P = 1 bar,  = 1,  = 6 s, 4% n-butane
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Study of the low-temperature oxidation of n-butane
in a jet-stirred reactor under conditions

Minor peaks on the obtained mass spectrumMinor peaks on the obtained mass spectrum
P 1 b  1 6 4% b t 630 K 10 V

in a jet stirred reactor under  conditions 
close to that observed prior ignition

P = 1 bar,  = 1,  = 6 s, 4% n-butane, 630 K, 10 eV
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Study of the low-temperature oxidation of n-butane

S l ti it f d tS l ti it f d t t 590 Kt 590 K (13% i )(13% i )

in a jet-stirred reactor under  conditions 
close to that observed prior ignition

Selectivity of products Selectivity of products at 590 K at 590 K (13% conversion)(13% conversion)
P = 1 bar,  = 1,  = 6 s, 4% n-butane
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Study of the lowStudy of the low--temperature temperature 
oxidation of oxidation of nn--heptaneheptane

i j ti j t ti d t dti d t din a jetin a jet--stirred reactor under  stirred reactor under  
conditionsconditionsconditions conditions 

close to that observed prior close to that observed prior pp
ignitionignition



Study of the low-temperature oxidation of n-heptane
in a jet-stirred reactor under conditionsin a jet stirred reactor under  conditions 
close to that observed prior ignition

Conversion of Conversion of nn--heptaneheptanepp
P = 1 bar,  = 1,  = 2 s, 0.5% n-heptane 

In Hefei:
Quantification by 
assuming no reaction
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Study of the low-temperature oxidation of n-heptane
in a jet-stirred reactor under conditionsin a jet stirred reactor under  conditions 
close to that observed prior ignition

Light oxygenated productsLight oxygenated products
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Study of the low-temperature oxidation of n-heptane
in a jet-stirred reactor under conditions

Obtained mass spectrumObtained mass spectrum

in a jet stirred reactor under  conditions 
close to that observed prior ignition
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Study of the low-temperature oxidation of n-heptane
in a jet-stirred reactor

Analysis of Analysis of dionesdiones and and hydroperoxideshydroperoxides
P = 1 bar,  = 1,  = 2 s, 0.5% n-heptane
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Study of the lowStudy of the low--temperature temperature 
oxidation of oxidation of propanepropane

i j ti j t ti d t dti d t din a jetin a jet--stirred reactor under  stirred reactor under  
conditionsconditionsconditions conditions 

close to that observed prior close to that observed prior pp
ignitionignition



Study of the low-temperature oxidation of propane
in a jet-stirred reactor under conditionsin a jet stirred reactor under  conditions 
close to that observed prior ignition

Conversion of Conversion of propanepropanep pp p
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Study of the low-temperature oxidation of propane
in a jet-stirred reactor under conditions

Obtained mass spectrumObtained mass spectrum

in a jet stirred reactor under  conditions 
close to that observed prior ignition
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Conclusion

Use of a new type of apparatus coupling through a molecular beam
a jet stirred reactor and a tunable synchrotron vacuum ultraviolet 
photoionization mass spectrometerphotoionization mass spectrometer

Evidence of the formation of hydroperoxides compounds, 
especially ketohydroperoxidesespecially ketohydroperoxides 
during the low-temperature oxidation of n-butane and n-heptane:
mainly 2,4 and 3,5-ketohydroperoxides formed from n-heptane

N t k

Evidence of the formation of products deriving from ketohydroperoxides:
diones

Next work

Study of the low-temperature oxidation of a series of branched alkanes 
to better understand the influence of the structure of the moleculeto better understand the influence of the structure of the molecule 
on the formation of hydroperoxide compounds
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