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During this year, the Computer Systems Research Division completed one 

major project, the information sharing kernel design project, and made 

significant progress on two others, the study of distributed systems and 

implementation of a local network. We also continued support of the ARPANET 

and NSW on Multics. These activities are described in the following sections. 

I. THE INFORMATION SHARING KERNEL DESIGN PROJECT 

This year we completed a three year project to carry out engineering 

studies whose goal was to demonstrate the feasibility of producing a full 

function general purpose operating system whose central supervisor code is 

simple enough that its correct operation can be certified by some form of 

auditing. The term "security kernel" is often used to describe this body of 

critical code, since the functions that must be included in this code are 

precisely those that insure the correct operation of the system, and insure 

the integrity of the information stored in the system. This engineering study 

was part of a larger project, the Guardian project, to produce a prototype of 

a certifiable operating system, based on the Multics system. The Guardian 
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project included development of models to characterize security in a computer 

system, development of formal specification techniques for operating systems, 

and actual implementation of a system matching the models. 

The general strategy of this engineering study involved identifying all 

reasonable-sounding proposals for simplifying the Multics kernel, and 

selecting for trial implementation those that could not be accepted as 

obviously straightforward or rejected as obviously inappropriate. Three kinds 

of redesign proposals emerged: 1) removing from the kernel those formerly 

protected supervisor functions that did not really require that protection; 

2) taking advantage whenever possible, of the natural separation afforded by 

processes in distinct address spaces communicating at arms length to implement 

protection functions; and 3) using more systematic program structuring 

techniques for implementing the remaining kernel functions, so that the result 

might be easier to verify. 

Probably the most interesting and important result of this work is the 

invention of a file system and processor multiplexing organization that 

eliminates the complicating cycles of dependency normally found among the 

modules of an operating system kernel. The organization is based on the 

discipline of type extension, a strategy that has been used previously to 

organize application programs, but has heretofore not been applied to the 

structure of an operating system itself. Inside an operating system, careful 

analysis is required to identify all intermodule dependencies. The 

opportunity exists, for example, for an operating system module to produce 

dependency loops by participating in the implementation of its own execution 

environment. Such opportunities are less of a problem for application 

programs, which typically depend on the operating system to provide their 
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execution environment. Our study suggests that in a properly structured 

system, all dependencies that cannot be eliminated will fall into one of five 

categories, as follows. A module M is dependent on some other module if and 

only if: 

• the other module manages some object that is a component of the object 

defined by M, 

• that module provides a map used to relate names used by M to lower 

level objects, 

• that module provides the containers for the algorithms and temporary 

storage for M, 

• that module defines the address space in which M executes, 

• that module implements the interpreter (the real or virtual processor) 

that executes the algorithms of M. 

Using the rationale just described, and with the five kinds of dependencies in 

mind, it was possible to design a loop-free structure of object managers that 

implement the complete functionality required in the Multics kernel. 

We summarize our experience in applying the type extension rationale to 

structuring the Multics kernel as follows. Most systems appear to have a 

loop-free dependency structure if viewed from far enough away. The obvious 

component relationships and the obvious operations follow loop-free paths 

among the modules. On close inspection, however, map, program, address space, 

and interpreter dependencies will almost certainly generate loops in the 

system designed without loop avoidance as a primary objective. The map, 

program and address space loops usually are broken easily (at least during the 

design stage) by introducing new object types to store the maps, programs, and 

address space definitions. The interpreter dependency loops appear to be 
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eliminated in most systems by using a two level implementation of processes. 

The most difficult and subtle structural problems are caused by exception 

handling - especially when the exceptions are part of the mechanisms that 

control resource usage. The difficulty is partly intrinsic -- such exceptions 

tend to occur at low levels in the system but be related to high level objects 

and partly methodological resource usage controls and the paths followed 

to deal with exceptions tend to be added to a design last. 

It was our expectation that the structural simplifications to the kernel 

would be accompanied by a reduction in the size of the kernel, as measured in 

lines of source code. The size of the Multics kernel at the start of the 

project was 54,000 lines of source code, a bulk sufficiently staggering to 

inhibit any serious thought of conclusive auditing. Our application of the 

three design procedures mentioned above produced a version of the kernel 

approximately half the size of the original. And we expect further size 

reductions would be possible, were our proposals carried through to all areas 

of the kernel to which they would apply. An unresolved question is whether 

the kernel must enforce all security requirements, or only those related to 

some external standard such as the military model of non-discretionary levels 

and categories. Had our kernel enforced only the latter, it would have been 

somewhat smaller, though considerable work seems necessary to decide exactly 

how much smaller. 

Experiments with components of the system that we rewrote indicate that 

the structural modifications we proposed did not have a significant 

performance impact on the system, and we conclude that a secure system need 

have no performance penalty. The most serious impact on performance in our 

work comes from the use of a high level language, and presumably this 
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difficulty could be minimized if a high level language were used that is 

easier to compile efficiently than full PL/I. 

The primary conclusion of this project is that the kernel of a general 

purpose operating system can be made significantly simpler by imposing first 

clear criteria as to what should be in it -- the kernel concept --, and second 

a design discipline based on type extension. It is also apparent that minor 

adjustments of the underlying hardware architecture can make a significant 

difference in operating system complexity, and similarly that minor variations 

in the semantics of the user interface can make major differences in the 

complexity of implementation of the kernel. 

II. RESEARCH PROBLEMS OF DECENTRALIZED SYSTEMS WITH LARGELY AUTONOMOUS NUDES 

A currently popular systems research project is to explore the 

possibilities and problems for computer system organization that arise from 

the rapidly falling cost of computing hardware. Interconnecting fleets of 

mini- or micro-computers and putting intelligence in terminals and 

concentrators to produce so-called "distributed systems" has recently been a 

booming development activity. While these efforts range from ingenious to 

misguided, many seem to miss a most important aspect of the revolution in 

hardware costs: that more than any other factor, the entry cost of acquiring 

and operating a free-standing, complete computer system has dropped and 

continues to drop rapidly. Where a decade ago the capital outlay required to 

install a computer system ranged from $150,000 up into the millions, today the 

low end of that range is below $15,000 and dropping. 

The consequence of this particular observation for system structure comes 

from the next level of analysis. In most organizations, decisions to make 
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capital acquisitions tend to be more centralized for larger capital amounts, 

and less centralized for smaller capital amounts. On this basis we may 

conjecture that lower entry costs for computer systems will lead naturally to 

computer acquisition decisions being made at points lower in a management 

hierarchy. Further, because a lower-level organization usually has a smaller 

mission, those smaller-priced computers will tend to span a smaller range of 

applications, and in the limit of the argument will be dedicated to a single 

application. Finally, the organizational units that acquire these computers 

will by nature tend to operate somewhat independently and autonomously from 

one another, each following its own mission. From another viewpoint, 

administrative autonomy is really the driving force that leads to acquisition 

of a computer system that spans a smaller application range. According to 

this view, the large multiuser computer center is really an artifact of high 

entry cost, and does not represent the "natural" way for an organization to do 

its computing. 

A trouble with this somewhat oversimplified analysis is that these 

conjectured autonomous, decentralized computer systems will need to 

communicate with one another. For example: the production department's 

output will be the inventory control department's input, and 

computer-generated reports of both departments must be submitted to higher 

management for computer analysis and exception display. Thus we can 

anticipate that the autonomous computer systems must be at least loosely 

coupled into a cooperating confederacy that represents the corporate 

information system. This scenario describes the corporate computing 

environment, but a similar scenario can be conjectured for the academic, 

government, military, or any other computing environment. The conjecture 
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described here is being explored for validity in an undergraduate thesis by 

Cecilia d'Oliveira. 

The key consequence of this line of reasoning for computer system 

structure, then, is a technical problem: to provide coherence in 

communication among what will inevitably be administratively autonomous nodes 

of a computer network. Technically, autonomy appears as a force producing 

incoherence: one must assume that operating schedules, loading policy, level 

of concern for security, availability, and reliability, update level of 

hardware and software, and even choice of hardware and software systems will 

tend to vary from node to node with a minimum of central control. Further, 

individual nodes may for various reasons occasionally completely disconnect 

themselves from the confederacy, and operate in isolation for a while before 

reconnecting. Yet to the extent that agreement and cooperation are 

beneficial, there will be need for communication of signals, exchange of data, 

mutual assistance agreements, and a wide variety of other internode 

interaction. We hypothesize that one-at-a-time ad hoc arrangements will be 

inadequate, because of their potential large number and the programming cost 

in dealing with each node on a different basis. 

Coherence can be sought in many forms. At one extreme, one might set a 

company-wide standard for the electrical levels used to drive point-to-point 

communication lines that interconnect nodes or that attach any node to a local 

communication network. At the opposite extreme, one might develop a data 

management protocol that allows any user of any node to believe that there is 

a central, unified database management system with no identifiable boundaries. 

The first extreme might be described as a very low-level protocol, the second 
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extreme as a very high-level protocol, and there seem to be many levels in 

between, not all strictly ordered. 

By now, considerable experience has been gained in devising and using 

relatively low-level protocols, up to the point that one has an uninterpreted 

stream of bits flowing from one node of a network to another. The ARPANET and 

IELENET are perhaps the best-developed examples of protocols at this level, 

and local networks such as the ETHERNET and the Irvine King network provide a 

similar level of protocol on a smaller scale geographically. In each of those 

networks, standard protocols allow any two autonomous nodes (of possibly 

different design) to set up a data stream from one to the other; each node 

need implement only one protocol, no matter how many other differently 

designed nodes are attached to the network. However, standardized coherence 

stops there; generally each pair of communicating nodes must make some 

(typically ad hoc) arrangement as to the interpretation of the stream of bits: 

does it represent a stream of data, a set of instructions, a message to one 

individual, etc. For several special cases, such as exchange of mail or 

remotely submitting batch jobs, there have been developed higher-level 

protocols; there tends to be a distinct ad hoc higher-level protocol invented 

for each application. A Master's thesis by Paul Levine explored some of the 

problems of protocols that interpret and translate data across machines of 

different origin. 

The image of a loose confederacy of cooperating autonomous nodes requires 

at a minimum the level of coherence provided by these networks; it is not yet 

clear how much more is appropriate, only that the opposite extreme in which 



the physically separate nodes effectively lose their separate identity is 

excluded by the earlier arguments for autonomy. Between lies a broad range of 

possibilities that need to be explored. 

Coherence and the object model 

During the current year, members of the Computer Systems Research 

Division held a graduate-level seminar that explored this area of coherence 

among interconnected systems, and developed a framework for discussion that 

allows one to pose much more specific questions. The first conclusion of this 

work is that to put some structure on the range of possibilities, it is 

appropriate to think first in terms of familiar semantic models of 

computation, and then to inquire how the semantic model of the behavior of a 

single node might be usefully extended to account for interaction with other, 

autonomous nodes. To get a concrete starting point that is as developed as 

possible, we gave initial consideration to the object model*. Under that 

view, each node is a self-contained system with storage, a program interpreter 

that is programmed in a high-level object-oriented language such as CLU or 

Alphard, and an attachment to a data communication network of the kind 

previously discussed. 

We immediately observed that several interesting problems are posed by 

the interaction between the object model and the hypothesis of autonomy. 

There are two basic alternative premises that one can start with in thinking 

about how to compute with an object that is represented at another node; send 

instructions about what to do with the object to the place it is stored, or 

* Two other obvious candidates for starting points are the data flow model 
and the actor model, both of which already contain the notion of 
communications; since neither is developed quite as far as the object model we 
have left them for future examination. ' 
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send a copy of the representation of the object to the place that wants to 

compute with it. (In-between combinations are also possible, but conceptually 

it is simpler to think about the extreme cases first.) An initial reaction 

might be to begin by considering the number of bits that must be moved from 

one node to another to carry out the two alternatives, but that approach 

misses the most interesting issues: reliability, integrity, responsibility 

for protection of the object, and naming problems. Suppose the object stays 

in its original home. Semantics for requesting operations, and reporting 

results and failures are needed. For some kinds of objects, there may be 

operations that return references to other, related objects. Semantics to 

properly interpret these references are required. Checking of authorization 

to request operations is required. Some way must be found for the 

(autonomous) node to gracefully defer, queue, or refuse requests, if it is 

overloaded or not in operation at the moment. 

Suppose on the other hand, that a copy of the object is moved to the node 

that wants to do the computation. Privacy, protection of the contents, 

integrity of the representation, and proper interpretation of names embedded 

in the object representation all are problems. Yet, making copies of data 

seems an essential part of achieving autonomy from nodes that contain needed 

information but aren't always accessible. Considering these two premises as 

alternatives seems to raise simultaneously so many issues of performance, 

integrity of the object representation, privacy of its content, what name is 

used for the object, and responsibility for the object, that the question is 

probably not posed properly. However, it begins to illustrate the range of 

considerations that should be thought about. We have identified the following 

more specific, problems that require solutions: 
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1. To arrange systematically that an object have multiple representations at 

one point in time but stored at different places. One would expect to 

achieve reliability and response speed this way. An example of 

non-systematic multiple representation occurs whenever one user of a 

time-sharing system confronts another with the complaint, "I thought you 

said you fixed that bug", and receives the response, "I did. You must 

have gotten an old copy of the program. What you have to do is type ••• " 

Semantics are needed to express the notion that for some purposes any of 

several representations are equally good, but for other purposes they 

aren't. 

2. An object at one node needs to "contain" (for example, use as part of its 

representation) objects from other nodes. This idea focuses on the 

semantics of naming remote objects. It is not clear whether the names 

involved should be relatively high-level (e.g., character-string file 

names) or low-level (e.g., segment numbers). 

3. Related to the previous problem are issues of object motion: suppose 

object A, which contains as a component object B, is either copied or 

moved from one node to another, either temporarily or permanently. Can 

object B be left behind or be in yet another node? The answer may depend 

on the exact combination of copy or new, temporary or permanent. 

Autonomy is deeply involved here, since one cannot rely on availability 

of the original node to resolve the name of B. 

4. More generally, semantics are needed for gracefully coping with objects 

that aren't there when they are requested. (Information stored in 

autonomous nodes will often fall in this category.) This idea seems 
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closely related to the one of coping with objects that have multiple 

versions and the most recent version is inaccessible*. 

5. Algorithms are needed that allow atomic update of t\W (or more) objects 

stored at different nodes, in the face of errors in communication and 

failures of individual nodes**· There are several forms of atomic 

update: there may be consistency constraints across two or more 

different objects (e.g., the sum of all the balances in a bank should 

always be zero) or there may be a requirement that several copies of an 

object be kept identical. The semantic view that objects are immutable 

may provide a more hos;:>itable base for. extension to interaction among 

autonomous nodes than the view that objects ultimately are implemented by 

cells that can contain different values at different times. (The oore 

interesting algorithms for making coordir:ated changes in the face of 

errors seem to implement something resembling immutable objects). 

Constraining the range of errors that must be tolerated seems to be a 

p rornising way to look at these last t.•IO problems" Not ali. failures are 

equally likely, and more important, some kinds of failures can perhaps be 

guarded against by specific remedies, rather than tolerated. For example, a 

common protocol problem in a network i3 chat some node both crashes and 

restores service again before anyone notices; outstanding connections through 

* Semantics for dealing systematically with errors and other surprises have 
not really been devjsed for mono.Lithic, centraJ..ized systems either.. However, 
it appears that in the decentralized case, the problem cannot so easily be 
avoided by the ad hoc tricks or finesse as it was in the past. 

** Most published work on making atomic updates to several sites has 
concentrated on algorithms that perform well despite communication delay or 
that can be proven correct. Unfortunately, algorithms constructed without 
consideration of reliability and failure are not easily extended to cope with 
those additional considerations, so there deems to be no way to build on that 
work. 
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the network sometimes continue without realizing that the node's state has 

been reset. A change in the semantics of the host-net interface could locally 

eliminate this kind of failure instead of leaving it as a problem for higher 

level protocols. 

The following oversimplified world view, to be taken by each node may 

offer a systematic way to think about multiply represented objects and atomic 

operations: there are two kinds of objects, mine and everyone else's. My 

node acts as a cache memory for objects belonging to others that I use, and 

everyone else acts as a backing store. These roles are simply reversed for my 

own objects. (One can quickly invent situations where this view breaks down, 

causing deadlocks or wrong answers, but the question is whether or not there 

are real world problems for which this view is adequate.) 

Finally, it is apparent that one can get carried away with ingenious 

algorithms that handle all possible cases. An area requiring substantial 

investigation is real world applications. It may turn out that only a few of 

these issues arise often enough in practice to require systematic solutions. 

It may be possible, in many cases, to cope with distant objects quite 

successfully as special cases to be programmed one at a time. 

Other problems in the semantics of coherence 

Usual models of computation permit only "correct" results, with no 

provision for tolerating "acceptably close" answers. Sometimes provision is 

made to report that ~ result can be returned. In a loose confederacy of 

autonomous nodes, exactly correct results may be unattainable, but no answer 

at all is too restricting. For example, one might want a count of the current 

number of employees, and each department has that number stored in its 

computer. At the moment the question is asked, one department's computer is 
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down, and its count is inaccessible. But a copy of last month's count for 

that department is available elsewhere. An "almost right" answer utilizing 

last month's count for one department may well be close enough for the purpose 

the question was asked, but we have no semantics available for requesting or 

returning such answers. A more extreme example surrounds an attempt to 

determine the sum of all checking account balances in the United States, by 

interrogating every bank's computer. An exact result seems both unnecessary 

and unrealistic to obtain. A general solution to this problem seems to 

require a perspective from Artificial Intelligence, but particular solutions 

may be programmable if there were available semantics for detecting that one 

object is an out-of-date version of another, or that a requested but 

unavailable object has an out-of-date copy. It is not clear at what level 

these associations should be made. 

Semantics are also needed to express constraints or partial contraints of 

time sequence. (e.g., "reservations are to be made in the order they are 

requested, except that two reservation requests arriving at different nodes 

within one minute may be processed out of order.") Note that the possibility 

of unreliable nodes or communications severely complicates this problem. 

The semantics of autonomy are not clear. When can I disconnect my node 

from the network without disrupting my (or other) operations? How do I refuse 

to report information that I have in my node in a way that is not disruptive? 

If my node is overloaded, which requests coming from other nodes can be 

deferred without causing deadlock? 

Heterogeneous and Homogeneous Systems 

A question that we have repeatedly encountered is whether or not one 

should assume that the various autonomous nodes of a loosely coupled 
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confederacy of systems are identical either in hardware or in lower level 

software support. The assumption of autonomy and observations of the way the 

real world behaves both lead to a strong conclusion that one must be able to 

interconnect heterogeneous (that is, different) systems. Yet, to be 

systematic, some level of homogeneity is essential, and in addition the 

clarity that homogeneity provides in allowing one to see a single research 

problem at a time is very appealing. 

We now believe that the proper approach to this issue lies in careful 

definition of node boundaries. We insist that every node present to every 

other node a common, homogeneous interface, whose definition we hope to 

specify. That interface may be a native interface, directly implemented by 

the node, or it may be simulated by interpretation, using the (presumably 

different) native facilities of the node. This approach allows one to work on 

the semantics of decentralized systems without the confusion of hetrogeneity, 

yet it permits at least some non-conforming systems to participate in a 

confederacy. There is, of course, no guarantee that an arbitrary previously 

existing computer system will be able to simulate the required interface 

easily or efficiently. 

Conclusion 

The various problems uncovered in the course of this work are by no means 

independent of one another, although each seems to have a flavor of its own. 

In addition, they probably do not span the complete range of issues that 

should be explored in establishing an appropriate semantics for expressing 

computations in a confederacy of loosely coupled, autonomous computer systems. 

Further, some are recognizable as problems of semantics of centralized systems 
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that were never solved very well. But they do seem to represent a starting 

point that we expect to lead to more carefully framed questions and eventually 

some new conceptual insight. 

Ill. A LOCAL NETWORK FOR LCS 

During the year, development of the Local Network for the Laboratory for 

Computer Science progressed to the point where the first three nodes on the 

net are expected to be operational within the next two months. As discussed 

in detail in the sections below, the critical decisions concerning the 

hardware and protocols to be used on our network have been made during the 

last twelve months, making it possible for a variety of projects related to 

the network to proceed forward in parallel. 

Hardware 

As reported in the last annual report, our choices for the transmission 

technology to be used in the network quickly narrowed to two architectures: 

the ethernet developed by Boggs and Metcalfe at Xerox Palo Alto Research 

Center, and the ring network developed by Farber at the University of 

California, Irvine. The architecture and hardware of the ring network and the 

ethernet are very different, and, at first glance, the functional capabilities 

of the two seem quite different as well. However, discussions with Metcalfe 

and Farber, and with others in our laboratory, led to the conclusion that 

there are few inherent differences in the functional capabilities of the basic 

ethernet and ring necwork communications schemes. This made the choice 

between them a very difficult one. It appeared, in fact, that the important 

differences between the two networks were operational differences such as 

reliability, cost, and convenience, which could only be evaluated by comparing 

a running version of each network in a similar environment. 
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A way out of this dilemma was suggested when we discovered that we could 

design a network interface that, with minor modification, could operate either 

a ringnet or an ethernet. Thus, without procuring two complete sets of 

interface hardware, we can bring up both versions of the network and compare 

them operationally. Given this observation, we determined that we would 

construct the LCS Net in two subcomponents, one a ringnet and one an ethernet, 

and perform an operational comparison of the two. We have done some 

preliminary comparative analysis of the two. 

The primary hardware component of our network is the Local Net Interface 

(LNI), which provides the means of connecting the various hosts to the 

network. The LNis that we intend to use for the network have been designed by 

David Farber at the University of California, Irvine; they are a second 

generation ring interface that Farber is developing under contract with ARPA, 

based on the ring developed for the Irvine Distributed Computing System. We 

have been assisting in the design of these interfaces, so that we will be able 

to produce a version of this hardware that can drive an ethernet as well as a 

ringnet. 

The LNI, as delivered by Farber, includes an interface to the PDP/11 

Unibus. One of the tasks yet to be completed is the fabrication of an 

interface to connect the LNI to the PDP-lOs in the building. It is possible 

tnat Farber will complete the design of a PDP-10 interface to the LNI; as an 

interim interface it appears very easy to attach the LNI to the TIL bus that 

is locally used for conenction to the PDP-lOs. Eventually, the LNI will 

probably require a connection to the PDP-lOs that runs at a higher speed than 

the TTL bus will permit. 
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A hardware project that was partially completed during the year is the 

interconnection of a microprocessor to the LNI. A microprocessor directly 

connectable to the network can be used in a variety of ways, for example as a 

controller for a computer terminal or other remote input/output device. The 

microprocessor selected for this first implementation was the Motorola M6~00. 

The first applciation for the microprocessor will be as a terminal interface 

for the local network. 

One of the important functions of our local network will be to provide a 

means of access to the ARPANET from the various machines at the laboratory. 

The interconnection between the local net and the ARPANET will be made using a 

PDP 11/35 that was provided for the project by ARPA. This machine will be 

used to perform the various protocol translations that will be required as 

part of the interconnection of the local network and the ARPA network. One 

project being performed at the laboratory is the development of a hardware 

interface to connect this PDP/11 to the ARPANET. The DEC interface is bulky, 

expensive, and not rapidly obtainable. We hope our local version will perform 

better on these counts. 

Protocols 

As part of the development of our local network, it was necessary for us 

to develop or select a low level protocol for end-to-end communication over 

the network. We chose as a starting point the Transmission Control Protocol, 

or ICP, but we permitted ourselves the option of changing the protocol 

slightly to better conform to our local needs as we saw them. The resulting 

protocol is called Data Stream Protocol, or DSP. DSP provides functionality 

equivalent to ICP, but is simpler, primarily due to the elimination of certain 

control functions and synchronizing algorithms. 
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We are currently involved in an effort to bring DSP and TCP together 

again, since TCP is the ARPANET standard for end-to-end communication in the 

"internet" environment. We have attended several meetings of the TCP working 

group, and have met with some success in. our attempt to include in TCP some of 

the features in DSP. 

DSP must be implemented on all the machines which we propose to connect 

to the local network. Our initial effort has been devoted to an 

implementation of DSP for the UNIX operating system on the PDP/11. One of the 

first machines to be connected to our local network will be the UNIX system in 

the Domain Specific Systems research group. In addition, the PDP/11 gateway 

to the ARPANET will run the UNIX operating system. An implementation of DSP 

(or perhaps TCP) is scheduled for the Multics system later in the calendar 

year. Preliminary plans have been made for implementation of DSP on the ITS 

machines, and we are considering how DSP might be implemented on the TENEX 

operating system. As part of the microprocessor project mentioned above, we 

have also implemented DSP for the M6800. The initial implementation on the 

M6800 required 1300 bytes of program, and although this size will undoubtedly 

increase as the implementation is polished, the size of the algorithm suggests 

that we were somewhat successful in our ambition that DSP be a fairly simple 

protocol. 

Initially, the local net will use the same high level protocols that are 

now used in the ARPANET. It appears that the ARPANET protocols for remote 

login (TELNET), file transfer, and mail sending can be made to operate on top 

of US~ without major modification. Therefore, for systems that currently have 

software for conenction to the ARPANET, the only coding required as part of 

the interconnection to the local net is the implementation of DSP, and minor 

modification of existing higher level protocols. ARPANET software already 
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exists for all the machines currently scheduled for connection to the local 

network. 

We have begun the design of higher level protocols to provide new 

services that seem appropriate in the local net. In particular, we have 

proposed a rather flexible scheme for naming and initiating connections to 

services in the local network. Examples of services that might be named using 

this mechanism are the delivery of a message to a specified mailbox, the 

updating of a file, or the remote login to a system. The mechanism uses 

decentralized active agents to provide an environment that is robust in the 

face of system failures. The names used are tree structured in order to deal 

in the natural way with name conflicts and to allow the easy definition of new 

services in a given context. 

All of the network architectures that we have considered are completely 

insecure, since all messages being sent appear on all portions of the network. 

While our laboratory is a 11benign 11 environement in which the needs for 

security of data communication are rather small, considerations of personal 

privacy continue to be relevant in an environment such as ours, so our needs 

for security, while minimal, are not zero. Also, we would like to design a 

network whose applicability extends to situations with stronger protection 

requirements than we have. For these reasons, we have studied the securing of 

information flowing through our local network by means of data encryption. 

Data encryption is becoming a viable possibility for a network even as simple 

as the one we contemplate here, because data encryption algorithms can now be 

obtained on a single chip. We have proposed a end-to-end encryption strategy 

using the NBS data encryption standard integrated into a modified version of 

DSP, which is essentially invisible to the higher level protocols. Its use in 

the local network could be made automatic, invisible and inexpensive. We feel 
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that the integration of some security mechanism into our network will 

considerably enhance the impact of our work in the outside world. 

IV. ARPANET AND NSW SUPPORT 

During the year, our group significantly reduced the level of effort 

committed to maintaining the ARPANET connection to the Multics system. 

Although Honeywell has not officially accepted support for the ARPANET 

software, it has agreed that it will attempt to modify the ARPANET software 

when necessary as a result of changes to other parts of the system. 

Therefore, we are somewhat relieved of the continued effort which has been 

required just to maintain the ARPANET in a stable condition. The only 

modifications to the software that we are performing at this point are changes 

required to support other research activities of our group. 

We continue to improve the software implementing the higher level 

protocols on Multics, especially the programs for sending and receiving 

network mail. The Information Processing Center is currently providing 

computer time on Multics in support of our project to produce an installable 

program for reading and managing mail. We are also in the process of 

transferring to IPC the cost of managing the system services related to 

receiving and sending network mail. 

A significant amount of effort has been invested in making Multics a 

participating member of the National Software Works. At this point, Multics 

is a legitimate tool-bearing host in the NSW. We are in the process of 

transferring continued support of NSW on Multics to the Kome Air Development 

Center. 
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PUllLIGATlUNS, TALKS, and THESES 

Publications 

Saltzer, J.H., "Technical Possibilities and Problems in Protecting Data 
in Computer Systems," in R. Dierstein, H. Fielder, and A. Schulz, 
Datenschutz und Datensicherung, J. P. Bachem Verlag, Cologne, 
Germany, September, 1976, pp. 27-36. 

Gifford, D., "Hardware Estimation of a Process's Primary Memory 
Requirements," to be published in Comm. ACM in September, 1~j77. 

Schroeder, M.D., Clark, D.D., and Saltzer, J.H., "The Multics Kernel 
Design Project," to appear in the Sixth ACM Symposium on Operating 
Systems Principles, November, 1977. 

Reed, D.P., and Kanodia R.J., "Synchronization with Eventcounts and 
Sequencers," to appear in the Sixth ACM Symposium on Operating 
Systems Principles, November, 1977. 

Svobodova, L., "Software Performance Monitors: Design Trade-Qffs," 
Seventh International Conf. of the Computer Measurement Group, 
Atlanta, Georgia, November, 1977. 

Kent, s., "Encryption-Based Protection for Interactive User-Computer 
Communication," to be presented at the ACM Fifth Data Communications 
Symposium, Snowbird, Utah, September, 1977. 

Montgomery, W., "Measurements of Sharing in Multics," to appear in the 
Sixth ACM Symposium on Operating Systems Principles, November, 1977. 

Other Reports 

Clark, D.D., editor, "Ancillary Reports: Kernel Design Project," June, 
1977, Laboratory for Computer Science Technical Memo TM-87. 

Schroeder, M.D., Clark, D.D., Saltzer, J.H., and Wells, D.M., "Final 
Report of the Multics Kernel Design Project," June, 1977, submitted 
to Honeywell Information Systems Inc. 

Theses Completed 

Wajda, J.P., "A Methodology to Study Computer Language Performance," B.S. 
thesis, Department of Electrical Engineering and Computer Science, 
M.I.T., August, 1976. 
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Janson, P., "Using Type Extension to Organize Virtual Memory Mechanisms," 
Ph.D. thesis, Department of Electrical Engineering and Computer 
Science, M.I.T., September, 1976, also Laboratory for Computer 
Science Technical Memo TR-167 • 

.Benjamin, A., "Improving Information Storage Reliability Using a Data 
Network," M.S. thesis, Department of Electrical Engineering and 
Computer Science, M.I.T., October, 1976, also Laboratory fQr 
Computer Science Technical Memo TM-78. 

Hunt, D., "A Case Study of Intermodule Dependencies in a Virtual Memroy 
Subsystem," M.S. thesis, Department of Electrical Engineering and 
Computer Science, M.I.T., December, 1976, also Laboratory for 
Computer Science Technical Report TR-174. 

Skalka, S.L., "Analysis of Simulation Models of a Multiprogrammed Demand 
Paging System," .B.S. thesis, Department of Electrical Engineering 
and Computer Science, M.I.T., December, 1976. 

Frydman, U., "Minicomputer Systems in the Automated Factory," .B.S. 
thesis, Department of Electrical Engineering and Computer Science, 
M.I.T., January, 1977. 

Goldberg, H.J., "A Robust Environment for Program Development," M.S. 
thesis, Department of Electrical Engineering and Computer Science, 
M.I.T., February, 1977, also Laboratory for Computer Science 
Technical Report TR-175. 

Karger, P., "Non-Discretionary Access Control for Decentralized Computing 
Systems," M.S. thesis, Department of Electrical Engineering and 
Computer Science, M.I.T., May, 1977, also Laboratory for Computer 
Science Technical Report TR-179. 

Luniewski, A., "A Simple and Flexible System Initialization Mechanism," 
M.S. thesis, Department of Electrical Engineering and Computer 
Science, M.I.T., May, 1977, also Laboratory for Computer Science 
Technical Report TR-180. 

Mason, A., "A Layered Virtual Memory Manager," M.S. thesis, Department of 
Electrical Engineering and Computer Science, M.I.T., May, 1977, also 
Laboratory for Computer Science Technical Report TR-177. 

Rodriguez, H., "Measuring User Characteristics on the Multics System," 
.B.S. thesis, Department of Electrical Engineering and Computer 
Science, M.I.T., May, 1977. 

Harriman, E.S., "A Microprocessor Based Implementation of a Data Stream 
Protocol Processor," .B.S. Thesis, Department of Electrical 
Engineering and Computer Science, M.I.T., June, 1977. 
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Theses in Progress 

Krizan, B., "A Minicomputer Network Simulation System," M.S. thesis, 
Department of Electrical Engineering and Computer Science, M.I.T., 
expected date of completion, July, 1977. 

Ciccarelli, E., "Multiplexed Communication for Secure Operating Systems," 
M.S. thesis, Department of Electrical Engineering and Computer 
Science, M.I.l., expected date of completion, August, 1977. 

d'Oliveira, C., "A Conjecture About Computer Decentralization," B.S. 
thesis, Department of Electrical Engineering and Computer Science, 
M.I.T., expected date of completion, August, 1977. 

Talks and Presentations 

Saltzer, J.H., 
given at: 

given at: 

Svobodova, L., 
given at: 

given at: 

Clark, D.D., 
given at: 

Wells, D., 
given at: 

Reed, D.' 
given at: 

Forsdick, H., 
given at: 

"Pragmatic Approaches to Obtaining Correct Operating Systems" 
IBM Research Laboratory, Zurich, Switzerland, September, 1976 
Cambridge Univeristy, England, September, 1976 
Rutgers University, New Jersey, November, 1976 
lndustrieanlagen-Betriebsgesellschaft mbH, Munich, Germany, 
January, 1977 
Central Computer Agency, London, England, January, 1977 

"Decentralized Systems with Largely Autonomous Nodes" 
University of Waterloo, Toronto, Canada, June, 1977 

"Distribution and Coherence in Computer Systems" 
McGill Univeristy, Montreal, Canada, June, 1977 

"Computer Performance Measurement: Methods and Tools" 
Digital Equipment Corporation, Maynard, Mass., May, 1977 

"A High-Speed Local Computer Network" 
IEEE Boston Chapter Communications Group, May, 1977 

"The Multics Implementation of the National Software Works" 
RADC, Griffiss Air Force Base, New York, June, 1977 

"Service Addressing Protocols for Local Networks" 
Bolt Beranek and Newman, Cambridge, Mass., March, 1977 

"The Design of a Distributed Data Base Management System" 
Sperry Research Center, Sudbury, Mass., November, 1976 
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Kent, S. T., 
given at: 

"End-to-End Communication Security Measures" 
System Development Corporation, Santa Monica, Calif., July, 
1976 
Information Sciences Institute, Univ. of Southern California, 
July, 1976 
Xerox Palo Alto Research Center, California, August, 1976 
National Bureau of Standards workshop, Gaithersburg, Maryland, 
Sept., 1976 
Federal Telecommunications Standards Committee, Gaithersburg, 
Maryland, February, 1977 
Sperry Univac, Roseville, Minnesota, March, 1977 
GTE Sylvania, Neeham, Mass., May, 1977 

Hunt, D., "A Case Study of Intermodule Dependencies in a Virtual Memory 
Subystem" 

given at: Stanford Research Insitute, Menlo Park, Calif., December, 1976 
Honeywell Systems and Research Center, Roseville, Minnesota, 
January, 19 77 • 

Pogran, K., "The Evolution of the Multics System" 
given at: University of California, Irvine, California, January, 1977 

Committee Memberships 

Saltzer, J.H., ARPA IPTO Security Working Group 

Wells, D., ARPA IPTO NSW working group 

Reed, b., ARPA IPTO TCP Working Group 

Clark, D.D. ARPA IPTU TCP Working Group 
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PERSONNEL, July, 1976 -- June, 1977 

Professional Staff 

Nancy c. Federman 
Rajendra K. Kanodia 
Robert F. t1abee 
Kenneth T. Pogran 
Douglas M. Wells 

Support Staff 

Virginia M. Newcomb 
Muriel Webber 

Undergraduate Students 

Charles R. Davis 
Cecilia R. d'Uliveira 
Edward s. Harriman 
Roy P. Planalp 
Humberto Rodriguez, Jr. 
Steven A. Swernofsky 

Faculty and Research Associates 

David D. Clark 
Fernando J. Corbat6 
David D. Redell 
Jerome H. Saltzer (Division Head) 
Michael D. Schroeder 
Liba Svobodova 
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Graduate Students 

Arthur J. Benjamin 
Eugene C. Ciccarelli 
Harry C. Forsdick 
Robert M. Frankston 
Harold J. Goldberg 
Andrew R. Huber 
Douglas H. Hunt 
Philippe A. Janson 
Paul A. Karger 
Stephen T. Kent 
Allen W. Luniewski 
Andrew H. Mason 
Warren A. Montgomery 
David P. Reed 
Karen R. Sollins 
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