
M.I.T. Laboratory for Computer Science June 7, 1979

Computer Systems Research Division Request for Comments No. 174

DRAFT OF ANNUAL REPORT, July, 1978 - June, 1979

Cover note by J. H. Saltzer

Attached is a rough draft of the Annual Progress Report of the
activities of the Computer Systems Research Division, assembled by con
catenating with only minor editing submissions from quite a number of
group members. Please look it over and offer comments on

- overall organization

- omissions of significant activities

- details that are wrong

- anything else.

Check also the lists of papers, talks, committee memberships, etc.,
that appear at the end for mistakes and omissions.

The final version of this report will be included in the L.C.S.
Annual Report, and we will also make copies for handout to visitors
until the L.C.S. Annual Report is available. It is usually the case
that the report gets distributed widely; many people follow our
activities almost exclusively by this mechanism. Thus there is a
significant payoff to making it good.

Incidentally, the final version will probably be ready by the end
of June. It would be better to wait for that version to appear rather
than giving copies of this one to visitors.

This note is an informal working paper of the
Science, Computer Systems Research Division.
the author's permission, and it should not be

M.I.T. Laboratory for Computer
It should not be reproduced without
cited in other publications.

C.S.R. GROUP

D. D. Clark
F. J. Corbato
I. Greif

J. N. Chiappa

R. Baldwin
D. Bollinger
H. Carter
c. Davis
D. Gorman
R. Gorman

w. Ames
G. Arens
E. Ciccarelli
w. Gramlich
M. Herlihy
s. Kent

R. Bisbee
V. Chambers

A. Takagi

COMPUTER SYSTEMS RESEARCH

Academic Staff

Research Staff

Undergraduate Students

Graduate Students

Support Staff

Visitors

C.S.R. GROUP

D. P. Reed
J. H. Saltzer,

Group Leader
L. Svobodova

E. A. Martin

c. Hornig
K. Khalsa
R. Lawhorn
G. Simpson
s. Szymanski
s. Toner

v. Ketelboeter
A. Luniewski
A. Marcum
A. Mendelsohn
w. Montgomery
K. Sollins
R. Wyleczuk

J. Jones
M. Webber

CSR GROUP CSR GROUP

Three LCS groups, Computer Systems Research, Programming Methodology, and
Technical Services, are working closely together on a joint project to create a new kind
of distributed programming environment. This environment involves software and
hardware for a local ring network, internetwork interconnection, the personal desktop
computer being designed by the DSSR Group, specialized service-providing computers,
and finally implementation of programming language extensions that make the overall
distributed environment easy to apply. Some distributed applications are also being
developed, to provide additional guidance and feedback on the utility of the underlying
system. The primary distinguishing feature of this research project is its rationale for
distribution of function: the project assumes that the dominant force that determines
where function will be distributed is administrative autonomy. Last year's progress
report provides arguments for this assumption. Descriptions of the various parts of this
project will be found in the individual progress reports of the three groups.

The Computer Systems Research p11rl of this joint project this year Involved four
aspects:

I. Development of sem<mtics for distributed applications;
2. Network and internetwork software design and implementation;
3. Specialized server design;
4. Experimental distributed application development.

These four aspects are discussed in the next four sections.

B. SEMANTICS FO_Il DISTRIBUTED APPLICATIONS

This year, part of our group has concentrated on the problem of performing an
update that involves several physical nodes. While not all distributed applications will
require such rigorous control as is implied by the protocols that have emerged from this
body of work, mechanisms for performing distributed updates atomically belong among
the basic mechanisms of a distributed operating system. Traditional approaches to
coordinr~tion And synchronizAtion based on semaphores, locks, path expressions, or
mess<'!p,e passing do not seem to provide the guidance one might hope, bec<'!USe they do
not include reli;1bility 11nd recovery mcch;misms. In the distributed environment, errors
and error recovery <~ppilrcntly must be considered explicitly 11s p<~rt of every mechanism
and protocol including coordination of par11llel <~ctivities. Since separating the problem
into coordination and recovery seems not to work, other lines of separation must be
sought. One line of separation that appears to have some promise is to work separately
on consistency and atomicity. The idea is to on the one hand develop strategies for
assuring consistency of multi-site data for single transactions run with no interference
from other transactions (but with the possibility of failure) and on the other hand
develop general techniques for insuring atomicity of multi-site operations in the face of
possible failures, so that no transaction ever sees internal states of others.

This line of separation has been explored in depth and has provided several
insights and advances. Three separate research reports by Reed [REED78], Montgomery
[MONT78] and Takagi [TAKA78] present several innovative approaches and mechani~ms.
An analysis of the recent results and a summary of insights that have emerged are
presented in a report by Svobodova [SVOB79].

CSR GROUP 2 CSR GROUP

Coordination of concurrent processes is difficult in a distributed system because of
communication delays and modularity. In a centralized system with shared memory,
coordination can be achieved inexpensively by locking the data to be accessed while the
computation uses it. Locking is inexpensive, because all processes can easily access the
locks, and becAuse deadlock detection or avoidance can be centralized. In a distributed
system, locking requires interactions among the users of the data and therefore imposes
communications delays. Furthermore, deadlock detection is impractical because it
requires global knowledge of all computations and their locks. Deadlock avoidance is
impractical because a module of a distributed computation that uses modules at other
nodes may not have knowledge of the data accesses or the order of access at those
nodes.

Recovery from failures is made difficult in a distributed system by the peculiar
nature of communication failures. In particular, when node A requires a service from
node 8 that involves modifying data objects stored at node 8, certain kinds of
communication failures will leave node A in doubt as to whether node 8 has performed
the requested action or not. The requesting computation at node A has only one option
at this point, since further actions by node A are usually contingent upon successful
completion of the request at 8 to insure consistency between various parts of the
system. Node A must wait until node B's state can be ascertained, but this may take a
very long time. If node A holds resources needed by other computations, then such a
failure can cause deadlock. ·

In a monolithic distributed data base, such failures may be tolerable, since each
node and communication link is maintained to a high standard of availability. In a system
where nodes are autonomously managed, such failures are more likely to happen, and
more likely to be of long duration. For example, after node A sends its request, but
before 8 responds, node 8 (a desktop computer) may be powered off for lunch.

The goal of this research is to support the construction of atomic actions. An
atomic action is an operation on data whose effects on data are completely specified by
the algorithm executed by the atomic action. In particular, though the atomic action may
access (read or update) many pieces of data, each many times, as part of its execution,
the effect of the atomic action can be described as a relation between the initial state of
all of the data items it touches and their final states when the atomic action is finished.

Atomic actions require both synchronization and recovery mechanisms in their
accesses to data. Synchronization is required to ensure that no other computations
within the system can observe an intermediate state of the data objects accessed. If an
intermediate state of an object could be observed outside the atomic action then the
behavior of the atomic action could not be specified solely in terms of a relation
between initial and final states of the objects accessed. Synchronization is required to
ensure also that no other computation can modify any data object used by the atomic
action during its execution. That is, the atomic action's program can be written without
any consideration of interference form concurrent access to the data it accesses.
Recovery mechanisms are required to ensure that if a failure occurs, preventing
completion of an atomic action, the intermediate state of the data resulting from partial
completion of an atomic action is not exposed to observation by other computations.

CSR GROUP 3 CSR GROUP

Our concept of atomic actions is quite similar to that of Lomet [Xl4] and also
similar to the sphere Qi control described by Davies [X6,7]. If all computations in the
systems perform all their data accesses as part of atomic actions, then the observable
behavior of the system will be the same as a serial schedule, as in the definition of
atomic transaction developed by Eswaran, et al. [XB].

The simplest imj:.lementation of atomic actions is to delay all other computations in
the system for the duration of the atomic action. This is often inefficient in a single
processor system, but in a distributed system connected by a network, it may be
impossible, because of communications failures.

It is sufficient, however, to guarantee that an atomic action has exclusive access
to the data it actually reads or updates. Locking is often used to achieve this
exclusiveness, by associating a lock (or mutual exclusion semaphore) with each data
object that will be used by a computation before that computation can access the data.
Locking introduces the possibility of deadlock, the detection of which may be quite
difficult in a distributed system, while classic deadlock avoidance techniques cannot cope
with transactions whose data accesses are unknown, due to the presence of
information-hiding mechanisms that hide the representations of objects, or due to the use
of pointers or accesses otherwise predicated on values obtained earlier in an atomic
action's execution.

The essence of locking is to seize exclusive access to a group of objects for ~
period Qf time. Thus, the proper behavior of an atomic action is controlled indirectly, by
ensuring that the timing of its steps is properly coordinated with the timing of other
computations. The basis of the locking approach to implementing atomic actions is that
there is one instant or interval during the atomic action at which all locks are
simultaneously held. That interval must either precede or follow the corresponding
interval of any potentially interfering atomic action.

In contrast, the mechanism proposed by Reed, and extended by Takagi, coordinates
the access to a set of objects by a naming mechanism that gives names to a sequence of
versions (virtual global states) of the system. Actions on each object specify the
particular version to be affected. There are two naming mechanisms described below.
Psuedo-times are a totally ordered set of names referring to successive virtual states of
the system's data. Pos~biliE_~~ are a mechanism for referring to groups of updates to
objects for the purpose of error recovery.

Atomic actions are implemented by g1vmg the virtual processor executing the
atomic action exclusive use of both a sequence of psuedo-times, derived from the real
time at which the action begins, and a possibility. Access to a particular object in a
particular state of the system requires that both a possibility and a psuedo-time for that
state of the system be used as parameters to the access. There is a very close analogy
between this approach to implementing atomic actions and the capability approach to
protection of data [X5,9]. In both approaches, having a name for something Is a
prerequisite for its use, so exclusive use can be granted by restricting the propagation
of names.

A major result of Reed's approach is that atomic actions are modularly composable
operations. That is, oMe can implement atomic actions so that new atomic actions can be
constructed out of previously existing atomic actions without either (a) modifying the
preexisting implementations or (b) requiring that the new actions know what objects the

CSR GROUP 4 CSR GROUP

preexisting atomic actions access. Locking mechanisms for providing synchronization or
recovery for atomic actions make it difficult thus to compose atomic actions because of
the need to have at least one instant of time where all data touched by an atomic action
is locked. Composing atomic actions in a system based on locking thus requires
extending the time during which an object is locked. To ensure atomicity, updates of a
distributed database are coordinated by a two-phase commit protocol [GRAY78,
LAMP76]. The problem of how to schedule actions that are part of different (concurrent)
operations is resolved during the first phase. In this phase, the individual participants
can proceed independently. In the second phase, a careful coordination of all participants
is necessary to ensure that either all of them commit or all of them abort their part of
the operation. A particularly simple form of two-phase commit protocol is central to the
implementation of Reed's possibilities [REED78].

1.1. ~c_hE!duli_ng ~.ction~ ()'! D!!ll_ributed Obje~t.!l

Our approaches differ from the traditional use of locking to schedule actions on
multiple objects. Instead of locking, the key idea is that at each object the actions must
take effect in the proper order, achieving the proper ordering can be done independently
at each object, however. "The mechanisms of Reed and Takagi use the ordered sequence
of versions to record the proper order of the reads and updates applied to an objecl
Montgomery, on the other hand, uses an atomic broadcast protocol to ensure that object
accesses always arrive in the proper order; out of order requests do not occur in his
scheme [MONT78).l

The mechanisms of Reed and Takagi vary in how they handle out of order
(outdated) updates. One approach is to discard a delayed (older) update (and
consequently the operation that generated that request) if a new read (that is, a request
with a higher timestamp) has lllready been processed [REED78]. However, this may
lelld to a "dynllmic delldlock" where the sllme set of operations is aborted over and over
bec«''use those operlltions repelltedly outdC~te ench other - this is similllr to the collision
problem in contention "'"tworks such as Ethernet [METC76I. A different approach is to
discard a newer rPqucst in favor of a d(~lnyed older request, given that the operation
that generated this newer request hns not yet been committed [TAKA78]. This solution
may lead to starvation (i.e., a specific operntion may never succeed since other
operations will always cnuse it to abort), but it is free of dynamic deadlock. An
extension is to allow mull~ versions of objects to coexist: a delayed read request can
be satisfied without having to discard any other request if the particular version still
exists [TAKA78, REED78].

1.2. Cascading of backout

It is interesting to analyze how atomicity can be ensured without requiring that the
objects updated by an operation not be available to other operations until after the final
decision regarding the commitment of the first operation. Allowing early release of
uncommitted information leads to the problem of cascading of backout should the final

l. This arrival ordering has an interesting application to the case of replicated data.
Read requests are guaranteed to arrive nt a copy only niter any preceding write copy
updates have been compelled at or on this copy, even if other copies have not yet been
updated.

CSR GROUP 5 CSR GROUP

decision be "abort". To be able to handle such a cascaded backout, two conditions have
to be satisfied;

1. During a backout of each individual operation, the operation does not need to
"reacquire" (in an exclusive mode) any of the objects that it has read or modified
in order to undo the changes; .

2. It is possible to remembe.r (or to reconstruct) all information flow among
concurrent operations.

Since concurrent operations do not know of one another and their dependencies, it is
difficult to properly backout a set of dependent operations if the recovery data is
maintained by individual operations. Thus the recovery schemes ought to be
object-oriented. Object-oriented recovery means that all the information needed to
restore an object to some previous value if associated with the object (provided by the
manager of the object) rather than with the individual operations.

To provide an object oriented recovery that allows the new value of the object to
be seen before the end of the second phase of the operation that generated this new
value, one can implement "multiple uncommitted versions" of the object. A new version
of an object is created when the mAnAger of the object receives the new value for the
object; this action does not destroy the old vAlue of the object (that is, the old version).
A version represents the (possible) state of the object. In addition to having a value, a
version has a time attribute that specifies its range of validity. The range of validity of
a particular version is the time interval in the history of the object during which the
object was in the state represented by that version. A version is only tentative until
the operation that created it is committed. If the operation fails, the version is simply
discarded. If a version is discarded, that part of the object history is erased. Now if
another operation can read an uncommitted version Vx and create its own version Vy of
the same or another object such that the value or even the existency of Vy depends on
Vx, it is necessary to remember that Vy is dependent on Vx, since if Vx is discarded, Vy
must be discarded also.

Multiple uncommitted versions were used by both Takagi and Montgomery. In
Montgomery's scheme, a request to read an object that currently has several
uncommitted versions will return a set of all possible values that the outstanding (not
yet committed) operations could produce. This set is called a polyvalue. Thus, when an
object is made visible but before the operation that modified it is completed, both the
old and the new value (each of which themselves may already be a polyvalue because
the outcome of some earlier operation has not yet been resolved) are presented to the
next operation. If this next operation needs a precise answer, it will have to wait. If it
is sufficient to know that all values possible as of that time are within an acceptable
range, the operation can calculate new values for each polyvalue component, and if the
answer is satisfactory, it may even commit. In this scheme, if one operation is aborted,
no other operations ever have to be backed out; the only thing that has to be done is to
throw away some irrelevant information, thus reducing the polyvalue set. In this sense,
the scheme is symmetric for the two possible outcomes of an operation - this pruning
has to be done both for the commit and the abort decision. That is, the scheme does not
make any assumption About the probability of success. More important, it allows
operations to be committed ~e.fore. the earlier operations thAt modified the same objects
have been commited (or aborted). Takagi's scheme is more conservative. Here an
operation cannot commit until all the operations on which it depends have committed. If
any such earlier operation is aborted, all dependent operations must be backed out.
Takagi assumes that failures are rare, that is, once a new version is created, it is very
likely that it will be committed; put in different words, with high probability it is the right

CSR GROUP 6 CSR GROUP

value that the next operation should see. Thus, a read request returns the value of the
newest version.

2. Summary

Although signific<~nt progress has been made towards understanding the role of
atomic oper11tions in a distributed system <1nd the mechanisms required to implement
them, more careful thought is still needed. Among the issues that need further
investigation are:

l. Defining atomic operations as operations on abstract objects;
2. Atomic operation on data that has been replicated to achieve higher availability;
3. The relation between requirements for atomic transactions is distributed systems

and the requirements for interruptibility in processor instruction set design.

Based on the studies of the various proposed schemes and, in particular, of the
assumptions underlying those schemes, it seems that some of the approaches might be
overly conservative and unbalanced in their relative emphasis on different classes of
problems. An essential step towards making a significant progress in this area is to get a
better understanding of the importance, frequency and severity of the specific problems
that the individuAl schemes for Atomic updates Attempt to solve.

3. Other. Work on Semantics for Distributed Applications

Solllns' thesis [Sollins, K.R., Copying Complex Structures in a Distributed System,
M.S. Thesis, M11y 16, 1979 J presents 11 model of a distributed system in which the
universe of objects in the distributed system is divided into mutually exclusive sets,
each set corresponding to a context. This model allows naming beyond the context
boundaries, but limits communication across such boundaries to message passing only. A
number of activities require the ability to copy objects, for example parameter passing
across context boundaries and providing greater reliability through redundancy.
Therefore, copying of complex data structures is investigated in this model, and
semantics, algorithms, and sample implementations are presented for three candidate
copy operations. Two important goals in the development of the copy operations were
(l) to allow the contexts autonomy in naming the objects contained within them and (2)
to reflect as much as possible the structure of an object in a copy of it. A new type of
object, the mes~@.:.~!:l~xt was developed to achieve these by recording the names of
components and providing a translation into names not local to the context.

CLU provides two kinds of copy operations, ~QID'l, which copies only the top level
of a complex structure, and c;QQY, which copies the complete structure. The £QQY is
specified and implemented as invocations of ~QY.! on every component object. This
mechanism does not allow for discovery of components contained more than once unless
the programmer includes a procedure for detecting sharing in his own implementation of
copy operations. In addition, neither of these operations reflects the model in which the
context boundary plays a large part. For this reason, in addition to providing the £Q.QY1
and <:QPY (renAmed CQPY.~PI'!~ <~nd copy-full for clarity) with modifications to achieve our
goAls, a new operation coJJy~fuiHocal is introduced. This operation reflects the nature
of the model by copying complex structures to the boundaries of the context containing
the object, but not beyond. The reason this operation is different from £_o_py-full is that
containment of components can span more than one context, because naming can occur
across context boundaries, although communication across such boundaries is limited to
message passing. Because communication with foreign contexts may be difficult or

CSR GROUP 7 CSR GROUP

impossible, the ~QP_i':full-loc_aj operation may provide the most complete copying
possible.

A great deal of effort has been invested this year in the planning, coordination,
and implementation of protocols for our local network. Much of this work is reported in
detail in internal memoranda (Network Implementation Notes No. 9, l 0, ll, and 12).
Highlights are mentioned here.

This year saw the stabilization and implementation of an ARPA-provided internet
protocol, Transmission Control Protocol, or TCP. CSR group members participated
actively in the discussion that led to this newly stabilized design. In addition, we
Implemented TCP for the Multics System. Implementations of TCP (and its relatives)
have been done elsewhere for the UNIX system and TOPS-20. These developments
make use of TCP feasible as the primary protocol for our local net. The UNIX version
may be transportable to the VAX, locally leaving only ITS without a minimum-effort
implementation for TCP. Participation in the ARPANET TCP development and local
implementation has involved a substantial amount of time for several members of our
group, a cost thAt we hope will abate in the coming year.

Along with software for the VArious host machines, we have procured software
and hardware for a variety of special servers to be connected to our Local Net. Perhaps
most important is the gateway between the Local Net and the ARPANET. The hardware
for this machine, a Digital Equipment Corporation LSI-II, has been purchased, and
software for this machine is now under development. Much of the software was
imported from SRI International, and the portion that must be written here is completely
designed and partially written. We hope that it will be running within a month.

Another special server for the Local Net is a Terminal Interface Unit (TIU) which
. will allow the connection of single displily terminals directly to the Local Net, rather than
to a particular host milchine. Again, we have procured an LSI-II to run this server, and
Imported the basic TIU software from SRI. However, many local enhancements are
required to this software, including the implementation of a driver for the Local Net
Interface and the locally popular protocol for controlling a process from a remote
terminal, SUPDUP. These enhancements are currently under way.

We have developed a new protocol, called Trivial File Transfer Protocol or TFTP,
that is easier to implement than the ARPANET File Transfer Protocol. By implementing
this protocol first, when adding a new machine to the Local Net, it becomes immediately
possible to move files, including other protocol programs implemented elsewhere, onto
the machine very early in the development of its network software. TFTP has been
implemented and tested on UNIX, and files have been transferred over the net using
TFTP between UNIX machines. It is being implemented for Multics, VAX, and TOPS-20.
TFTP thus provides " route by which progrRms for VAX VMS can be transferred onto
!hilt mRchine, il current pressing need within the LaborRtory.

In summRry, the stiltus of the Loc11l Net is CIS follows. As reported elsewhere, the
hardware has been operiltional for severRI months. A large quantity of software is on
the verge of working, and much of it has nlready gone through a preliminary stage of
debugging. We hope that in the next few months, perhaps by the end of the summer,

CSR GROUP 8 CSR GROUP

that there will be a substantial number of useful services actually available over the
Local Net. The status of software for the Local Net is being reported in a series of
internal memoranda, to which the interested reader is referred.

As discussed above, machines other than hosts are connected to the Local Net in
order to provide particular network $ervices. The services currently under development
are rather low level: gateways and terminal controllers. At the same time, we are
making preliminary plans for more sophisticated sorts of service, which we hope to
develop during the next year. The two most interesting servers are a file server and an
authentication server. The file server is very important, as more and more small
machines are installed at the Laboratory. A local disk may double the cost of the small
machine, so economics alone suggests that a clustered file system is a very important
facility on our net. At the same time, construction of a file server allows us to explore
several ideas having to do with management of remote data in a reliable consistent
manner. As mentioned in section A, above, several schemes for distributed management
of data have proposed by members of our group. Designing and implementing a file
server with the update semantics proposed by Reed in his thesis will give us valuable
experience in the area.

In support of a file server, and other servers as well, it is necessary to have some
server who authenticates a particular request, so that information stored on a remote
file server is not thereby made completely unprotected. We expect this to be a
separate logical entity, which will tak.e on the general task of confirming the identify of
the requester of a service. Preliminary design for such a server is currently under way.
The extreme importance of such a server becomes clear when one looks at the list of
other services which might possibly be connected to the Local Net. For example, it has
been suggested that it might be possible to connect an airline reservation service to the
Local Net, so that one could obtain airline tickets from ones terminal. Clearly, we cannot
allow uncontrolled purchasing of airline tickets from within the Laboratory. Thus,
inclusion of such a service, which seems a very real part of an office environment, places
a strong requirement for an authentication server that we can truly trust.

Other servers that we have considered for the Local Net include specialized
printing machines, most particularly a laser printer, access to various institute data bases
such as an online version of the telephone book, access to the Official Airline Guide,
which is less dangerous than the actual ability to make reservations, access to other
message sending facilities such as Telex or TWIX, a WWV accurate time source, and
some sort of low cost archival storage, perhaps done by connecting the Datacomputer
directly to the Local Net, or by making use of archival storage that may possibly be
purchased for the M.I.T. IBM system/370. Exploring the possibilities of other servers
will be done as ideas and resources permit.

Research projects involving the building of applications for distributed systems can
vary a great deal in character and may appear in many groups here - from office
automation to artificial intelligence. We plan to coordinate the building of several
applications within the distributed systems group in an effort to study the systems issues
common to a variety of applications and particularly to organize the feedback into the

CSR GROUP 9 CSR GROUP

design of extended CLU.

Currently, the only application system being built is a calendar system. The
calendar system will be built as a set of active forms. One can think of making an
appointment as the filling in of a form, namely the calendar. However, filling in the form
may cause actions, such as the sending of messages to other calendars. The act of filling
in a form may take place during more than one interactive session, and may involve mail
in cases where some calendars are either unavailable or are unable to make
commitments. Emphasis is on semi-public calendars such as the schedule for the
conference rooms in the building, so that we can expect the system to be used by a
group of people without the overhead on putting many personal calendars online.

This approach will result in a calendar system that contrasts with others that have
been built on top of shrtred data bases that contain information from all participating
calendnrs. In keeping with an assumption of local autonomy and in order to mirror the
existing organizntion of offices in which people keep their own calendars privately, we
must assume that calendars (personal or for public resources) may be stored on personal
computers nnd therefore may not always bo available. This will lead to the investigation
of a different set of systems issues, such as facilitating the buffering of requests to
calendars which are unavailable and providing for resumptions of conversations when
participants are available.

The notion of active forms should be applicable to many systems, and is
particularly natural as a model for communication in office automation systems. Thus
attempts will be made to use this approach in the design of applications in an effort to
develop a unified approach to application design and implementation.

An immediate result of the initial design phase of the calendar has been the
development of a distributed programming environment on the XX TOPS-20 time-sharing
system. The environment is built on top of CLU and relies on a network interface built
by David Reed. Currently, we can send and receive both CLU objects and datagrams
used for internet communication. Work is in progress on implementing typed ports to
facilitate compile time type checking of messages. There is a student working on
implementing stable storage of CLU objects, a project that will be useful also in
development of a file server. Other facilities to be implemented are guardians and a
port server. We are following the design of extended CLU and are trying to simulate
intended features whenever possible. However, the design of this environment is
intended to be driven by applicAtion requirements and may incorporate features with
which we would like to experiment even if they are not of such obvious generality as to
be included in the design of extended CLU.

The design of applications is also involved with the project on development of
special servers. As mentioned above, the implementation for stable storage has already
appeared as a meeting point for both projects. Requirements for backup storage and
processing as well as for authentication are further examples of needs that can be met
by work in either or both projects. By proceeding with applications and systems
development simultaneously, we will be providing immediate users of the servers'
facilities.

CSR GROUP 10 CSR GROUP

E. MISCELLANEOUS ACTIVITIES

An invitation-only workshop on Distributed Systems was held at the Harvard
University Faculty Club on October 12 and 13, 1978. Approximately 25 leading workers
in the field assembled for two days to discuss research topics and direction. A report on
the workshop has been submitted for publication to Operating Systems Review.

CSR GROUP II CSR GROUP

F. REFERENCES

To be supplied.

G. PUBLICATIONS

l. Clark, David; Pogran, Kenneth; Reed, David. "An Introduction to Local Area Networks."
Proceedings Qf the IEEE, Vol. 66 No. II, (November 1978), 1497-1517.

2. Corbato', Fernando; Clingen, Charles. "A Managerial View of the Multics System
Development." in Research Directions [!! Software Technology, P. Wegner, Ed., M.I.T.
Press, Cambridge, Ma., 1979, 139-158; also reprinted in Reifer, D.J.,
Ll!!.Qriai-S()f_tware ~anagement, IEEE Computer Society Catalog No. EH0-146-1, 1979.

3. Greif, Irene; Meyer, Albert. "Specifying Programming Language Semantics."
conference record of the Sixth Annual ACM Symposium on Principles of Programming
Languages, San Antonio, Texas, January 1979, 180-189.

4. Greif, Irene; Meyer, Albert. "Specifying the Semantics of While-Programs." A
Tutorial and Critique of a paper by Hoare and Lauer, M.I.T., LCS/TM130, April 1979.
(Submitted for journal publication.)

5. Kent, Stephen. "Protocol Design Considerations for Network Security." Proceedings
Qf !he NA TQ Adv<mced Studies Institute on Interlinking Qf Computer Networks, Banas,
France, August 1978.

6. Kent, Stephen. "Privacy and Security in Networks." Protocols and Techniques for
Data Communication Networks, edited by Franklin Kuo, (to be published by
Prentice-Hall, April I 980).

7. Kent, Stephen.
Cryptosystems."
Ma., June 1979.

"A Comparison of Some Aspects of Public-Key and Conventional
Er_oceedJ.!!&!l. lnterJ!!lJ.ional Conference on Communications, Boston,

8. Reed, David. "Using Naming for Synchronizing Access to Decentralized Data."
submitted to Seventh Symposium on Operating Systems Principles, April 1979.

9. Reed, David; Kanodia, Rajendra. "Synchronization with Eventcounts and Sequencers."
Com_m.!:!~kaJi.Q.!lS. QJ tb!l_ ~~M, Vol 22 No. 2 (February 1979), 115-123.

10. Saltzer, Jerome. "Performance Analysis and Evaluation: No Connection with Reality."
in Research DirecJl!>ns L11 fult!ware Technology, P. Wegner, Ed., M.I.T. Press,
Cambridge, Ma., 1979, 652-654.

11. Saltzer, Jerome; Pogran, Kenneth. "A Star-Shaped Ring Network with High
Maintainability." ProceeQl~ Nf!~Mitre Local Area Communications Network
Symposium, May 1979 (To be published).

12. Sollins, Karen. "Copying Complex Structures in a Distributed System." submitted to
Seventh Symposium on Operating Systems Principles, April 1979.

CSR GROUP 12 CSR GROUP

13. Svobodova, liba. "Performance Problems in Distributed Systems." .lliEQB (Canadian
Journal of Operational Research and Information Processing), 1978 (To be published).

14. Svobodova, Liba. "Reliability Issues in Distributed Information Processing Systems."
f:I2£. 2l.LrE.E ill~ June 1979, (To be published).

15. Svobodova, Liba. "Building Reliable Distributed Systems: The Problem of Atomic
Operations." submitted to Seventh Symposium on Operating Systems Principles, April
1979.

16. Svobodova, Liba; Liskov, Barbara; Clark, David. "Distributed Computer Systems:
Structure and Semantics." M.I.T., Laboratory for Computer Science, LCS/TR-215.
Cambridge, Ma., March 1979.

l. Bollinger, Donald. "A Computer Controlled Telephone Interface." unpublished B.S.
Thesis, M.I.T., Department of Electrical Engineering and Computer Science, May 1979.

2. Lamson, Richard. "An EMACS Interface to Multics Objects." unpublished B.S. Thesis,
M.I.T., Department of Electrical Engineering and Computer Science, May 1979.

3. Marcum, Alan. "A Manager for Named, Permanent Objects," unpublished M.S. Thesis,
M.I.T., Department of Electrical Engineering and Computer Science, June 1979.

4. Montgomery, Warren. "Robu~ ~oncurrency Control !P.r ~ Distributed Information
~;;t~r:rr". PhD Thesis, M.I.T., Department of Electrical Engineering and Computer
Science, Laboratory for Computer Science, LCS/TR-207. Cambridge, Ma., November
1978.

5. Nevins, Russell. "An Efficient Logic Simulator for the Trident Guidance Computer."
unpublished M.S. Thesis, M.I.T. Department of Electrical Engineering and Computer
Science, December I 979.

6. Reed, David. "Naming and Synchronization in !'I Pec!'!_nlr_al[~~c;f g_Q.f'!lQ!!l~r fu'stem." PhD
Thesis, M.I.T., Department of Electrical Engineering and Computer Science, Laboratory
for Computer Science, LCS/TR-205. Cambridge, Ma., September 1978.

7. Simmons, Stephen. "Comparison of Microcomputers Dedicated Hardware Systems in
Communications." unpublished B.S. Thesis, M.I.T., Department of Electrical Engineering
and Computer Science, October 1978.

8. Sollins, Karen. "Copying Complex Structures in a Distributed System." unpublished
M.S. Thesis, M.I.T., Department of Electrical Engineering and Computer Science, May
1979.

9. Strazdas, Richard. "A Network Traffic Generator for DECNET.'' M.S. Thesis, M.I.T.,
DepArtment of ElectricAl Engineering and Computer Science, LCS/TM-127.
CAmbridge, MA., JAnuary 1979.

CSR GROUP 13 CSR GROUP

10. Woltman, George. "Controlling Terminals with High-level Protocols." unpublished
M.S. thesis, M.I.T., Department of Electrical Engineering and Computer Science, August
1978.

ll. Wyleczuk, Rosanne. "Timestamps and Capability-Based Protection in a Distributed
Oata Base Environment." M.S. Thesis, M.I.T., Department of Electrical Engineering and
Computer Science, LCS/TM-135. Cambridge, Ma., February 1979.

l. Ames, Will. "A Local Area Network Simulator." M.S. Thesis, M.I.T., Department of
Electrical Engineering and Computer Science, expected date of completion, August
1979.

2. Hornig, Charles. "A Second Generation Network Interface for Multics." B.S. Thesis,
M.I.T., Department of Electrical Engineering and Computer Science, expected date of
completion, August 1979.

3. Luniewski, Alan. "The Architecture of an Object Based Personal Computer." PhD
Thesis, M.I.T., Department of Electrical Engineering and Computer Science, expected
data of completion, September 1979.

4. Toner, Stephen. "Dynamic Message Routing in Interconnected Local Area Data
Networks." B.S. Thesis, M.I.T., Department of Electrical Engineering and Computer
Science, expected dille ol completion, August 1979.

l. Clark, David; Progran, Kenneth. 'local Networks." GTE Sylvania, Needham, Ma.,
December 1978.

2. Kent, Stephen. "Secure Data Communications and Storage Standards." NBS
Invitational Workshop on Audit and Evaluation of Computer Security II, Miami, Florida,
November 1978.

3. Kent, Stephen. "Network Security." presented at Sandia Laboratories, Albuquerque,
New Mexico, March 1979.

4. Kent, Stephen. "Implementing Protected Subsystems in Decentralized Computing
Environments." presented at Bell Northern Research and SRI International, Palo Alto,
California, May 1 979.

5. Kent, Stephen. "Comparisons of Conventional and Public-Key Cryptosystems."
presented in the session on Network Security at the National Computer Conference,
New York, June 1979.

6. Reed, David. "Implementing Modular Atomic Actions." IBM San Jose Research
Laboratory, San Jose, California, January 1979.

CSR GROUP 14 CSR GROUP

7. Reed, Oavid. "Naming and Synchronization in a Decentralized Computer System."
Ford Motor Company Research Division, Dearborn, Michigan, December 1978.

8. Saltzer, Jerome. "The Impact of Changing Technology on Security." presented at
Mitre Corporation, Workshop on Computer Security, Bedford, Ma., February 1979.

9. Saltzer, Jerome. "Thoughts on System Structure - The Impact on Changing
Technology." Series of 7 lectures given at Tala Institute of Fundamental Research,
Bombay, India, May 1979.

10. Saltzer, Jerome. IRIA 2nd International Conference on Operating Systems, Program
Committee Member and Session Chairman, Rocquencourt, France, October 2-5, 1978.

I 0. Svobodova, Liba. "LCS Research in the Area of Distributed Computing," and
Structure of Distributed Computer Systems." IBM, San Jose Research Laboratory, San
Jose, CaliforniR, August 1978.

II. SvobodovR, LibA. "Design And OperAtion of Distributed Computer System." IBM,
ThomRs J. Watson ReseArch Center, Yorktown Heights, New York, October 1978.

12. Svobodova, Liba. "Distributed Systems: Structure and Semantics." Bell Laboratories,
Murray Hill, New Jersey, April 1979.

K. COMMITTEE MEMBERSHIPS

Chiappa, Noel. DARPA IPTO Internet TCP Working Group.

Clark, David. DARPA IPTO Internet TCP Working Group.

Reed, David. DARPA IPTO Internet TCP Working Group.

Saltzer, Jerome. Draper Laboratory Committee on 1979 Summer Security Workshop.

Saltzer, Jer<ome. DoD/DDRE Security Working Group Member.

. ' .

