
M.I.T. Laboratory for Computer Science June 11, 1980

Computer Systems Research Division Request for Comments No. 189

DRAFT OF ANNUAL REPORT, July, 1979- June, 1980

Cover note by J. H. Saltzer

Attached is a rough draft of the Annual Progress Report of the
activities of the Computer Systems Research Division, assembled by con­
catenating with only minor editing submissions from quite a number of
group members. Please look it over and offer comments on

- overall organization

- omissions of significant activities

- details that are wrong

- anything else.

Check also the lists of papers, talks, committee memberships, etc.,
that appear at the end for mistakes and omissions.

The final version of this report will be included in the L.C.S.
Annual Report, and we will also make copies for handout to visitors
until the L.C.S. Annual Report is available. It is usually the case
that the report gets diotributed widely; many people follow our
activities almost exclusively by this mechanism. Thus there is a
significant payoff to making it good.

Incidentally, th~ final version will probably be ready by the end
of June. It would be better to wait for that version to appear rather
than giving copies of this one to visitors.

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. lt should not be reproduced without
the author's permission, and it should not be cited in other publications.

COMPUTER SYSTEMS RESEARCH

Academic Staff

J.H. Saltzer, Group Leader

D.O. Clark
I

F.J. Corbato

Research Staff

I. Greif

D.P. Reed
L. Svobodova

J.N. Chiappa E.A. Martin

Undergraduate Students

L.AIIen
R. Baldwin

G. Balil,rishnan

A. Chiang
D. Daniels
K. Khalsa
J.Lucassen
C. Ludwig
J. Marrgraff
A. Mondori
P. O'Donnell

W. Ames
G. Arens

Graduate Students

E. Ciccarelli
G. Cooper
W. Gramlich
S. Kent
V. Ketelboeter
L. Lopez

H. Peterson
M. Plotnick

W. Rubin
G. Simpson
M. Smith
G. Stathis
D. Theriault
J. Thomas
S. Toner
R. Vieraitis
E. Wylen

A. Luniewski
A. Mendelsohn
B. Myers

R. Schiffenbauer
C. Seaquist
v. Singh
K. Sollins
P.T. Tung

R. Bisbee
D. Fagin

J. Jones

N. Natarajan

Support Staff

Visitors

E. Poithier

M. Webber

M. Sinha

Draft

_,

--

COMPUTER SYSTEMS RESEARCH-DRAFT

1. LOCALNETWORK TECHNOLOGY RESEARCH

Local network technology in the United States is dominated by variations on the
passive broadcast cable pioneered by the Xerox PARC ETHERNET. An alternative
technology, the ring of active repeaters, has received less attention, even though it
offers a number of attractive properties, including simpler analog engineering, ability
to cover a larger geographic area, ability to use fibre optics, and ability to scale up to
very high speeds. The laboratory has a modest project underway to explore this
alternative in more depth, and to learn more about the properties of the ring network
in the field.

1.1. Prototype Ring Experience

A prototype ring network, running at a data transmission rate of 1 Mbitlsec has
now been in operation in the laboratory for 18 months, currently connecting eight
PDP -11, LSI-11, and VAX computers including a bridge to the other local networks.
This basic ring st1ucture has proven to be quite effective in day-to-day use, although
the need for automatic roconfiguration when nodes are taken down has been clearly
dc;monstrated. (Reconfiguration in the prototype ring is done manually from a
central location.) A second copy of the prototype ring was installed at UCLA in
November, 1979, and has been operating there quite effectively, also. (So far,
neither of these installations has stressed the ring capabilities enough to provide
convincing demonstration of the concept, though.)

As part of the evaluation of the prototype ring, an undergraduate thesis was
completed that involved implementing a network performance monitor and
collecting an initial set of data. Statistics and operational characteristics quite
similar to those reported for the Xerox PARC Ethernet were observed.

1.2. Version 2 Ring

In conjunction with a subcontractor, Proteon Associates, Inc., the prototype ring
network was re-engineered around a simpler design and for a transmission rate of 8
Mbitlsec to produce what is called the Version 2 ring. The hardware for the version
2 ring is designed to fit into a general system for a local area network that can cover
a site such as the M.I.T. campus.

The key to this system is definition of a high speed byte-parallel local network

COMPUTER SYSTEMS RE:SEARCH-DRAFT 4

interface that permits, on one side, implementation of any of several local network
technologies, and on the other, implementation of buffered channel or bus _....,
attachments for any of several computers.

Thus the version 2 ring controller comprises a modem, clock circuits, token and
ring format management, all on a 5 by 8 inch card containing about 30 TTL
integrated circuit packages; it attaches by connector to the standard interface. One
lesson learned from checkout of the prototype ring was the value of builtin checkout
features; the version 2 ring controller includes a 10-bit shift register that can be
connected from the transmitter to the receiver in place of the rest of the ring,
allowing local checkout of almost all features of the controller.

Clock coordination is probably the single hardest problem to accomplish in a ring
when the goal is to avoid dependence on a central or special station. Agreement on
the exact frequency of data transmission must somehow be reached collectively. (In
both the Cambridge University and Toshiba high speed ring networks a central
station sets the clock rate.) Two schemes have been investigated, with special
interest in their stability at high data rates and with large numbers (say 200) of nodes.
The initial implementation uses a frequency-adjusting phase-locked loop in each
node, comparing the observed rf!Ceived data rate with the local clock and fine-tuning
the local (crystal) oscillator to match. A string of repeaters thus would all
synchronize their clocks to the frequency of the first node in the string; a closed ring
will home in to a communally-agreed-upon average frequency, with the possibility of
oscillation around that frequency that can apparently be damped by appropriate
choice of filter values in the individual phase-locked loops. Two simple, first-order
mathematical analyses predict that stability is easily accomplished; field experience
will be required to learn how closely these first-order models reflect the actual
operating environment.

A second clock coordination scheme, extrapolated from the scheme used
successfully in the prototype ring, is also being investigated. In this second
approach, the local clock of each node runs at some modest multiple, say 6X, of the
nominal data transmission rate, but its frequency is fixed. Received data is
examined and its clock rate and phase extracted and compared with that of the
transmitter side of the node. If the transmitter phase drifts more than, say, 1/6 of a
bit time ahead or behind the received phase, the transmitter sends one bit that is
either 1 /6 of a bit time shorter or longer than usual, so as to catch up. This
approach has the virtue that it is largely digital in nature, can correct much larger
frequency errors, and does not require continuous transmission. However, for
stability it requires that between messages there should be gaps with no transmitted
data, which in turn requires the receiver of a node be able to decode incoming data
starting with the first transition of a sequence of bits; at high frequencies and in the

-

-

5 COMPUTER SYSTEMS RESEARCH-DRAFT

As mentioned above, the frequency-adjusting, closed loop design is being used in
the initial implementation. As a second, parallel effort, the phase-adjusting scheme
is being tested for its potential applicability.

The frequency-adjusting modem, data transmission over 800 feet of twinax cable,
and the ring controller have all been demonstrated individually and in a 2-node ring
and their successful integration is expected to be imminent.

1.3. Other Local Area Network Components

As mentioned, the version 2 ring is designed as part of a general, modular system
for a local area network. Several other components of tllois system have been
imagined, designed, or implemented. On the host computer side of the byte-parallel
net interface, a full-duplex, buffered, direct memory access module for the PDP-11
UNIBUS was specified, designed, implemented, and checked out. Two copies of this
100-chip card have now been built. Similarly, a buffer module for the S-100 bus has
been specified, and design begun, and buffer module implementations are planned
for the nu-bus and the Q-bus; recently a proposal to implement a buffer module for
an IBM 370 channel was discussed.

On the other side of the byte-parallel net interface, design has just begun on a
"long-distance bridge" module, which would allow interconnection of local nets in
different buildings. The initial version of this bridge will probably use the same basic
ring control strategy as the version 2 ring with minor specialization to the case of two
nodes and long cables; options such as fibre optic techn_ology are also being
examined.

Other possible network technologies that could easily be attached as part of this
same system include a packet radio network for communication with computers
located in private homes, an Ethernet based on the recently announced standard
agreed upon by Xerox, Digital Equipment Corporation, and Intel Corporation, and an
X.25 interface to TELENET or TYMNET. Each of these, in turn, could be directly
attached to any host for which a host-specific buffer module had been implemented.

2. PROTOCOL DESIGN AND NETWORK INTERCONNECTION

Currently, there are five different network technologies deployed or under
development in the laboratory, and four different protocol families in use, with more
on the horizon. This excessive wealth of material raises problems of substantial
theoretical interest, which must be immediately solved if we are to provide any sort of
stable service to the laboratory community.

COMPUTER SYSTEMS RESEARCH-DRAFT 6

As a practical matter, the proliferation of network hardware is less disruptive than
the proliferation of protocols. Our assumption has been that experimentation with
network hardware technology is healthy and appropriate, but that protocol
standardization is important if the various machines in our laboratory are to be able
to communicate. Thus, we have been attempting to standardize the laboratory on
the protocol family developed by the ARPA internet working group, variously called
internet or transmission control protocol (TCP). Implementations of these protocols
have either been implemented or imported for the Multics system, UNIX, Tops 20,
and the Alto. The Alto implementation is coded but not debugged, the other
implementations are operational, at least for friendly users. The function of this
protocol is to permit traditional services such as remote login, file transfer, and mail
to operate in the local environment. Our group has also specified an extremely
simple file transfer protocol, as a interim measure until the TCP based file transfer
protocol is generally available. This protocol, called trivial file transfer protocol
(TFTP), has been implemented for Multics, UNIX, Tops 20, the Alto, and as a stand
alone program suitable for downloading a PDP11. This protocol will permit the
transfer of files and mail between the above mentioned machines, and is also the
basis for the UNIX access to the Dover.

A subnet gateway has been implemented and placed in operation between the
local Ethernet, the Version 1 ringnet, and the Xerox Ethernet. This gateway is in
regular use, providing communication between the 11 /70 and the Dover spooler,
and between the VAX and machines on the Chaos net. Measurements over a recent
24-hour period indicated a total traffic through the gateway of approximately 14,000
packets.

As part of this project, it has been necessary to develop a number of specialized
tools, including a fairly sophisticated workbench on the UNIX system for the creation
of programs for stand alone PDP-11 s. Software now exists which allows us to
combine programs written in assembly language, C, and BCPL, all languages which
have been used to write programs which we needed to import.

Several slightly longer range projects have also been completed:

- Jerry Saltzer has written two memos outlining a possible approach to
networl<ing an environment such as the entire MIT campus.

-Hal Peterson did a study of the congestion control mechanism currently
implemented in TCP, a study which indicated certain potential problems
with this area of the protocol.

- Kirpal Khalsa completed a preliminary study of specialized flow control
alaorithms for file transfer nrotocols.

7 COMPUTER SYSTEMS RESEARCH-DRAFT

Several bottlenecks remain, most notably getting XX on the local net and connecting
the local net to the ARPANET. ARPA has agreed to deliver an additional IMP to
solve this latter problem, and we are importing a Port Expander as a short-range
solution.

3. XEROX UNIVERSITY GRANT

During this reporting year the Xerox Corporation, stimulated by proposals from
the Xerox Palo Alto Research Center, initiated a university grant program that
supplied M.I.T., Stanford, and Carnegie-Mellon University each with 18 "Alto"
personal computers, a "Dover" laser-driven xerographic output printer, an
Alto-based file storage system, an ETHERNET local network, and a large quantity of
supporting interactive software. Installation of most of the equipment was
completed by February, 1980, and bridges between the ETHERNET and the other
local networks were rapidly developed to allow access to the Dover printer from
other computer systems.

The initial use of this equipment has been largely explorational, based on the
supplied software, which among other things provides advanced word processing
and illustration facilities. The impact of just these facilities, together with the Dover,
was clearly noticeable during the Spring thesis season. Quite a number of recent

~

theses, technical reports, and papers have been prepared with this equipment, and
nearly all text processing output of the two 545 Technology Square laboratories now
is printed on the Dover, which is consuming 150,000 sheets of paper per month. A
noticeable increase in the number of illustrations, drawings, and graphs in reports
and memos seems to have accompanied use of the Alto report preparation software.

A substantial library of computer games has migrated from other Alto sites. As
one might expect, these games are taking a certain toll in graduate student time and
attention, although they turn out to be a less serious hazard to academic and
research interests than one might expect. Instead, since many of these games
demand rapid interaction, they also reveal limitations and requirements for highly
interactive software, and on the whole are probably a cultural benefit of the grant. In
a similar way, the use of the other software systems is providing both a feel for the
depth of engineering required to create a good human interface and an inspiration
for some enterprising activists to do better in local implementations of some of the
same ideas.

Primarily because of the current availability of LISP machines and expected
imminent availability of nu computers, enthusiasm for starting major new
programming projects in the Alto environment has been quite low. The
programming projects that have started are limited in scope or special in nature:

COMPUTER SYSTEMS RESEARCH-DRAFT 8

1) David Reed and Liba Svobodova are supervtstng design and
implementation of the Swallow distributed data storage service on an
Alto that can be equipped with several hundred megabytes of disk
storage. The research goal of this project is described elsewhere in this
annual report. The primary reason for use of the Alto environment is
immediate availability of both disk hardware and the Mesa programming
system, together with an estimate that the initial implementation will fit
easily in the Alto memory space.

2) David Clark has implemented Internet and associated file transfer
protocols for the Alto, to allow communication between the Xerox grant
equipment and the other computers in the laboratory and the ARPANET
community. In conjunction with these protocols, he has deployed a
Dover printing service.

3) Robert Schiffenbauer is developing a Mesa-based subsystem for
debugging distributed applications.

4) John Guttag is supervising the programming (in Mesa) from formal
specifications of a Bravo-like display interface. The purpose is to
understand better the implications for programming and system design
of working top-down with formal specificatons.

During the coming year a few more research projects are expected to begin using
this equipment: a programming specification verification system, some VLSI circuit
design work using the ICARUS system, and a bootstrapped CLU compiler have all
been discussed.

4. THE SWALLOW DISTRIBUTED DATA STORAGE SYSTEM

4.1. Overview

The Swallow project was begun last summer. Its purpose is to design and
implement a coherent organization for long-term storage in a network of computers.
We assume that these computers are managed in a decentralized way, preserving
for each computer in the network a high degree of autonomy. In particular, we
would like to obviate any need for a central authority (human or computer) that has
complete control of the activities and data in the network. Thus, unlike traditional
computer operating systems in which the supervisor manages all computational and
memory resources, our distributed environment is much more like a loose coalition

9 COMPUTER SYSTEMS RESEARCH-DRAFT

of computers that frequently need to cooperate and to share information, but which
computers control completely how they cooperate.

In this context, Swallow can be viewed as a set of standard protocols that
cooperating computers may use to manage their data. If Swallow is to be successful
in this environment, it must both provide benefits when used and not compromise
the autonomy (or course, it must compromise autonomy to the extent of requiring
certain standard interfaces).

The benefits Swallow provides include the following:

· Uniform interface - the read and write operations provided to users of
Swallow make the location of data stored in the system transparent. The
owners of data are allowed to control the location of data, however.

· Reliability - Swallow provides storage for data objects that is extremely
stable. In addition, only those nodes that hold data needed by a
computation need be available to run that computation, so availability is
enhanced.

- Atomic Actions - Swallow provides synchronization and recovery
mechanisms so that any arbitrary set of accesses may be combined into
an atomic action, using the model developed by Reed [8,9]. Network
failures and node crashes do not compromise proper synchronization
and recovery of these atomic actions.

·Protection - a standard mechanism for encryption-based protection of
data stored in the system will be provided. This mechanism is
decentralized, so that there is no critical central authority that can
compromise the security of every user of Swallow.

-Support for "small" objects - novel organizations of storage are needed
to support the object model proposed by Reed; at the same time, such
storage organizations can be designed to support small objects
effectively. The user of Swallow sees an environment consisting of a
large number of objects whose average size is relatively small.

These properties are synergistic. For example, in a traditional file system, it is
usually not possible to perform atomic actions that involve multiple files.
Consequently, objects accessed within the same atomic actions must be stored in
the same file. This is one reason that files are large. In the Swallow system, since
atomic actions may access multiple objects, it is quite reasonable to store "files" as
structures consisting of many individual objects.

COMPUTER SYSTEMS RESEARCH-DRAFT 10

4.2. Overall Structure of the Swallow System

Figure 1 illustrates the overall structure of the Swallow system. Each client
comr:>uter that uses Swallow accesses storage via a module called the broker, which
is implemented on each client. The data owned by that computer is stored either on
local secondary storage or on a shared server called a repository.

Client
nodes ,------.

~~--~ -- -- --~~--~- -- -- +-~~~ r--- Broker Broker Broker

I
I local

1
storage

I
I
I
I
I Repository

I
I
I
~---

Repository

Storage devices

Figure 1: Swallow System Structure

Client __ ,...._
interface

Swallow

The broker has two functions--it controls the location of, and mediates all
accesses to, data owned by its client.

The repository provides large quantities of stable storage. To simplify the job of
the repository, a repository is not responsible for protecting the data stored there
from unauthorized release.

Both the brokers and the repositories support the protocols needed to provide
atomic actions, since both types of modules contain objects that may be used by
atomic actions.

--

--

11 COMPUTER SYSTEMS RESEARCH-DRAFT

4.3. Implementation

We are implementing Swallow to show that the concepts involved (uniform
interface, atomic actions, ...)can be implemented in a practical system. Our primary
concerns are efficiency and usability. Since the organization of Swallow is radically
different from traditional storage systems, the only way to understand how well it will
perform in practice is to build it, and then use it in constructing some applications.

Our goal is to implement a prototype system with most of the features of Swallow
on a set of Altos, with at least one repository node, and several brokers/client nodes.
Altos were chosen because of the existence of both solid hardware and
well-developed support software (e.g., Mesa). As the Nu machines become
available, we will migrate the system onto the Nu's, first constructing a broker for the
ECLU environment on the Nu's, and eventually constructing Nu-based repositories.

4.4. Status

Our efforts for the past year have been aimed at creating an implementable
design. The first design phase is nearly complete--we have the following pieces to
build.

- message protocol supports datagram service for messages of arbitrary
length.

- object access protocol coordinates interactions between brokers and
repositories.

- version storage management manages secondary storage (magnetic or
optical disk and tape) used for holding the versions of objects.

- object history manager maintains the history of versions of objects.
Implements stable storage and recovery mechanisms for crashes.

- repository control supervises execution of transactions on the
repository.

- commit record manager implements the two-phase commit protocol
among repository and client nodes.

- broker control keeps track of objects owned by the broker.

The interfaces and algorithms for these modules have been developed over the
past year. During the coming summer, we plan to implement these.

COMPU fER SYS Tt:.MS F!I:SEAnCH·DRAFT 12

4.5. Major achievements this year

G. Arens has defined the object access protocol used between brokers and
repositories. This protocol is "connectionless", that is, the only state information
maintained at each node is the values of objects. Since there is no connection state,
there is no delay in initiating communications.

L. Svobodova has designed the structure of the repository that supports the
object model developed by D. Reed. A write-once storage model (an "infinite tape"
with random access) is used to support stable storage of versions of small objects.
Techniques similar to real-time garbage collection are used to keep the current
versions of frequently used objects in the online portion of the version storage.
Emphasis is placed on high performance, particularly on reducing delays due to
disk/optical disk latencies. A critical concern addressed in the design is a
reconstruction of object histories after a processor crash and recovery from disk
failures.

D. Reed has developed an approach to protecting objects using encryption.
Objects stored on the repositories are encrypted, with keys known to the owning
brokers only. Thus there is no need for implementing a common access policy on _.....,
the repositories. This simplifies the repositories, and allows clients flexibility to
implement arbitrary access control policies.

5. THE AUTHENTICATION SERVER

The authentication server project has two goals. The first is to build a key
distribution center that can be used to support other distributed system components
that are to be built here. In particular, the Swallow system, described above, will
store data in an encrypted form and will therefore require such a server. Also, any
secure conversation between processes in the system might require similar services.
The main function of the authentication server will be to provide for key distribution.

A second purpose of the project has been to provide a source of experience with
programming for a distributed system. The currently available "extended" CLU has
served as the language for several experimental implementations. By reviewing our
programming experiences regularly, we are developing some insight into how such a
language can support the implementation of programs for a distributed environment.

We began meeting in September 1979, before any other projects had developed
detailed specifications of their authentication server requirements. We spent about
two months reading selections from the literature on protection and encryption, as
well as learning "extended" CLU. At that time we decided to implement the

13 COMPUTER SYSTEMS RESEARCH-DRAFT

protocols for establishing a secure conversation as presented in. There nre two
versions of the protocols, the first for use with conventional encryption and the
second based on public l<ey encryption. These protocols should have some
relationship to protocols required by local users, but are not particularly tailored to
the needs of other projects in the laboratory. Thus the main results of this exercise
have been initiation into the extended CLU programming environment, production of
two simple servers that can serve as foundations upon which to build, and
identification of a variety of problems not addressed in the Needham and Schroeder
paper.

The next phase of the work was to redesign the programs so that communication
could proceed in terms of internal datagrams. The group defined a datagrams
standard for use with the Needham-Schroeder protocols [3] and have begun a new
implementation.

There are three kinds of future worl< that we are considering. First, there are still
parts of the current implementation of the Needham and Schroeder work that are
incomplete. The encryption procedures do not implement secure encryption
algorithms. Also, Needham and Schroeder suggest some modifications to their
protocols that would facilitate ca~hing of keys for reuse in future conversations. The
current implementations require that the authentication server be involved each time
a new conversation is started.

Second, there are issues that were outside the scope of the Needham and
Schroeder paper that we can tackle. These include protocols for proceeding with a
conversation once a l<ey has been agreed upon and protocols for revoking a key
once it has been compromised.

Third, we are interested in providing services that will be of use to people building
other programs. For example, if the data storage server provides storage for large
numbers of small objects, each under a separate key, then adequate performance
may depend on its ability to get a large number of keys from the authentication
server in response to a single request.

6. APPLICATIONS FOR DISTRIBUTED SYSTEMS

,.......__ 6.1. The Application

In the area of applications we have continued to focus on distributed calendar
systems. There are two l<inds of calendars that we have been designing -- personal
calendars and public "resource scheduling" calendars.

COMPUTER SYSTEMS RESEARCH-DRAFT 14

The personal calendar can be used for keeping track of appointments, meetings, _...,
holidays, etc. The calendar can be displayed in several ways showing either a
summary of the week, a list of appointments on a day, or a diagram of the day
showing blocks of free and reserved time. The main operations are "appt" to make
an appointment, "cancel" to cancel one, and various display commands. One can
attempt to make an appointment at any time. If there is a conflict with another
appointment, the calendar reports this fact. If not, the appointment will be made.
Appointments are recorded at a particular time with a few keywords to indicate the
purpose.

The Conference Room Calendar is similar to the personal calendar in that time
slots can be reserved and cancelled. This program is meant to support the reserving
of time in one of our conference rooms in the laboratory. The room is generally used
for seminars and may involve the coordination of several people and resources.
Since a seminar generally has a host who is responsible for the reservation, the
host's name is listed in the calendar display as the keyword for the appointment. In
addition, there is a form on file for each appointment. The form contains information
about the seminar such as the speaker's name, the title of his talk and whether there
will be refreshments. These forms can be active, in which case they may trigger
communication with other calendars (such as, the calendar for the person who S(;tS

up the coffee pot in time for scheduled refreshments).

6.2. Meetings

A personal calendar can try to call a meeting. The desired length of the meeting,
a set of possible times and a list of participants must be specified in the request. The
calendar system will try to find a time at which the meeting can be held and will then
notify all participants.

For meetings that are called very far in advance of the time at which they will be
held, the meeting can be considered to be tentatively scheduled. A scheduler will
keep track of several possible times at which the meeting can be held. A second
meeting is considered to conflict only if scheduling it (and therefore, removing its
time slot from the set of times tentatively reserved for the original meeting) would
reduce the set of possible times to less than one. If the second meeting is
scheduled, the set of available times for the first meeting is simply reduced. Shortly
before the date of the meeting a single time is chosen for the meeting. This can
occur either at a "commit" time specified in the call for the meeting or by an explicit
request to commit. A caller could specify that he wants a meeting the week of March
lOth and that it should be definitely scheduled by March 3rd. Thus the caller can be
sure that the meeting will appear on his calendar with sufficient advance notice for

..

-

15 COMPUTER SYSTEMS RESEARCH-DRAFT

planning. If the meeting is committed to a single time too soon, it is quito likely that
some participant will have to cancel in order to meet a higher priority commitment
that arises later. This would require rescheduling, rather than the simple reduction
in the set of tentative times.

6.3. Calendars in a Distributed System

Facilities for coordinating a set of calendars are of use in either a centralized or a
distributed system. If the system is to be distributed, its implementation will certainly
differ from the implementation of a centralized version. We are assuming that in
order to coordinate with another calendar a request must be sent to that calendar.
That is, there is no central data base that contains information on all calendars and
that can be accessed directly by any calendar.

Operations other than calls for meetings may depend on data at more than one
node. For example, when there are tentative meetings (as described in section 2.3)
then while a meeting is "uncommitted" the status of certain time slots on the
personal calendars of the participants may depend on the status of the tentative
meeting. Thus even if the personal calendars store their data locally they may have
to communicate with the tentative meeting in order to find out whether a particular
time slot is free. This can cause noticeable delays if a user is at the terminal trying to
schedule an appointment in real time. It also raises a question as to how to display
the calendar--should all tentative times for various meetings be shown or should the
display show a possible schedule based on information available locally?

Other questions arise:

- How do these data dependencies relate to the dependencies which arise
in supporting modular atomic transactions [8]? Are such dependencies
at the application level likely to occur in many applications? If so, how
can we support their implementation in a programming language for
distributed applications?

- Should the caller of the meeting act as the source of information about
the tentative meeting? If the tentative meetings are distributed in this
way how will scheduling be done if one person is invited to several
meetings? Should a central scheduler be invoked to manage meetings?
(This latter approach is being explored by a UROP student.)

· Should chains of tentative meetings be schedulable? (E.g., Can I
schedule Meeting A conditionally depending on the final timing of

COMPUTER SYSfEMS RESEARCH-DRAFT 16

Meeting 8?) This may save the time of checking with the tentative
meeting about a particular time slot. But then how will the system help
me in backing out of meetings when conflicts are later confirmed?

6.4. Progress

We have implemented several versions of the calendar. A working version of a
single user is available on XX. Draft descriptions of the calendars have been
proposed in an internal working paper. A first version of tentative meetings in
multi-user calendar system has almost been completed by a UROP student, Pat ·
O'Donnell. The user interface has been studied and a version implemented by a
'Bachelor's Thesis student, Eli Wylen [7].

7. MISCELLANEOUS

7 .1. Research in Object Oriented Systems

We have claimed that effective development of distributed system semantics is lft(lll

strongly enhanced by the object oriented view ot systems and languages; the view
that makes the language or system directly aware of the potentially small storage
units which hold the individual data items of relevance to the programmer. Allen
Luniewski, in a Ph.D. thesis, has explored a machine architecture which directly
supports this small object view of data management. His thesis suggests that it is
possible to provide a reasonable implementation of an object oriented machine, in a
manner independent of a particular programming language. In particular, he has
demonstrated an architecture that potentially permits objects defined in different
languages to be exchanged. In particular, compile time typesafe languages and
runtime typesafe languages could presumably coexist in his environment.

7 .2. Miscellaneous Distributed System Techniques

Andy Mendelsohn has been investigating the distributed implementation of
interactive programs. One example is a distributed editor, with the functions of the
editor distributed between a "front-end" personal compiler with highly interactive
input and output and a "back-end" compiler such as a timesharing system with
higher performance and more storage. The goal is to develop general techniques
for distributing functions in any application between a highly innovative front-end
nnd the other compilers in the network. The major accomplishment this year has
been the design of a distributed text buffer.

--

17 COMPUTER SYSTEMS RESEARCH-DRAFT

References

1. Daniels, D., Lucassen, J., and Rubin, W., "The authentication server: a
datagram implementation," (Draft) May 22, 1980.

2. Kent, S. T., "Encryption-based protection protocols for interactive
user-computer communication," MIT /LCS/TR-162, MIT, Laboratory for
Computer Science, Cambridge, MA, May, 1976, pp. 121.

3. Needham, R. M. and Schroeder, M.D., "Using encryption for
authentication in large networks of computer," Communications Qf the
ACM 21, 12, December, 1978. pp. 993-997.

4. Gifford, D. K., "Weighted voting for replicated data," Proceedings Qf tllil
Seventh Symposium on Operating Systems Principles, Pacific Grove,
CA, December, 1979, pp. 150-162.

5. Reed, D.P., "Implementing atomic actions on decentralized data,"
Preprints for the Seventh Symposium on Operating Systems Principles,
Pacific Grove, CA, December, 1979, pp. 66-7 4.

6. Reed, D.P., "Naming and synchronization in a decentralized computer
system," MIT /LCS/TR-205, MIT, Laboratory for Computer Science,
Cambridge, MA, September, 1978.

7. Wylen, E., "A personal calendar: the human-computer interface," S.B.
thesis, MIT, Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1980.

Publications

1. Corbato, F.J. and C.T. Clingen, "A managerial view of Multics system
development," reprinted in Tutorial: Software Management, Donald
J. Reiter (Ed.), IEEE Chapter Society, 1979.

2. Luniewski, A., "The architecture of an object based personal
computer," MIT /LCS/TR-232, MIT, Laboratory for Computer Science,
Cambridge, MA, January 1980.

COMPUTER SYSTEMS RESEARCH-DRAFT 18

3. Marcum, A., "A manager for named, permanent object,"
MIT /LCS/TM-162, MIT, Laboratory for Computer Science, Cambridge,
MA, Apri11980.

4. Reed, D., "Implementing atomic actions on decentralized data," to be
published in Communications Qf the ACM.

5. Saltzer, J., "Environment considerations for campus-wide networks,"
Internet Note No. 143, March, 1980.

6. Sattzer, J., "Source routing for campus-wide internet transport,"
Internet Note No. 144, March, 1980.

7. Sollins, K., "The TFTP specification," Internet Note No. 133, January
1980.

8. Stark, E., "Semaphore primitives and starvation--free mutual exclusion,"
MIT /LCS/TM-158, MIT, Laboratory for Computer Science, Cambridge,
MA, March 1980.

9. Svobodova, L. and D. Clark, "Design of distributed systems supporting
local autonomy," IEEE COMPSON Spring '80, February 1980, invited
paper, 438-444.

Theses Completed

1. Ames, W., "A local area network simulator," M.S. thesis, MIT,
Department of Electrical Engineering and Computer Science,
Cambridge, MA, September 1979.

2. Finseth, C., "Theory and practice of text editors," S.B. thesis, MIT,
Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1980.

3. Goldberg, D., "A character oriented display editor," S.B. thesis, MIT,
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1980.

4. Khalsa, K., "Flow control algorithms for file transfer protocols," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1980.

19 COMPUTER SYSTEMS RESEARCH-DRAFT

5. Krueger, S., "System features to aid in the on-line diagnosis of computer
peripherals," S.M. thesis, MIT, Department of Electrical Engineering and
Computer Science, Cambridge, MA, June 1980 (also B.S. degree).

6. Leckband, C., "A design of reliability mechanisms for defense
minicomputer systems," S.B. thesis, MIT, Department of Electrical
Engineering and Computer Science, Cambridge, MA, June 1980.

7. Luniewski, A., "The architecture of an object based personal
computer," Ph.D. thesis, MIT, Department of Electrical Engineering and
Computer Science, Cambridge, MA, January 1980.

8. Myers, B., "Displaying data structures for interactive debugging," E. E.
and S.M. thesis, MIT, Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1980.

9. Peterson, H., "Design of source quench congestion control algorithms
in interconnected networl<s," S.B. thesis, MIT, Department of Electrical
Engineering and Computer Science, Cambridge, MA, June 1980.

10. Pettinato, S., "A sports scheduling system," S.B. thesis, MIT,
Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1980.

11. Reuveni, A., "The event based language and its multiple processor
implementations," Ph.D. thesis, MIT, Department of Electrical
Engineering and Computer Science, Cambridge, MA, November 1979.

12. Seaquist, C., "Semantics of synchronization," Ph.D. thesis, MIT,
Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1980.

13. Smith, M., "An internet implementation of a terminal access protocol for
multics," S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, June 1980.

14. Stark, E., "Semaphore primitives and starvation-free mutual exclusion,"
Ph.D. thesis, MIT, Department of Electrical Engineering and Computer
Science, Cambridge, MA, January 1980.

COMPUTER SYSTEMS RESEARCH-DRAFT ~U

15. Stathis, G., "A computer controlled telephone dialer," S.B. thesis, MIT,
Department of Electrical Engineering and Computer Science,
Cambridge, MA, January 1980.

16. Toner, S., "Dynamic message routing in interconnected local area data
networks," S.B. thesis, MIT, Department of Electrical Engineering and
Computer Science, Cambridge, MA, August 1979.

17. Vieraitis, R., "Evaluation of the performance of a local area network,"
S.B. thesis, MIT, Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1980.

18. Wylen, E., "A personal calendar: the human-computer interface," S.B.
thesis, MIT, Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1980.

Theses in Progress

1. Arens, G., "Recovery of a repository in a distributed data storage
system," M.S. thesis, MIT, Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected September 1980.

2. Baldwin, R., "An evaluation of the recursive machine architecture,"
M.S. thesis, MIT, Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected June 1980.

3. Kent, S., "Implementing external protected subsystems in small
computers," Ph.D. thesis, MIT, Department of Electrical Engineering
and Computer Science, Cambridge, MA, expected September 1980.

4. Ketelboeter, V., "Foward recovery in distributed systems," S.M. thesis,
MIT, Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected September 1980.

5. Mendelsohn, A., "Tools for building user interfaces to distributed
systems," S.M. thesis, MIT, Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected September 1980.

6. Schiffenbauer, R., "Debugging in a distributed system," S.M. thesis,
MIT, Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected September 1980.

21 COMPUTER SYSTEMS RESEARCH-DRAFT

~"""':-- 7. Simpson, G., II A monitoring station for a local area network," S.M.
thesis, MIT, Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected November 1980 (also B.S. degree).

8. Thomas, J., "A mult-protocol network mail transport facility for Multics,"
S.B. thesis, MIT, Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected September 1980.

Conference Participation

1. Corbato, F.J., Awarded Harry Goode Award, at the National Computer
Conference, Anaheim, CA, May 19-22, 1980.

2. Reed, D., "Implementing atomic actions on decentralized data," ACM
Seventh Symposium on Operating Systems Principles, Asilomar, CA,
December 1979.

3. Saltzer, J., Invited Commentary on Distributed Systems," ACM Seventh
Symposium on Operating Systems Principles, Asilomar, CA, December
1979.

4. Saltzer, J., Summer Study on Air Force Computer Security, Draper
Laboratory, Cambridge, MA, June/July 1979.

5. Svobodova, L., "Reliable distributed systems," IFIP Working Conference
on Reliable Computing and Fault-Tolerance in the 1980's, London,
England, September 1979.

Lectures

1. Chiappa, N., "The MIT LCS network, II talk presented to the Data
Communications Group of London of the British Computer Society,
University College London, London, England, September 17, 1980.

2. Clark, D., "Local area networks," Greater Boston Chapter of the ACM,
Boston, MA, April24, 1980.

3. Corbato, F.J., "An overview of computer science research at MIT,"
MIT-ILP program for several companies, Tokyo, Japan, July 9, 1979.
Also presented at Tsinghue University, Peking, China, June 27, 1979.

\

COMPUTER SYSTEMS RESEARCH-DRAFT 22

4. Corbato, F.J., "A management view of the Multics system development,"
MIT-ILP program for NTTPC, Tokyo, Japan, July 10, 1979.

5. Kent, S., "Implementing external protected subsystems in small
computers," IBM San Jose Research Laboratory, San Jose, CA, March
24, 1980.

6. Mendelsohn, A., "Tools for building user interfaces in a distributed
processing environment," Hewlett-Packard Computer Laboratory, Palo
Alto, CA, April 23, 1980.

7. Reed, 0., "Using naming for synchronizing access to decentralized
data," University of Rochester, Rochester, NY, October, 1979.

8. Reed, D., "Implementing atomic actions on decentralized data," Digital
Equipment Corporation Research, Maynard, MA, November 1979.

9. Reed, D., "The distributed data storage system," IBM San Jose
Research Laboratory, San Jose, CA, December 1979.

10. Saltzer, J., "The impact of modern technology on system design," a
series of five lectures given at: Indian Institute of Technology, Delhi,
January 16, 1980; Indian lnstitue of Technology, Kanpur, January 18,
1980; Indian Institute of Technology, Madras, January 30, 1980; Indian
Institute of Technology, Bangalore, January 29, 1980; Computing
Society of India, Hyderabad, January 31, 1980.

11. Saltzer, J., "~orkshop on distributed systems," organizer and lecturer,
President Hotl, Bombay, India, January 21-25, 1980.

12. Svobodova, L., "Operating systems for distributed computing,"
Technical Vitality Program, State University of New York, Binghamton,
NY, November 1979.

13. Svobodova, L., "Modeling and semantics of distributed computation,"
Technical Vitality Program, State University of New York, Binghamton,
NY, November 1979.

14. Svobodova, L., "Distributed storage system for a local network," PRIME
Computers, Framingham, MA, June 1980.

23 COMPUTER SYSTEMS RESEARCH-DRAFT

Committee Memberships

Chiappa, Noel, DARPA IPTO Internet TCP Working Group

Clark, David, DARPA IPTO Internet TCP Working Group

Greif, Irene, Program Committee for Principles of Programing Languages

Reed, David, DARPA IPTO Internet TCP Working Group

Saltzer, Jerome, Draper Laboratory Committee on 1979 Security Workshop

Saltzer, Jerome, DoD/DDRE Security Working Group Member

