
GENERAL LEGrURE

11 The Mul tics Concept 11

Mult i pl exed Information and Comput~~ System

Patterns of man- machine communication:

{).....

1. Bptch p roce ssing on h igh speed, expensive

computer system

2 . Direct inte r a ct ion with small, inexpensive

comput e r

J. Mul t ics concept: Direct interaction with

shared large computer system

-1-

...
1. B~ch processing

User prepares
program and
data on cards

t:;
\
\

\

~ hr - 1 day

Submits cards
to

Comp . Center

User picks up
Card deck and
h is output

Probl em: l ong turn around

Operator
Schedules and
batches jobs
onto tape

Operating
System runs
jobs of bftch

Operator
removes output
from p rinter

program checkout awkward at a distance (Core dumps)

small mistakes as disastrous as large ones

-2-

2. Direct Interaction wi th small computer:

'"'{.

User prepares
~

SHies- up for Takes over
program & data -{>

Available time -t> machine
on tape '

-J
Runs program,
fixes, runs
again

l
Done, takes
program &
data home

Probl ems: Uses only s mall fx1ction of machine (1% in sampl es) •

User i s under time pressure .

System programs usuall y of limited value :

debugger & assembler.

An inexpensive computer usually cannot handle v ery

large probl ems .

- .3-

3 . Multics Concept:

Tel ephone

Exchange

Remote

Terminal

Large
Computer
System

Information
Storage
System

User dials up computer, pl aces program in system

if not already there , and runs it. Wben done, he

l eaves it there for l ater reference . He can use

programs of other users.

ReqQi res an elaborate Supervisor Program •

. -4-

Notions important t o the Hultics Conce_Et

}ultics
Concept-
I!1.formation
& Computing
Utility

/"

Resource
Shari.YJg

+

System Operation
Automation

Accounting

Configuration
Independence

Hodular Super-
Protection /

1

~ Hultipl e , -{> Evolving

Backup design v isor

. ' '\
Contirru.ous _ . I Operation

Information ---£> I:nformatlon
Storage Sharing \

-5-

Privacy-.(> Authenti
cation

1 . Utility -- liotion of service to a ~ietv of customers;

available on demand from remot e locations .

(via telephone sHitching networks)

2 . Resource Sharing - - Technique to l 01t1er the cost of a

computing and information service . (Analogy

to telephone operator or dial equi pment)

Implias need for protecti~ between users of

t he system.

·3 . Information Storage -- The system r emembers (by magnetic

disk & drum memories) files of information

pl a ced in it by a user . Information may be

programs or data . The system catalogs all

information given it so that it may l ocate

the infonnation later.

4. Information Sharing -- The system can permit different

users access to common files of information.

Users may thus share programs and datf when

desired . I mpli es need for Erotection and

privacy between users of system.

- 6-

5. Backup -- Since users depend on system to store informa-

tion, i t must be reliabl e. Technique used is to

dupl i cate al l info1~tion stored in the system by

users on a detachable medium (magnetic tape) and
'

store it permanent l y . In case of catastrophe,

slightl y outdated information can be retrieved

from backup tapes .

6 . Protection -- users ~~st be protected from mistakes or

errors of judgement of other , independent users .

7 . Privacy -- Since information can be shared, there must be

A.
interlock to ~rantee privacy of iruormati on to

"
users desiring such privacy . Ideall y , system

should meet requi r ements of mili tary security

(= company confidential) • Impl i es posit i ve

authentication of persons us:iJ.1g the system .

8 . Account:iJ.'lg - - Since resources are shared, system must keep

records of how much of each resourc e is used by

each usGr, so that charges are fair .

Ubj ective: 1 . Heceipt s should pay for system.

2 . Charges shoul d be proportioned

to servi ce rendered .

- 7-

9 . Mul tipl e , Modul a r Design -- Pe rmi t s system t o cont inue

operation i n spi t e of failure of a:n;y single

component . (Also allows growth of system

capaci ty to meet needs of users.)

10 . Configuration Independence -- (See Multipl e , Modul ar

d esi gn) Us er s must not b e affected by cha(ges

in mach ine configur ation (faster processor ,

different type of me~ory , ate .) or al so syst em

cannot support cont inuou s operation or ev ol ution .

11. Continuou s Ope ration -- r e quired to compl ete notion of a

u t ility availabl e on dema.rt<! . Dependability of

seL~ice availabl e i s e s sential for acceptance

of an informat ion storage system. (Users

cannot take Hork el s evh8r e i f all i nfor mation
'•

i s froz en insi de a temp;rarily disabled syst em.)

12 . Evolving System

a) hardwa r e . As t echnol ogy cha11ga s , p r oces sor s

vlill beqome f aster, i nt e r communicat ion 1t1ill im-

pr ov e , r;o cha nnel s wi ll change charact eristics ,
W\ .0. ~5

and ~storage devices will b e come fast e r , mor e

a ccessi bl e , and cheaper . The system must be

- 8-

capable of a ccepting hardware evolution vTithout

aff ecting users (except to p rovi de improved

service) .

b) supervisor. The su.perv'isor is never de

bugged; one ah1ays wishe s to add nevT f eatures;

superior understandLng from experience can

suggest more effective t echniques . Therefore

the system rrust be abl e to support both cha~e

in the superv:i:sor and gynarn.i~ debugging of new

supervisor p i ece s . This is accomplished by

organi .z .ing most of the supervi sor procedures

so t hat they operate in ~ modes, with all

ss stem safegu.ards in operation .

13. System operation automat i on -- The system must oper ate by

i tsel f with a mi~1m of procedures required of

human operators. In particnl a r , job scheduling

and time accounting must be automatic (with

exceptions permitted) -- If an operator can

make a mistake , he VTill --

-9-

Topics

I Hardware

1 . Or ganization of major system components

2 . Segment and Page organization

II Information Stor age System

1 . Information Stor age Hierarchy

2. F'il e System; Segment/File Cor respondence

3 . Backu.pjRel oad/Sa.lvage

4 . Mul tilevel Stor age Management

III Central Supervisor

1 . Processes

2 • Tr affi c Controll er

3 . Inter1>rocess Communicat ion

4 . Users; Login a nd. Logout

5 . Het eringjAccountingjPerformance :Honitor ing

6 . Reconfi guration

7 . Protection, walls rings

IV Command System

1 . Shell • • • Cominand Language Interpreter

2 • Dynamic Linking and Search

3 . Command Library

- 10-

V I / 0 System Orga11ization

VI System Operation

1 . Transactor

2 . Absentee j obs

3. Peripheral op e rat ors
.,_

4. Initial i f ation

VII Development

1 . Management of R&D ef f ort

2 . Development Tech niques

- ll-

Introductory Lecture:

Organization of the Computer Utility

The t erm 11 compute r utili ty11 by its v ery nature implie s

marketing of a useful resource in a usabl e form . Although

immense computing power, sharable s e condary storage , and

f lexib l e access to input and output device s ar e inde ed useful

r e sources, the primary function of the computer utility is to

organize such resources into a usabl e , and thereby marketable ,

form .

From one point of view t he marketing of comput er r e source s

i s much the same as the marketing of candy bars . The man on

t h e street \-IOUld be quite pl eased to purchase his candy bar

direct from the factory at the candy jobber's pri ce s . On t he

other hand, his enthusiasm wanes when he di scovers that he must

take not one candy b ar but a carload, and delivery will r equire

six weeks . In much the same way the ordinary comput er user is

quite unprepa red to tackle the problems of managing sev eral

processors, I/0 interrupts , and disk t r ack organization, even

though his particul ar p r oblem might r equire sizable amount s of

comput er t ime , input- output, and s econdary storage space .

Again using thy candy bar example , we observe that the

candy bars pass through several hands : the jobber , the whole

saler, t he distributor , b efore they turn up on t he drugstore

·-12-

counter . At each of these levels the product of the previous

l evel is transformed into a resource with a wider market . The

carload of candy bars is Hholesal ed in g ross cartons; the

distributor once a week provides the drugstore with boxes of

24 candy bars . Finally, the man on the street wanders in and

purchases just one, whenever he likes. In a v ery similar

manner , we may view the r esources of the computer utility as

bei ng transformed three times, each time producing a resource

that is successively more "marketable":

1 . Starti ng with the basic hardware resources available, the

11hardHare management" procedures have the function of

producing hardware independence . They do so by similating

an arb itrarily l arge number of "pseudo-processors" each

with a private segmented address space (which may contain

segments shared with other pseudo- processors) , easy access

to a highly organized information storage h i erarchy, and

smooth input/output initiation and termination facilities .

The resulting resource is independent of details of hard

\vare or system configuration such as processor speed,

memory size , I /0 device connection paths, or secondary

stor age organization.

2 . Working with these pseudo- processors and the information

storage hi erarchy , the " resource management" procedures

-13-

allocate these resources among "users" , providing account

il1g and billing mechanisms, and reserving some of the

resources for management services, such as file storage

backup protection, line printer operation, ~~d storage

of user identification data .

3 . Finally, these allocated and accounted resources can be

used by the ultimate customer of the computing utility

either directly by his procedures or to operate any of

a l arge variety of library commands and subroutines .

Included in t hi s library are a command language inter

preter , a flexible I/0 system, procedures to permit simpl e

parallel processing , language translators, and procedures

to search the information storage hierarchy and dynami

cally lirk to needed programs and data .

-14-

We now wish to study each of these transformations in more

detail .

Hardware HanagGmen.:t,.

ThG basic hardware resources availabl e to the utility are

the followi ng:

1. One or morG idGntical processors.

2 . Some quant i ty of addressable primary (probabl y core)

memory. The processors are equipped Hith hardHare to

allow addressable memory t o appear to b e paged and seg

mented. It i s not necessary that all possibl e memory

addresses correspond to core locations. One might expect

to have 100,000 words of core memory for each p rocessor.

3. A substantial amount of r apidly accessi bl e secondary

storage . Thi s secondary storage ffiisht consist of a l a r ge

vol ume, s low access core memory, high sp eed drums , di&~s,

data cell s , or any combination t h ereof which proves to be

economical . The total amount of accessibl e secondary

storage might be on the orde r of 100 million words per

processor , a l though t h is figure can easily vary by more

than an order of magnitude .

4. Channel s to a wide, in fact unpredictable, vari ety of

i nput and output devices , including tapes , line p rint ers

-15-

and card readers, typewriter consol es, graphic displ ay

consol es, scientific experiments , etc. In an install ation

committed primarily to interactive usage , one might find

200 typewriter cl1annels , plus a few dozen other miscel

laneous devices . Each of these channel s can produce

s i gnals indicati ng completion or troubl e . The signals are

transmitted to the system in the form of processor inter

rupts .

5. Various hardwar e meters and clocks suitabl e for measuring

resource usage .

The hardware management routine s must do tHo very closely

related jobs . First, they must shield the user of the system

from details of hardware management. The user shoul d be

essentiall y unaware of syst em changes such as addition of a

processor 7 r eplacement of processor s by faster models , or

replacement of a date cell by an equivalent capacity disk

memory . Except for possibl e improvements or degradations of

service quality, his programs should work wit hout change under

any such system modification. Second, the hardware management

routines must handl e the multiplexing of system resources among

user s in such a way that the users may again be unaHare that

such multiplexing i s going on. Included in this second job is

the necessary protection t o insure that onE: user cannot affect

-16-

another user i n any way without previous agreement bet ween the

two users .

The strategy chosen here to impl ement this hardware manage

ment is the following . Using t he hardware resource s listed

above and t wo major program module s , the traffic control ler and

t he basic file system, simulate (by mul tiplexing processors and

core memory) an a rbitrarily l arge numb er of identical pseudo

p rocessors, and an information storage hier a rchy i n which data

f iles are stored and r etrieved by name .

The i!l..formation stor age hierarchy is a tree-like structure

of named directories and files whi ch is shared by all users of

the system. Access to any particular directory or f ile is

control l ed by comparing the name a nd authori t y of the user wit h

a list of authorized users stored Hi th each branch of the tree .

Thi s structure all ows sharing of data and procedu r es bet vJeen

users , and also compl et e p riva cy Hhere desired .

The pseudo- processor s l ook , of course , very much like t he

actual hardwa r e processors, except that they a r e missing

certa in 11 supe rvisory" instructions and have no interrupt capa

bility. Each pseudo- proce ssor has availabl e to it a private

two- dimensional addr ess space . Within the address space are

a rrumber of supervisor p rocedures capable of carrying out t he

follov1i:ng basic actions upon request:

- 17-

1 . 11Mapping11 any named file or directory from the stor age

h ierarchy into a segment of the address space . Files

appearing in the information storage hierarchy are

i dentifi ed by a tree~ which i s a concatenation of

the name of the fil e within its directory , the name of

t~e directory, the name of the directory containing thi s

directory, etc., back to the r oot of the t ree . As we

will see belovi a utility program named t h e 11 search

module11 may be used t o establi sh t he tree name of a needed

segment so t hat the map p rimitive may be used . The search

module i tself operates by temporarily mapping directories

into addressable storage in order to search them. Use of

the map primitive does not i mpl y that a:ny 'part of the file

is a ctually transferred into core storage , but rather that

the file i s now directly addressable a s a segment by t he

pseudo- processor . Hhen t h e p aeudo- processor actually

r efers to the segment for the first time , the basic file

system will gain control t h rough rniss~~- segment and

missing- page faul ts and pl a ce part or all of the segment

in paged core memory . Except for the fact t hat t he fir st

reference to a port i on of a segment tal;;:es i onger than

later references , t h is paging i s invi s ible to the user

of the pseudo- processor . The same fil e can appear as a

-:-18-

segment i n the address space of any number of processors,

if desired? options allow the processors to share the same

copy in core, or different copies .

2. Blocking , pending arrival of a signal from an I/0 channel

or some other pseudo- processor . A pseudo- processor blocks

itsel f because the process which it i s executing cannot

proceed until some signal arrives . The signal might

indicate that a tape record has been read, that it is

3:00 p .m., or that a companion process has completed a

row transformation as part of a matrix inversion .

3 . Sending a signal (here known as a "wakeup") to another

pseudo- processor or to an input/output channel . (From the

point of v i ew of a pseudo- processor , an I/0 channel looks

exactly like another pseudo- processor .) The wakeup

facility , in combination with the ability for pseudo

pr·ocessors to share segmerrts , permits application of

several pseudo- processors simultaneously by a single u ser.

A user may thus specify easily parallel processing and

input/output simultaneous with computation.

4 . Forci ng another pseudo- processor to b lock itself . This

primitive , named " Quit" , allO\vS disabling a pseudo

processor which has gotten started on an unneeded or

err oneous calculation.

- 19-

All of these p r i mitive functions are constructed as cl osed

subroutines which are called using t he standard call stack

described in chapter one .

Figure 2 .1 shows a typical hardware configuration of

the utility, vlhile figure 2 .2 indicat es the apparent system

configuration ai'ter the hardware management pr oc edur e s have

been added . An important difference between these figures is

that vihile figu.re 2 .1 may change from day to dey (as processors

are repaired and a disk is r epl aced wi th a drum) figure 2 . 2

always is the same , independent of t he p r eci se hardware con

figuration .

When a pseudo- p rocessor call s the 11 map11 entry of the

basic fil e system, the file syst em establishes a correspondence

bet1-1een a s egment number of thG pseudo- p rocessor address space

and a file name on secondary stor age by pl acing an entry in a

segment name tabl e belonging to th i s pseudo-processor. It

does not n ecessarily, hoHev er, loa d any part of t he file into

core memory . Instead , it sets a missing- segment b i t in the

appropriate descriptor word in the descriptor segment of the

pseudo- processor. This bit will cause the pseudo- processor

to fault i f a reference is made to t he segment .

Sometime af ter call ing the 11 map 11 entry , the p seudo

processor may a ttempt to address t he new segment . When it

-20-

does so, the r esul ting missing- segment faul t takes the pseudo-

p rocessor direct ly back to the segment cont r ol module of the

basic file system , which now prepares for missing page faults

by l ocating the f ile name corresponding to the segment number
I

in the segment r~me table , placing the secondary storage

location of the fil e in an active segment table , and creating

in core memory a page table for t he segment . This page table

is filled 11i th missing-page bits , and none of the file is

actuall y loaded into core memory yet .

The pseudo- processor is then allowed to continue its

refer ence t o the segment. Thi s time , a missing- page fault

takes the pseudo- processor to the page cont rol module of tbe

basic file system. Page control must locate two i tems: a space

in core memory l arge enough for the missing page , and t he

location on s<2condary stor e..ge of t h e missir,g page . Establish-

ing a space i n core memory may r equire u nloadi ng some other

page (possi bly belonging to some other pseudo- processor) onto

secondary storage . A p olicy a l gori thm i n the 11 core control"

module decides which page or pages i n core are the best

candidates for unloadi ng , on the basis of frequency of u sage

of the pages.

ffavir~ establi shed space in core memory for the page , and

initiated the t ransf er from secondary stor age, page cont r ol

- 21-

I
l\}
l\}
I

CPU

I 1---- DRUM

8- Core DISK
Memory I/0

Controller

I/ 0
device

CPU

n I/O
I/0 devi ce
Controller

I/0
device

(lines show communicat i on paths .)

Figure 2 .1 - - Typi cal hardwar e configur ation.

I
N
\.J..)
I

As many as
desired,
extendabl e
under
pseudo
p rocessor
control

~

r-

Pseudo-
Processor

Pseudo-
Processor

\

1-

..
•
• .

I supervisor ~-
segment s

Segmented
Addr essable
l1emory

supervisor
segments

Segmented
Addressabl e
Memory

/V '
...:.-""..t...-"""'_ ,_,.,_,....,....,

pirectory~
irecto

irecto

• •

Informat i on Storage Hierarchy,
extendabl e under pseudo- processor
control.

Figure 2 .2 - - Apparent system configuration after hardware management .

blocks the pseudo-pro-cessor pending arrival of t he page . When

the page is in, t his pseudo- processor is re-awakened by the

basic fil e system operating for some other proces s , page

control returns to the point at which the missi ng- page fault

occurred, and the pseudo-processor now compl etes its reference

to the segment as though nothing had happened . Future refei'

ence s to the same page v1ill succeed immediately , unless t he

page goes unused for a long enough time that the spa ce it is

holding is reclaimed for other purpose s by core control . If

the space is reclaimed, core control s ets t h e missing- page bit

in the page tabl e .2.!}, and vJrit e s out the p age onto s econdary

storage . A late r missing- page fault will again r etrieve the

page .

As we will see in chapter four, some segments cannot take

part in t he:: paging in- and- out procedure ; these segments must

be H¥Ti~ed down" (that· is,- they a r e not r emovabl e) s ince t heir

contents are needed, for exampl e , in order t o handle a missi ng

page fault . A general p roperty of the fil e system organization

is that a missing- page faul t cannot be encountered while trying

t o handle a missing- page f ault . The reason for thi s organi

zation is not that a recursive missing-page faul t hru1dler is

i mpossible to organize , but rather that the depth of r ecursion

must be carefully control l ed to avoid using up all of core

-24-

memory with r ecursion variabl es (at l east the call stack ~

go into a wired down segment.) The method chosen here to

contr ol recursion depth is to prevent recursive missing-page

faul ts in the first place .

The method of implementing the secondary storage hi~rarchy,

the "map" primitive, and core memory multip l exing has been

described in a paper on the basic file system by Daley and

Neumann (4) and the reader inte1·ested in more detail is referred

to that paper. The rul tipl exing of hardl-<rar e p rocessors to

produce many pseudo-processors is the function of the traffic

controller , and is t he subject of the remaining chapters of

this thesis .

Resource Management .

The hardvrare management programs transf orm the r aw r e

sources of the computer system into facilitie s which are

eminently more usable, but these facilities rust b e made avail

able (allocated) to users of the system befor e t hose u sers can

accomplish anything . Also , certain of the transformed facili

ties must be r eserved for the system' s own u se in operation,

administration, a nd preventive maintenance. F~ly , a f l exi

ble , fair, and accurate accounting me chanism must be p rovided

to determine how and by whom the system i s .actUilly-being used.

-25-

The most important function of r esource management is to

define the concept of a 11user11 of the util ity . A user, is,

roughly, a person, working on a proj ect , 1o1ho signs out a

portion of the system facilities by 11l 9gging in. 11 He may work

in concert wi th other users of the system on a single l arger

project, but his coming and going is independently noted in

system l og s . The definition of a person working on a project

must b e r el axed slightly to include the possibility of a so

called "daemon" user (1) which is not directly associ ated Hi th

a p erson. The defi nit ion of a daemon user. is that it is auto-

maticall y l ogged in to t he system when the system is initi al-

ized; one cannot identify a;rry parti cular person who claims to

b e this user. The daemon generally performs periodi c house

k eeping funct ions . (Most daemons, in fact , are creations of

r e source management, but there are al so applicat ions for

cu sterner - provided daemons.)

To get the flavor of the techniques used by resource

management , we may consi der the path foll owed in l ogging in

f r om a t ypewr i t er consol e . One pseudo- processor is r eserved

for a daemon user to which we give the name 11 answering

service". This' pseudo- processor is given access to every

(1) 11 dae•.m£ll , ,n. in Greek mythol ogy, any of the secondary
divi nities r anki ng b et ween t he gods and men; _ hence ,
2 . a guardian spirit ." (Webster' s New Worl d Dictionary ,
1958 .)

-26-

typewriter channel which is not presently in use . The process

operating on the pseudo- processor activates every attached

typewriter channel so that t he channel will return a signal when

a consol e dials up , or turns power on i n the case of di rect con

nections . The process then blocks itse'lf awaiting a signal from

some typewriter channel. When a person dials up to a channel,

that channel wakes up t h e answering service process which imme-

diately brings into pl ay two more pseudo- processors. One

pseudo- processor is assigned the typewriter channel and a type-

m·iter management process is initiated on that pseudo- processor .

A 11listener 11 process is ini tiated on the other pseudo- proce ssor .

The l i stener process reads from the typewriter by asking t he

typewrite r manager process for t he next line of input . The

listener may have to wait if a line has not yet been typed .

The listener can take any desired action upon the line , includ-

i ng establishing a process on yet another pseudo-processor to

perform some computation . The progr ams executed by the listener

and t he typewri ter manager come from the library, vlh ich i s di s-

cussed in the next section, so we will not go into a:ny further

detail h er e . Their first action is , of course, to execute the

11 login11 command to establi sh the ident i ty of the user and his

authority to use the system.

Logging in is a ccomplished by coi!lparing t he typist 1 s

credentials with a list of all authorized users which is stored

in the secondary storage hierarchy . (As we will s ee , t he
- 27-

•
storage hierarchy i s used extensively for administrative pur

poses .) When a match is found , information stored there indi

cates this user's access privileges, authorities, and the

section of the directory structure in which he keeps h i s

private files . The system log (a file in the storage hierarchy)

is updated to shO\i that thi s user i s logged in, and the typist

may now begin typing commands.

The point of the description of logging in i s to illust

rate the t e chniques used in r e source management, not t he

details . The most important feature of these t echniques is

that they are based on usage of t he pseudo-processors and

information storage hierarchy provi ded by the hardware manage

ment programs . They may , therefore, b e debugged and r epl aced

while the system i s operating , in exactly the same way as any

user program. They are also r elatively independent of the

configuration of the system.

A :rmmber of similar operations are carried out by resource

management in other ar eas. For exampl e , a daemon u ser con

tinually copi es newly created fil es in the storage h i erarchy

out onto tape for added reliability in case of some catastrophe .

Another daemon user p eriodically wakes up and II checks out the

syst em" by running t est and diagnostic procedures . An exampl e

of an ordinary user dedicated to resource management is the

- 28-

operator in charge of detachabl e input and output devices such

as t ape and disk packs. At his typewriter consol e he rece ives

messages requesting him to mount r eels; he may reply when the

r eel is mount ed or it cannot be found .

Finall y, wit hin every address space, certain r esource

management p rocedure s are inserted in the path between a user

pr ocedure and the supervisor routines described under hardware

management . These r esource management procedure s perform

r esourc e usage a ccounting for thi s p rocess . A system of

accounts is mai ntained within the storage h i erarchy, which

allows a p r oject supervisor to allocate r esource s to gr oup

l eaders vTho can i n turn allocate t o individual users. Every

pseudo-processor draws on some account in t his h i er a rchy . Also ,

among the library procedur es avail abl e to any p rocess are

11 system transact i on prog rams" whic...'-1 allow the user to arrange

special classes of service, s i gn up in advance fo r tape drives ,

etc.

Dynamic Linking, Hiera rchy Search , and the Library .

So far, t he hardware management procedure s have insulated

the user from the details of the system configuration and

secondary storage management , and r esource management proce

dures have e stablished doors through which a user may enter

-29-

and l eave t he system, and have h is r e source u sage a ccount ed

for . Before t he sy st e m i s useful t o the av er age user , howev er,

a va riet y of u t ility and service (l ibr ary) p r ograms IID.lst b e

avail ab l e to h i m. The l ibr ary is mer el y a coll ection of pro-
r

cedu r es stor ed in one s ection of the information storage

h i er archy . Thi s l ibr ary is built upon t he foundation s l a i d by

hardware and r e source management • I t i s f l exibl e and open-

ended , and procedures dr awn from the l i brary operate in

exactly the same way as any user provi ded procedure drawn f r om

el sewher e i n the information storage h i e rarchy .

Fundamental t o the usage of the syst em are dynamic linking

and storage hier a rchy sf\:trch pr ocedu:rAs . The pseado- processor

p r ovi ded by hardware management has the capabili ty of p r oducing

a linkage f ault when a procedure at t empt s t o r ef e r t o a s eg1lient

which has never been rr.apped i nto a ddressable stor age . vlhen

e stablishing a neH pseudo- proce ssor , one normall y pl aces a

l inkage fault handle r i n the new addr ess space . Hhen t he new

pseudo- p r ocessor encounters a liru~age faul t , the l i nkage f ault

handl er (l inker) l ocates t he needed segment in t he information

storage h i e r a rchy by cal l ing the sear ch modul e . The linker

then maps t h e segmen-t into addressable storage wi th the 11 tJap11

primitive di s cussed earlier , and r eset s t he inter- segment

linkage pointer wh ich cau sed the f ault so t hat f aults for that

- 30-

reference v:ill not occur in t he future .

By providing an appropriate algorithm to search the in-

formation storage hierarchy for needed s~ents , ti1e user can

a rrange that a newly established pseudo-processor execute any
.

desired sequence of procedure . The search may , of course ,

include those sections of the information storage hierarchy

containing library procedures p rovided by the utility .

For exampl e , consider the sequence of linkage f aults and

searches i mplicit in the logg ing- i n p rocedure described earl i er.

The answeri ng service e stablishes a ne\•1 pseudo- processor to run

the "listener" p rocess , initially mapping into its address

s-pace t he standard system li11l~er , a s earch algorithm Hhich

looks at t he system library, and a one- instruction procedure

which attempts to transfer (through a linkage fault) to a

prog ram named 11listen1l . The pseudo-processor is star ted at

the planted transfer instruction. Of course , it immediately

gets a linkage fault , and the linker calls the search modul e

to locate the 11 listen11 p r ogram. The search module finds a

proc edure by tl1i s name in t he system library, the linker maps

it into addressable storage , and the transfer instruction is

continued . Thi s time i t completes execution, and the "listen"

procedure is noH in control of t h e pseudo- proce ssor. As i t

calls on various subroutines , for example to communicate with

- 31-

the typewriter manager process , it gets more linkage faults,

and triggers appropriate searches through the library . As

needed, the address space of the pseudo--processor coll ects the

subroutines and data segments required to operate a listener

pr oces s .

An important library procedure is the 11 Shell 11 , a command

language interpreter which is called by the listener to inter-

pret t he meaning of a command line typed by the user . The

Shell takes a typed command to be the name of a subroutine to

b e called ,.n.th a r guments , e .g ., if the user types the command

PL/1 ABCD

the Shell woul d take this to mean that it should call a sub-

routine named "PL/1 11 with one argument, the character string

11AB CD11 • It theref or e sets up linkage to a subroutine named
-

PL/1 (with a linkage faul t in the path, of course) and attempts

to call the subroutine . The resulting lirl.kage fault causes a

search of the lib rary for, and linkage t o , a procedure segment

named "PL/111 • When the PL/I compiler u1 timately begins execu-

tion, it will similarl y search for and link to the fil e named

ABCD and (presumably) translate the PL/I program found there .

Among the library procedures commonly executed as commands

are procedures to hel p type in and edit neH f iles to be stored

in the information storage h i erarchy , transl ators for program

-32-

f iles, and commands to alter the search algorithm, for exampl e

t o search a portion of the hi erarchy containing the user1 s own

data and procedure segments . Note that t h rough the me chanism

of the Shell, aey pr oc edure segment , public o r p rivat e , appea r

i ng i n the information stor age hi erarchy and to Hhich a user

has access rights can b e call ed as a command from the consol e .

Other library procedures include an input/output control

system Hhich alloVTs symbolic refer ence t o input and output

streams and a substantial measure of d evice independence .

These procedures include necessary inter-process communication

facilit i e s required t o overl ap input/output Vlith other compu

t ation.,

Through t he mechanism of the linker and the search module

an arbit rarily el aborate collection of utility pl~grams may b e

established, yet all sue.!-). programs are on an identical f ooting

with t he user1 s own programs . That is , they may b e checked out

and r eplaced while the system is in operation using the full

resources of the system to ai d in the checkout . The open

endedness of the library means that i t is likely that t her e

will be some users who never execute aeything but procedur es

from the library . It is even possible, through t he mechanism

of access control provided in the informati on storage hierarcby,

to have a user who , s ince he has no access to aey compilers or

-.3.3-

input editors , can only execute commands found in some library .

Summary .

We have in this chapter seen a brief overvievl of several

aspects of the organization of a computer utility . In this

overview, we have seen how the raw r esources of the system are

successively transformed, first into configuration- and detail

independent resources consisting of pseudo- processors and an

informati on storage hi erarchy , secondly into allocated and

a ccounted resources ready to be put to work , and finally,

through a linker, search module, and system l ibrary, into a

full scale, flexible operating system with a multitude of

readily a ccessible utility procedures . Our overview has

necessarily been too broad-brush t o go into much detail on how

these various techniques are impl emented . The r eason for the

overview has been to give enough of a frame\..rork so that v.re can

study i n detail the particular problem of processor multi

pl exing, one of the fundamental aspects of hardware management .

Chapter three begins our study of this topic .

-34-

Issues

1. Notion of Utility

(configuration)
2 . Hardware detail Independence

.3 . Prot ection and Privacy between users

4 . Contiruous operation/Reliability

5. Backup

6 . System rem...sa.mbers infor mation

7 . Automation of a ll system operations

8 . Hardwar e Management--Resource Nanagement--Library

or ganization

9 . Notion of .§h_aring : Procedure & data

10 . Evolving Supervisor / On-line debugging

- .35-

Smaller Ideas

1. ASCII Character set standard & escape conve~ions

2. Canonical Form

3. Mul ti-tasking

4 . On-line documentation of system

5. Console s & Displ ays (Hardware)

D.

6 . Command l anguage Synt¢x

7 . User Authentication

8 . Tape r egistry

-36-

Virtual memory

Probl em:

1. Provide programmes with constant system no matter

vlhat memory size is used or other users are in

competition.
'('

2 . Allow progr amme,.s a large addr essable me::nory.

3 . Share Core memory among many users.'

Technique : Virtual memory hardware

View memory thru map

map of 1024-word pages

~- n bits----+

Processor produces address: I I I
L-. ____ __j

Done by
hardware

split so:
~ n- m f m ~

I _ I
(Vl.

a . use n- m er- index of map .

b . use contents of map to replace .!1::.!!!

If lX I in map , fault •

-17-

Virtues of Virtual memory

1. Permits f l exibl e allocation of core memory blocks on

basis of need.

2 . Permits Paging , e . g ., partial loading of a user' s memory,

b-ringing in only those parts needed .

3 . Each programmer may have a virtual memory longer than

actual system memory .

4 . Change in configuration of system memory need only be

r efle cted in core allocation routines. No user is

affected .

-.38-

Information Storage System

Stored on the disks and drums are two kinds of entities :

directories

and f iles

A ~ is a string of bits containing information of value to

some user; he may interpret it as he l ikes. A file has a

symbolic~ ·

A clirecto;sy is a list of three-part entries :

1 . syrribolic name of a fil e or a directory

2 . access contr ol list

3. Pointer(s) to physical l ocation of file

(indirect them file map) (Disk module 7 track 300

+ modul e 1 track 107

etc.)

A directory may also have a symbol ic name.

The system always knoHs the track address of one directory,

the~ .

Al l other information in the system is branched from the

~ directory .

- '39-

" Root Directory
(

~ v - 1hr ector-,y

/
I

ed "A" :nam

D'
-~

~rectory

7named
.Dir11 A11 . .

~ser~ ~ [P_ir'~~
.J o;rres_ r-.---- ---{),

--·-·--
----··-----

File"Zt'-,
S'mi=tli . t-·-··--1\

~
dat a
be- File z
lor..g- ;

ing <S--_./

to
Smith

Tree name of fil e 11Z 11 i s Root) A> Z

One can identify any f ile in the system by g iving a

tree name .

-40-

"X"

