

Overview

	Context / Project Goals			
	Neighborhood Integration			
		3 Protoblocks		
	Efficiency: Protoblock Form			
		NV		
		Daylighting		
		PV/Energy Usage		
Ш	Resiliency: Block Distribution			
		Coastal Flooding		
		Climate Change		
		Permeable pavement / green roofs		
		park/ block distribution		
	Livability: Access to Amenities			
		Walkability, parking, UTCI		
		Paths + 3rd Place		
	Exploring Tradeoffs: PV vs. GR			
	Conclusions			

Urban Analysis

Efficiency

Resiliency

Livability

Energy

Daylighting

Natural ventilation

Renewables

Extreme events

Coastal flooding

Urban stormwater runoff

Risk- based zoning

Pedestrian-oriented

Green spaces

Access to amenities

Thermal comfort

Protoblock Design

Houses and Corners

mostly residential + some commercial

Stepped Mixed Use

residential above + commercial / retail below

Environmental Mixed Use

Residential towers + commercial / retail below

Protoblock 1 Protoblock 2 Protoblock 3

Protoblock Design

mostly residential + some commercial

Protoblock 1

Stepped Mixed Use

residential above + commercial / retail below

Protoblock 2

Environmental Mixed Use

Residential towers + commercial / retail below

Protoblock 3

Climate Analysis

21% NV feasible days

Ave DB Temperature : 10.59 C Ave Relative Humidity : 65.67 %

Ave Wind Direction: 219 from North

Ave Wind Speed: 5.48 m/s

Environmental Consideration

Envelope Design
Natural Ventilation
Daylighting

WINDOW SEZ AND SHADING CONTROL
MATERIAL SELECTION FOR EXI

WINDOW SEZ AND SHADING CONTROL
MATERIAL SELECTION FOR EXI

USE OF MATURAL VENTILATION
USE OF MATURAL VENTILATION
USE OF MATURAL VENTILATION

AUNIE 21 SURBEE

Sample Protoblock 2

DEC 21 SUNRISE

Envelope Upgrade

Commercial Facade

Commercial Roof

Residential Facade

Residential Roof

Construction

Double-leaf brick + Insulation

Slate tile + Insulated concrete

Double-leaf brick + Insulation

Slate tile + Insulated concrete

0.073

0.040

0.073

0.045

Protoblock 2

S: 50% N: 10% W: 30% E: 30%

Protoblock 3

Baseline	Window Upgrade	Window and Envelope Upgrade
Ave. 125 kWh/m2	Ave. 119 kWh/m2	Ave. 117 kWh/m2
Residential High: 130	Residential High: 122	Residential High: 118
Residential Low: 130	Residential Low : 121	Residential Low: 118
Offices: 119	Offices: 115	Offices: 113
Onices . 115		

Outdoor CFD

Running outdoor CFD On Protoblock

Wind Pressure Mapping On Protoblock

Adaptive Comfort:

96 days out of 8760 was out of adaptive comfort zone 80% boundary

Openings and Chimneys Buoyancy + Cross Ventilation

Solar-Driven Design

Daylighting Simulation

Massing Optimization

Protoblock Design Development - Daylighting

Protoblock Design Development - Daylighting

Average sDA: 28

Average cDA: 49

Result of Analysis

Natural Ventilation Design

Daylighting Design

Protoblock Design Development - Energy Efficiency

Design upgrades (from typical neighboring building stock):

Facade upgrades (wall/roof insulation) Window upgrades

+ Savings from natural ventilation, photovoltaics

Protoblock Design Development - Energy Efficiency

Protoblock Design Development - Energy Efficiency

Results:

10% Savings on heating / cooling

26% Potential savings through PV

Energy

Daylighting

Natural ventilation

Renewables

Resiliency

Extreme events

Rising temperatures

Coastal flooding

Urban stormwater runoff

Livability

Pedestrian-oriented

Green spaces

Access to amenities

Thermal comfort

Flooding Scenario

Zone ID	Description	
AE	Flood risk	
X	No current flood risk	

Climate change

Waterflow Scenario

Low Impact Development (LID Practice)

Percentile Data (95th): 38.6 mm

Street Planters

Annual Average Rainfall : 41.92 (inches)

Annual Average Runoff: 23.34 (inches)

Max rainfall Retained:

1.58 (inches)

Cistern

Total Rainfall: 1577.89 M3

Urban Surface Typical Design

		Areas	Runoff
Roofs	Asphalt	68532 (40%)	74%
Open Space	Good Grass 75%	25392 (15%)	Infiltration
Impervious Paving	Curbs & Sewers	33721 (20%)	15%
	Road	40780 (25%)	Evaporation
Total		168425	11%

Total Runoff: 1167.64 M3

Urban LID Practical Design 1

		Areas	Runoff
Roofs	Asphalt	39754	56%
	Green roofs	28778 (17%)	Infiltration
Open Space	Good Grass 75%	25392 (15%)	31%
Impervious Paving	Road	18710	Evaporation
Permeable Pavement		22070 (13%)	13%

Total Runoff: 883.24 M3

Urban LID Practical Design 2

		Areas	Runoff
Roofs	Green roofs	68532 (40%)	30%
Open Space	Bioretension	25392 (15%)	Infiltration
Impervious Paving	Road	18710	38%
Permeable Pavement		55791 (23%)	Evaporation 15%

Total Runoff: 466.8 M3

Equivalent Residential Unit (ERU)

	LID 1		LID 2	
	Capital Cost	Maintenance	Capital Cost	Maintenance
Green roofs	\$ 750,600 - \$ 1,512,400	\$ 8,400 - \$ 84,300	\$ 1,761,700 - \$ 3,542,000	\$ 19,800 - \$ 198,300
Bioretension	\$ 24,400 - \$ 50,300	\$ 900 - \$ 21,500	\$ 58,900 - \$ 122,600	\$ 2,400 - \$ 57,400
Street Platers	\$ 145,600 - \$ 353,000	\$ 2,400 - \$ 56,400	\$ 145,600 - \$ 353,000	\$ 2,400 - \$ 56,400
Permeable Pavement			\$ 1,910,400 - \$ 2,547,800	\$ 22,800 - \$ 124,300
Total	\$ 920,600 - \$ 1,915,600	\$ 11,700 - \$ 162,200	\$ 3,842,100 - \$ 6,493,100	\$ 45,800 - \$ 400,600

ERU cost for Typical design : \$16,787 (143,033 m2)

Efficiency

Resiliency

Livability

Energy

Daylighting

Natural ventilation

Renewables

Extreme events

Coastal flooding

Urban stormwater runoff

Risk- based zoning

Pedestrian-oriented

Green spaces

Access to amenities

Thermal comfort

Street Design

	Residential	Retail	Office
Required Parking	800	450	160
On-street	1150	Garage	260

Outdoor Thermal Comfort

UTCI Universal Thermal Climate Index

3rd Place Analysis

Urban Exploration

Walk Score: 82

Integrated Design

Horizontal Surfaces - PV or GR?

Green Roofs

PV vs. GR

Initial Cost (\$)

Annual Savings (\$)

Environmental Benefits: Renewable energy Zero emissions

Initial Cost (\$)

Annual Savings (\$)

Environmental Benefits: Lowers cooling loads Mitigates urban heat island Captures carbon Captures fine particles

Stormwater retention + purification

Based on NREL (2014) and Blackhurst (2010)

PV vs. GR

PV vs. GR

PV vs. GR

PV vs. GR

Design Goals:

PV vs. GR

Design Goals:

Offset at least 20% of energy loads

PV vs. GR

Design Goals:

Offset at least 20% of energy loads

Select design that outperforms curve

PV vs. GR

Design Goals:

Offset at least 20% of energy loads

Select design that outperforms curve

PV vs. GR

PV vs. GR

PV vs. GR

~ 70% PV / 30% GR Offsets 20% of energy loads

Stores 3% of runoff from 3 hr storm

~ \$15.3 million cost / 1.4 million annual savings

PV vs. GR

~ 70% PV / 30% GR
Offsets 20% of energy loads
Stores 3% of runoff from 3 hr storm
~ \$15.3 million cost / 1.4 million annual savings

Financial Analysis

	Residential	Retail	Office	PV/GR	Total
Initial construction costs (m \$)	454.6	188.5	93	15.3	751.4
Annual Revenue (m \$)	78.8	81	29.7	1.4	190.9
Investment Yield	19.978%				

