Low-Carbon Climate Adaptation Strategies for Paris Center

4.433 | Urban Energy Modeling - Final Presentation

Ruoyu Lan, Sacha Moreau, Olivier Faber May 7th, 2020

Introduction

1 | Architectural Context2 | A Warming Climate

Introduction

1 | Architectural Context

2 | A Warming Climate

Haussmann City Blocks

1853 – 1870

City Fabric

CourtyardBuildingStreetCoolerNaturally VentilatedWarmer

Introduction

1 | Architectural Context

2 | A Warming Climate

Future Heatwaves in Paris | RCP4.5

Source: EURO-CORDEX ensemble

Future Heatwaves in Paris | RCP8.5

Source: EURO-CORDEX ensemble

A Warming Climate

Questions

How will the **future climate** in Paris affect the city's natural ventilation? What **passive resiliency strategies** could maintain thermal comfort, while **mitigating the energy demand**?

Future Climate Analysis

1 | Future Thermal Comfort2 | Temperature Increase Mitigation

Future Climate Analysis

1 | Future Thermal Comfort

2 | Temperature Increase Mitigation

Modeling Framework

Urban Climate Model

TEB-SURFEX

Heat and Water exchanges

+
Building characteristics
+
Land cover

Building Energy Model

ENERGY Plus

Heat and Mass balance

+
Air temperature (inside)
+
Building systems
+
AC energy use

Land-Use & Transport
NEDUM-2D

Urban Expansion
+
Transportation
+
Population

Modeling Framework

Urban Climate Model

TEB-SURFEX

Heat and Water exchanges

+
Building characteristics
+
Land cover

Building Energy Model ENERGY Plus

Heat and Mass balance

+
Air temperature (inside)
+
Building systems
+
AC energy use

Land-Use & Transport
NEDUM-2D

Urban Expansion
+
Transportation
+
Population

Modeling Framework

Urban Climate Model

TEB-SURFEX

Heat and Water exchanges

+
Building characteristics
+
Land cover

Building Energy Model ENERGY Plus

Heat and Mass balance

+
Air temperature (inside)

+
Building systems
+
AC energy use

Land-Use & Transport NEDUM-2D

Urban Expansion
+
Transportation
+
Population

Base Scenario

Strong AC Use (23°C)

Base Scenario

Strategies

Reflective Roof

Moderate AC Use (26°C)

Building Insulation

Green Roof

Street Vegetation

Outside Temperature

38°C

Conditions

2pm during heat wave Climate file: RCP4.5 Thermal condition: 2003 Heat wave

Variable

No AC use

Scenario OO: day-time Future Climate Simulations

Outside Temperature

41°C

Conditions

2pm during heat wave Climate file: RCP4.5 Thermal condition: 2003 Heat wave

Variable

Strong AC use: 23°C setpoint

Scenario O1: day-time Future Climate Simulations

Outside Temperature

29°C (center)

Conditions

2am during heat wave Climate file: RCP4.5 Thermal condition: 2003 Heat wave

Variable

Strong AC use: 23°C setpoint

Scenario O1: night-time Future Climate Simulations

Future Climate Analysis

1 | Future Thermal Comfort

2 | Temperature Increase Mitigation

DAYTIME TEMPERATURE

Average Temperature Decrease (RCP 4.5)
Future Climate Simulations

4.433 | Urban Energy Modeling - Final Presentation

SAVINGS

Daily Energy Savings (RCP 4.5)
Future Climate Simulations

MINUTES OF COMFORT

Thermal Comfort Hours (RCP 4.5)
Future Climate Simulations

Temperature Increase Mitigation Future Climate Simulations

Energy Savings and Comfort Hours (RCP 4.5) Future Climate Simulations

Conclusion

Building insulation Reflective roofs Moderate AC Use

Conclusion: Mixed Approach Future Climate Simulations

Low-Carbon Resiliency Strategy

Paris Protoblock +

Renovation Approach

1 | Baseline: Existing

2 | Strategy O1: Renovation

3 | Strategy O2: Sur-Elevation

Low-Carbon Resiliency Strategy

Paris Protoblock + Renovation Approach

1 | Baseline: Existing

2 | Strategy O1: Renovation

3 | Strategy O2: Sur-Elevation

View South

4.433 | Urban Energy Modeling - Final Presentation

Protoblock Section: Baseline

Low-Carbon Resiliency Strategy

Paris Protoblock +

Renovation Approach

1 | Baseline: Existing

2 | Strategy O1: Renovation

3 | Strategy O2: Sur-Elevation

+70% nuclear energy

Abundant Electricity

Abundant Electricity

Low Electricity Price
O.15€ / kW

+70% nuclear energy

Abundant Electricity

Low Electricity Price
O.15€ / kW

Germany

Closed Coal Plants

+70% nuclear energy

Abundant Electricity

Low Electricity Price 0.15€ / kW

Germany

Closed Coal Plants

Shortage Electricity

+70% nuclear energy

Abundant Electricity

Low Electricity Price 0.15€ / kW

Germany

Closed Coal Plants

Shortage Electricity

High Electricity Price 0.38€ / kW

Low Electricity Price
O.15€ / kW

Germany

Closed Coal Plants

Return on Investment on reducing the energy consumption at 0.38€ / kW:

Short & Attractive

High Electricity Price O.38€ / kW

Return on Investment on reducing the energy consumption at 0.15€ / kW:

+70% nuclear energy

Long & Unattractive

Low Electricity Price
O.15€ / kW

Germany

Return on Investment on reducing the energy consumption at 0.38€ / kW:

Closed Coal Plants

Short & Attractive

High Electricity Price O.38€ / kW

Expensive + Long Return on Investment

+ No Investment Costs

About Renovation & Energy Price

+ Long Return on Investment

+ No Investment Costs

Cheap + No Investment Costs

+ Real Estate Value

Architectural Quality

+ Comfort (beyond thermal)

About Renovation & Energy Price

Expensive

+ Long Return on Investment

Protoblock Section: Baseline

Protoblock Section: Renovated

Courtyard Window-to-Wall Ratio: 40%

Protoblock Section: Sur-Elevated

Courtyard Window-to-Wall Ratio: **40%**Additional Market-Rate Floors: **2**

Protoblock Section: Renovated

Courtyard Window-to-Wall Ratio: 40%

Protoblock Section: Sur-Elevated

Courtyard Window-to-Wall Ratio: **40%**Additional Market-Rate Floors: **2**

Protoblock Section: Baseline

Protoblock Section: Renovated

Protoblock Section: Sur-Elevated

Courtyard Window-to-Wall Ratio: 40%

Courtyard Window-to-Wall Ratio: 40% Additional Market-Rate Floors: 2

Cooling
A/C On
Increased Efficiency
100W/m2 limit Boiler Electric Boiler Equipment Limited Usage Lights LED Bulbs Heating Roof Baseline Groundfloor Glass Windows Surelevation Electric Heating Increased Efficiency Increased Insulation Increased Insulation Low Embodied-E WWR increase from: 2 Additional Floors Minimal Insulation Double Glazing Continuous Dimming Energy Star Efficiency 25% to 40% Single Glazing Conscious Behaviour (High Efficiency Build) Increased Albedo Argon Fill **Baseline** → Renovation → Sur-Elevation

EUI evolution & CO2 emissions

EUI evolution & CO2 emissions

EUI evolution & CO2 emissions

Low-Carbon Resiliency Strategy

Paris Protoblock + Renovation Approach

1 | Baseline: Existing

2 | Strategy O1: Renovation

3 | Strategy O2: Sur-Elevation

Protoblock Section: Baseline

Courtyard Window-to-Wall Ratio: 25%

Protoblock Section: Baseline

Courtyard Window-to-Wall Ratio: 25%

Street Wall Composition

Ornementation (protected) 60cm Load-Bearing Stone Double Glazing

Courtyard Wall Composition

30cm Load Bearing Brick Single Glazing Protoblock Section: Baseline

Courtyard Window-to-Wall Ratio: 25%

Street Wall Composition

Ornementation (protected) 60cm Load-Bearing Stone Double Glazing

Protoblock Section: Baseline

Low-Carbon Resiliency Strategy

Paris Protoblock + Renovation Approach

1 | Baseline: Existing

2 | Strategy O1: Renovation

Protoblock Section: Renovated

Courtyard Window-to-Wall Ratio: 40%

Strategy O1: Renovation

Protoblock Section: Renovated

Courtyard Window-to-Wall Ratio: 40%

Street Wall Composition

Ornementation (protected) 60cm Load-Bearing Stone Double Glazing

Strategy O1: Renovation

Courtyard Wall Composition

30cm Load Bearing Brick
20cm Natural Isolant
Double Glazing

Protoblock Section: Renovated

Courtyard Window-to-Wall Ratio: 40%

Street Wall Composition

Ornementation (protected) 60cm Load-Bearing Stone Double Glazing

Stratagy O1: Renovation

Protoblock Section: Renovated

Walls
Increased Insulation
Low Embodied-E
Design

Groundfloor Increased Insulation Roof Increased Insulation Increased Albedo Glass Double Glazing Argon Fill **Lights**LED Bulbs
Continuous Dimming

Heating
Electric Heating
Increased Efficiency
100W/m2 limit

Cooling
A/C On
Increased Efficiency
100W/m2 limit

Boiler Electric Boiler Energy Star Efficiency

Windows WWR increase from: 25% to 40% Equipment
Limited Usage
Conscious Behaviour

Stratagy O1: Renovation

4.433 | Urban Energy Modeling - Final Presentation Olivier Faber, Ruoyu Lan, Sacha Moreau

Low-Carbon Resiliency Strategy

Paris Protoblock + Renovation Approach

1 | Baseline: Existing

2 | Strategy O1: Renovation

Protoblock Section: Sur-Elevated

Courtyard Window-to-Wall Ratio: **40%**Additional Market-Rate Floors: **2**

Protoblock Section: Sur-Elevated

Courtyard Window-to-Wall Ratio: **40%**Additional Market-Rate Floors: **2**

Street Wall Composition

30cm Stone 25cm Natural Insulation Triple Glazing

Courtyard Wall Composition

30cm Stone 25cm Natural Insulation Triple Glazing Protoblock Section: Sur-Elevated

Courtyard Window-to-Wall Ratio: **40%**Additional Market-Rate Floors: **2**

Street Wall Composition

30cm Stone 25cm Natural Insulation Triple Glazing

Protoblock Section: Sur-Elevated

EUI evolution & CO2 emissions

EUI evolution & CO2 emissions

EUI evolution & CO2 emissions

Baseline

sDA: **4.2%** aV LUX IvI: **107 Ix**

Renovation

sDA: **5.4%** aV LUX IvI: **125 Ix**

Sur-Elevation

sDA: **5.0%** aV LUX IvI: 115 Ix

Baseline

Renovation

Sur-Elevation

EUI: **333 kW/m2**

EUI: **101 kW/m2**

EUI: **99 kW/m2**

IMPACT OF BUILDING CHANGES ON GRID ENERGY COSTS AND CO2 EMISSIONS

Energy Cost & CO2 emissions