

Today's Climate

Average hourly temperature

Wind rose

Design for the Future

Can we design a **low carbon** community with **resilient energy** supply and human-powered **mobility**?

Building Energy
EUI [kWh/m²/year]
kgCO₂/m²

Can we design a low carbon community with

resilient energy supply and human-powered mobility?

Building Energy
EUI [kWh/m²/year]
kgCO₂/m²

Can we design a low carbon community with

resilient energy supply and human-powered mobility?

Urban grid layout% of yearthermally comfortable

Building Energy
EUI [kWh/m²/year]
kgCO₂/m²

Can we design a low carbon community with

resilient energy supply and human-powered mobility?

On-site PV
% demand met
during a heat wave

Urban grid layout% of yearthermally comfortable

1. Building Energy

2. Urban Layout + Mobility

3. Grid-independence

1. Building Energy

2. Urban Layout + Mobility

3. Grid-independence

EUI kWh/m²/year

kgCO2/m2

% demand met by PV during

heat wave

Baseline Scenario

High-Density San Francisco Neighborhood

70% Residential 30% Commercial

EUI kWh/m²/year

kgCO2/m2

% demand met by PV during heat wave

Baseline Scenario

High-Density San Francisco Neighborhood

70% Residential 30% Commercial

82EUI
kWh/m²/year

18.4 kgCO2/m2

% demand met by PV during heat wave

2. Urban Layout + Mobility

3. Grid-independence

82EUI
kWh/m²/year

18.4 kgCO2/m2

% demand met by PV during

_

heat wave

1. Building Energy

Building Massing

High performance upgrades

82EUI
kWh/m²/year

18.4 kgCO2/m2

% demand met by PV during heat wave

Building Energy | Massing Design

Parametric Analysis

- Window Wall Ratio
- Depth
- Orientation

Protoblocks

Building Energy

Baseline vs.

High Performance

82 EUI kWh/m²/v

kWh/m²/year

18.4

kgCO2/m2

% demand met by PV during heat wave

of year
Thermally
Comfortable

61 EUI kWh/m²/year

14.35 kgCO2/m2

% demand met by PV during heat wave

Building Energy

82 **EUI** kWh/m²/year

kWh/m²/year

14.35

kgCO2/m2

Baseline vs.

High Performance

Insulation

Cooling System Efficiency

Natural Ventilation

18,4

kgCO2/m2

% demand met by PV during heat wave

> of year **Thermally** Comfortable

% demand met by PV during heat wave

Building Energy: Baseline Vs High Performance

61 EUI kWh/m²/year

14.35 kgCO2/m2

% demand met by PV during heat wave

1. Building Energy

2. Urban Layout + Mobility

3. Grid-independence

61 EUI kWh/m²/year

14.35 kgCO2/m2

% demand met by PV during

of year
Thermally
Comfortable

heat wave

Protoblock Variations

Commercial Space indicated in Red

Label this

Mobility

Walk Score of 94: High due to small site area

 $R = 400 \text{ m} \sim 5 \text{ minute Walk}$

Enabling Mobility through Outdoor Comfort

Targeted UTCI Analysis

Plan

UTCI distribution today May 7 at 9am

61EUI
kWh/m²/year

14.35 kgCO2/m2

% demand met by PV during heat wave

61EUI
kWh/m²/year

14.35 kgCO2/m2

% demand met by PV during heat wave

Architectural Intervention

Pathway is comfortable at 9am for 70% of year with shading, a 54 day increase! 365 Day Evaluation 100

Plan with sun and wind shaded pathway

Ferry terminal

Annual comfortable hours [%]

Ferry terminal

61EUI
kWh/m²/year

14.35 kgCO2/m2

% demand met by PV during heat wave

70%
of year
Thermally
Comfortable

1. Building Energy Demand

2. Urban Grid Layout

3. Grid-independence

61EUI
kWh/m²/year

14.35 kgCO2/m2

% demand met by PV during heat wave

70% of year Thermally Comfortable

Heat Waves | CA July, 2006

Heat Waves | CA July, 2006

... continues to total 7 days

Heat Waves | Safe Indoor Temperatures

Heat Waves | Safe Indoor Temperatures

Heat Waves | Safe Indoor Temperatures

Heat Waves | Achieving Grid Independence

On-site Electricity Supply | Rooftop PV + Batteries

On-site Electricity Supply | Rooftop PV + Batteries

Load Reduction + Low Discomfort Hours

Load Reduction + Low Discomfort Hours

Discomfort : 1%

% of energy : 30 % vs. 19 % demand

Load Reduction + Low Discomfort Hours

Day-cooling only
Thermal Mass
Nighttime Natural
Ventilation

energy demand met:

energy demand met:

- 20% of most energy intensive commercial space

Reduced lighting and equipment loads 50%

energy demand met:

- 20% of most energy intensive commercial space

Reduced lighting and equipment loads 50%

energy demand met:

63 %

PV Effects of Annual Energy Supply

Upgrades to Energy Supply

Business As Usual

Net Zero + 7 days of battery storage

	Business as Usual	Net Zero	
tCO2eq	5,839	1,932	
tCO2eq / ppl	0.40	0.13	-67%
kgCO2eq / m2	14.35	4.75	

61EUI
kWh/m²/year

4.75 kgCO2/m2

116

% demand met by PV during heat wave

70% of year Thermally Comfortable

Upgrades to Energy Supply

[Placeholder: visual for existing scenario vs. upgrades to all electric grid]

Energy Model Templates [rcp 8.5]

		Residential - Base	Commercial - Base	Residential - HP	Commercial - HP
Internal Loads	Equipment Power Density (w/m2)	5.38	10.76	5.38	8.608
	Lighting Power Density (W/m2)	5.38	10.76	5.38	8.608
	Illuminance target [lux]	500	500	300	300
	Dimming type (on/off)	off	off	continuous	continuous
110010	Cooling COP	3.66	3.66	5	5
Cooling + Ventilation	Natural Ventilation	off	off	on	on
	Nat. Vent. Setpoint (C)			23	23
Co	Nat. Vent. min outdoor air temp (C)	<u>82</u>		21.1	21
	Mech. Vent. Heat Recovery			sensible	sensible
lon	Infiltration (ACH)	0.42	0.1	0.2	0.1
Construction	Roof R-Value (IP)	R-15	R-15	R-40	R-40
	Facade R-Value (IP)	R-10	R-10	R-30	R-30
	Window Type	single pane	single pane	double pane Low E2	double pane Low E2
	EUI (kWh/m2/year)	177	155	103	92

Present Climate Energy Demand Comparison

Costs

Business As Usual

Net Zero + 7 days of battery storage

Preliminary District Energy Results

Business As Usual

Net Zero + 7 days of battery storage

Building Primitive Assumptions

room height 3m

workplane offset 0.6m

sensor spacing 0.76m

Occupancy 8am - 6pm with DST

floor material Floor LM83

room material Wall LM83

window material Double IGU Clear Tvis 39%

Building Primitive Orientation

Building Primitive WWR

sDA (%) vs. Window-to-Wall Ratio

Building Primitive Building Depth

Street Grid

Pathway is comfortable at 9am for 55% of year without shading

Pathway is comfortable at 9am for 51% of year

Modification 1: Redistributing park space

Screenshot 4

Insert nice screenshot of variant 3 with split park

Percent of comfort hours at 9am for the whole year

Pathway is comfortable at 9am for 70% of year with shading => 54 days increase!

Baseline Scenario

Category	Factor	Notes
Heating	0.1888 [1,2]	60% natural gas, 20% electricity, 20% other (assume oil)
DHW	0.1888 [1,2]	assume same as heating
Cooling	0.202 [2]	assume all electric
Lighting	0.202 [2]	all electric
Equipment	0.202 [2]	all electric

Building Energy: Baseline Vs High Performance

Intermittent-cooling + Thermal Mass + Nighttime Natural Ventilation

Discomfort : 0%

% of PV Supply : 156%

Cooling Load Reduction

Discomfort Hours : 48%

PV Area: 0

Building Energy
EUI [kWh/m²/year]
kgCO₂/m²

Can we design a low carbon community with

resilient energy supply and human-powered mobility?

On-site PV number of grid independent days during a heat wave

Urban grid layout% of yearthermally comfortable

- 20% of most energy intensive commercial space

energy demand met:

43 %

Intermittent-cooling + Thermal Mass + Nighttime Natural Ventilation

Discomfort : 32%

% of PV Supply : 240%