Research: Active-Adaptive Control
|
A tool for convexification
Algorithms that have been developed for adaptation in nonlinearly
parametrized systems are significantly simpler in the case of concave/convex
parametrizations than for general ones since stability and convergence
properties are facilitated considerably by the curvature of the
parametrizations. The questions that arises as a result of such a
property are, when do general nonlinear parametrizations possess a
concave/convex property, and if it is possible to convexify the nonlinearity
through a reparametrization into a system with concave/convex parametrization. A careful delineation of such functions is currently underway. This
project is a collaborative project with Sup-elec in Paris, France. Collaborators: Romeo Ortega, Mariana Netto.
|
Publications:
M.S. Netto, A.M. Annaswamy, P. Moya, and R. Ortega, "Adaptive control of a class of nonlinearly parametrized
systems using convexification", International Journal of Control, vol. 73, pp. 1312-1321, 2000.
|
|