
IAP 2006 Introduction to MATLAB | http://web.mit.edu/violeta/www/IAP2006

EXERCISES

Introduction to MATLAB: Programming

I. Class Materials
1. Download Programming.tar OR Programming.zip

From a web browser:
Download the file Programming.tar or Programming.zip from
http://web.mit.edu/acmath/matlab/IntroMATLAB to a local directory.
On Windows, if you do not have WinZip, download Programming.zip.

Alternatively, on Athena:
athena% add acmath
athena% cp /mit/acmath/matlab/IntroMATLAB/Programming.tar .

2. Extract this session’s sub-directories and files

On Athena (or the UNIX shell on Mac OS X):
tar –xvf Programming.tar

On laptops:
Use your computer’s utilities, such as double click or WinZip on Windows or StuffIt on Mac.
Without WinZip on Windows, double click on Programming.zip and select File->Extract All.
Your local work directory should now contain the following directories and files:

Programming

Exercise_One
cubicfitplot.m modelfitplot.m

Exercise_Two
loadmesh.m grid_x.dat
loadpoints.m grid_y.dat
plotdata.m interp_spline_x.dat
plotscript.m XYZ_point_coordinates.txt
plotprogram.m

Exercise_Three
veloctiyprogram.m orbitalvelocity.m
velocityscript.m

You may place and rename directories and files any way you wish. For consistency, we shall
refer to the directory Programming as the work directory for these exercises.

 1

IAP 2006 Introduction to MATLAB | http://web.mit.edu/violeta/www/IAP2006

II. Start MATLAB
On Athena:
athena% cd Programming
athena% add matlab
athena% matlab &
>> desktop

On laptops:
Launch MATLAB and navigate to the work directory Programming.

III. Exercise 1: Model Fit to Data Points
Purpose
To practice the following in MATLAB:

• Writing and understanding for loops.
• Using functions such as length, size and zeros to pre-define vectors and matrices.

Background
We shall use the same data that we worked with in Example Two of Session 2: Linear Algebra
and Calculus and in Examples Two and Three in Session 3: Graphics. The difference is that here
we shall also fit our own model to the data points, instead of using only built-in functions.

1. Open modelfitplot.m and cubicfitplot.m in the MATLAB Editor
>> cd Exercise_One
>> edit cubicfitplot.m
>> edit modelfitplot.m

2. Read and understand modelfitplot.m and cubicfitplot.m
• Both files are script M-Files that are meant to run as programs. Read all lines and try to

understand them, before running the programs form the Command Window.
• Note the use of built-in function length to find the number of elements in a vector:

 N = length(x)
• Note the use of function zeros to create a vector of a certain size in modelfitplot.m:

 y = zeros(1, N)
• Note the use of a for statement to perform commands repetitively over an interval; for

example, in file modelfitplot.m:
 for i = 1 : N
 y(i) = 60 – 30 * cos(pi/3 + x(i)*pi/6);
 end
 The program goes through a for loop to calculate y(i) for every x(i), using a non-linear
 equation. Try this with your own model (i.e. with your own equation).

 2

IAP 2006 Introduction to MATLAB | http://web.mit.edu/violeta/www/IAP2006

3. Execute the M-files in the Command Window
Run the two programs from the Command Window and see the output.

>> cubicfitplot
>> modelfitplot

IV. Exercise 2: Function M-Files and Script M-Files
Purpose
To practice the following in MATLAB:

• Creating new functions in function M-Files.
• Writing script M-files and function M-Files to create MATLAB programs.
• Using built-in functions and variables such as uigetfile and nargin for program input.
• Writing if statements for program flow control and using relational operators.
• Working with local variables in functions and scripts.

Background
We used the same data in Example Three of Session 1: Interface and Basics and Example One in
Session 3: Graphics. Here we define and use in a program three new functions: loadpoints, to
import coordinates of a point set; loadmesh, to import coordinates of a surface; and plotdata, to
plot a set of points and a surface on an annotated figure with customized appearance.

1. Open all M-files in the Exercise_Two directory in the MATLAB Editor
>> cd Exercise_Two
>> edit loadmesh.m
>> edit loadpoints.m
>> edit plotdata.m
>> edit plotscript.m
>> edit plotprogram.m

2. Read and understand all M-Files
• These files are part of two programs: plotscript and plotprogram. Read and understand

all lines in the files, before running the programs from the Command Window.
• plotscript.m and plotprogram.m are script M-files.
• loadmesh.m, loadpoints.m, and plotdata.m are function M-files. They define three

new functions: loadmesh, loadpoints, and plotdata, respectively.
• Note the format of a function M-file; for example, plotdata.m:

o The first line is the function’s definition, including arguments the function takes
(xdata, ydata, zdata, X, Y, Z for function plotdata) and returns (none here):

 function plotdata(xdata, ydata, zdata, X, Y, Z)
o The first commented line is the H1 Line (one line description of the function):

 % PLOTDATA creates a customized plot from surface and point data.
o The first paragraph of comments is the Help paragraph for the function. Type

the following in the Command Window and see what happens:
 >> help plotdata

o The rest is the function’s body, including command lines and comments.

 3

IAP 2006 Introduction to MATLAB | http://web.mit.edu/violeta/www/IAP2006

• Note the use of built-in functions disp and error to display output in the Command
Window when a function is executed; for example, in loadmesh.m:

 disp(‘Loading mesh data …’)
 error(‘Number of arguments should be 3.’)

• Note the use of built-in function uigetfile, for example in loadpoints.m:
 [filename, pathname] = uigetfile({ '*.txt', 'Get Text Files' } , 'Pick a file');
 At runtime, this will open a browser for file selection. What are the input arguments of
 uigetfile? (A cell array and a string.) What output arguments does uigetfile return?

• Note the use of built-in variable nargin to check the number of input arguments passed to
a function; for example, in loadpoints.m:

 if nargin == 1
• In the statement above, note the use of relational operator == (meaning “equal to”).
• Note the construction of a simple if, else statement, for example, in loadmesh.m:

 if nargin == 3
 commands for loading three files if nargin is equal to 3
 else
 command for error if nargin is not 3
 end

• What is the difference between the script M-files plotscript.m and plotprogram.m?
plotscript.m includes an entire program and uses only built-in MATLAB functions.
plotprogram.m also uses the three new functions defined in three function M-Files:

 [X, Y, Z] = loadpoints ('XYZ_point_coordinates.txt');
 plotdata(x, y, z, X, Y, Z)

• Note that in a script M-file all arguments passed to functions are specific and already
exist; for example, in plotscript.m:

 data = load('XYZ_point_coordinates.txt');
 and in plotprogram.m:
 [X, Y, Z] = loadpoints ('XYZ_point_coordinates.txt');

• Now note that a function can take any arguments before specific variables for them are
created; for example, in loadpoints.m, filename can be any file name:

 function [X, Y, Z] = loadpoints(filename)
• Note that local variables in function M-Files “live” only while the functions are being

executed, and do not interfere with the same variable names being used in script M-files.
For example, see X, Y, and Z in loadpoints.m and in plotscript.m and plotprogram.m.

• A local variable used in a script M-File, on the other hand, is shared with other script
M-Files and the base workspace. This means that if you run plotscript.m, and change the
values of X, Y, and Z, plotprogram.m will also know the new values of X, Y, and Z.

• Note that once a function is defined in a function M-File, this function can be called with
different arguments form a script M-File. For example, in plotprogram.m:

 plotdata(x, y, z, X, Y, Z);
 plotdata(x1, y1, z1, X, Y, Z);

3. Execute M-files from the Command Window
• Use functions defined in function M-Files in the Command Window. For example:

>> loadmesh(‘grid_x.dat’, grid_y.dat’, ‘interp_spline_z.dat’)

 4

IAP 2006 Introduction to MATLAB | http://web.mit.edu/violeta/www/IAP2006

• Run the two programs plotscript and plotprogram, and explain what happens in terms of
specific command lines in the script M-Files and in the function M-Files:

 >> plotscript
 >> plotprogram

V. Exercise 3: Orbital Velocity – An Interactive Program
Purpose
To practice the following in MATLAB:

• Creating new functions in function M-Files.
• Writing an interactive MATLAB program using script and function M-Files.
• Using functions such as input for program input from the Command Window.
• Writing if and switch statements for program flow control.
• Using relational (e.g. <=) and logical (e.g. ||) operators in a program.
• Working with strings and string-specific functions such as strcmp.

Background
This example, which we also used in Exercise Two in Session 1: Interface and Basics, is based
on NASA’s education site: http://exploration.grc.nasa.gov/education/rocket/rktrflght.html. You
can read more theoretical background in the handout for Session 1 or on the above web site.

1. Open all M-files in the Exercise_Three directory in the MATLAB Editor
>> cd Exeircise_Three
>> edit orbitalvelocity.m
>> edit velocityscript.m
>> edit velocityprogram.m

2. Read and understand all M-Files
• These files are part of two programs: velocityscript and velocityprogram. Read and

understand all files, before running the programs from the Command Window.
• velocityscript.m is the same script M-File that we used in Exercise Two in Session 1:

Interface and Basics to compute orbital velocities in matrix form.
• velocityprogram.m is a script M-File, which is an interactive program, i.e. a program

that allows users to enter input in the Command Window at runtime.
• orbitalvelocity.m is a function M-file, which defines a new function: orbitalvelocity.
• In function M-file orbitalvelocity.m identify the function’s definition, H1 Line, and

Help paragraph. What happens if you type in the Command Window the command:
 >> help orbitalvelocity
• Note the use of the built-in function input, which allows users to enter numerical or string

input in the Command Window at runtime; for example, in velocityprogram.m:
 Re = (‘Enter the mean radius of the planet: ’);
 units = (‘What units? E for English or M for metric: ’, ‘s’);

• Note the use of relational operators such as < (meaning “less than”) and logical
operators such as || (meaning OR); for example, in orbitalvelocity.m:

 if nargin < 3 || nargin > 4

 5

IAP 2006 Introduction to MATLAB | http://web.mit.edu/violeta/www/IAP2006

• Note the construction of if, elseif, else statements, for example, in orbitalvelocity.m:
 if nargin < 3 || nargin > 4
 commands to execute if nargin is smaller than 3 or higher than 4
 elseif nargin == 3
 commands to execute if nargin is equal to 3
 else
 commands to execute if nargin is anything else
 end

• Note the construction of switch, case statements, for example, in orbitalvelocity.m:
 switch units
 case {‘m’, ‘metric’}
 commands to execute if the variable units is either ‘m’ or ‘metric’
 case {‘e’, ‘english’}
 commands to execute if the variable units is either ‘e’ or ‘english’
 otherwise
 commands to execute if units is anything else
 end

• Note the use of built-in functions for strings; for example, in velocityprogram.m:
 if strcmp(units, 'm')
 compares two strings – units and ‘m’ – and returns a logical true or false. Also:
 units = lower(units)
 turns all characters of units into lower-case characters. And in orbitalvelocity.m:
 strV = num2str(V)
 converts the numeric value of V into a string.

• What is the difference between the script M-files plotscript.m and plotprogram.m?
plotscript.m includes an entire program, which only uses built-in MATLAB functions.
plotprogram.m also uses a new function defined in orbitalvelocity.m.

 Note how much shorter a program is when put in matrix form!
• Note that in a script M-file all commands must be explicit, i.e. all arguments passed to

functions are specific and already exist; for example, in velocityprogram.m:
 V = orbitalvelocity(Re, g0, altitude, units)

• Now note that the arguments R, G, H, and units of orbitalvelocity can take any values:
 function V = orbitalvelocity(R, G, H, units)

• Write MATLAB code to add a third planet as an option for selection in the interactive
program velocityprogram. Which file(s) do you need to modify?

3. Execute M-file velocityprogram.m in the Command Window
• Run program velocityprogram and explain what happens in terms of specific command

lines in M-Files velocityprogram.m and orbitalvelocity.m.
 >> velocityprogram

• Use the new function orbitalvelocity from the Command Window; for example:
 >> orbitalvelocity(1079, 5.3, 200, ‘e’)

VI. Demos
Demos of MATLAB programs written at MIT will be presented in this and next sessions.

 6

