MATLAB Tutorials

16.01 & 16.02 Unified Engineering - Fall 2006

Violeta Ivanova, Ph.D. Educational Technology Consultant MIT Academic Computing

violeta@mit.edu http://web.mit.edu/violeta/www

What is MATLAB?

- Computational Software
 From The MathWorks: www.mathworks.com
- MATrix LABoratory
- Algorithm Development Environment
 ... with built-in capabilities of a high-level programming and scripting language

This Tutorial

- Class materials web.mit.edu/acmath/matlab/unified/
- Topics
 - Interface & Basics
 - Matrix Mathematics
 - Programming

Other References

- Mathematical Tools at MIT web.mit.edu/ist/topics/math
 - MATLAB Mastery I (beginners' tutorial)
 - Introduction to MATLAB (IAP series)
- Other Course 16 MATLAB Tutorials web.mit.edu/acmath/matlab/course16/

MATLAB @ MIT

- On Athena
 - 250 floating licenses (free)
- For student-owned computers
 - 300 floating licenses (free) http://matlab.mit.edu

MATLAB Interface & Basics

Desktop Interface Variables, Vectors, Matrices Built-In Functions

Starting MATLAB

On Athena

athena% add matlab

athena% matlab &

>> desktop

On laptops

Desktop interface starts by default.

MATLAB Desktop Interface

You must be running MATLAB now ...

- Default desktop
 - Command Window
 - Current Directory Window
 - Command History Window
 - Menu Toolbar

MATLAB Help Browser

- MATLAB
 - + Getting Started
 - + Desktop Tools and Development Environment
 - + Mathematics
 - + Matrices and Linear Algebra
 - + Data Analysis
 - + Programming
 - + Data Types
 - + M-File Programming
 - + Graphics
- Other Toolboxes

Variables

- Begin with an alphabetic character: a
- Case sensitive: a, A
- No data typing: a=5; a=`ok'; a=1.3
- Default output variable: ans
- Built-in constants: pi i j Inf
- clear removes variables
- who lists variables
- Special characters
 [] () {}; % :=

Q

Vectors

Row vector

 $>> R1 = [1 \ 6 \ 3 \ 8 \ 5]$

>> R2 =
$$[1 : 5]$$

Column vector

Matrices

- Creating a matrix
 >> A = [1 2.5 5 0; 1 1.3 pi 4]
 >> A = [R1; R2]
- Accessing elements
 - >> A(1,1)
 - >> A(1:2, 2:4)
 - >> A(:,2)

Polynomials

Evaluating polynomials $y = p_1 x^n + p_2 x^{n-1} \dots + p_n x + p_{n+1}$ >> **p** = [p1 p2 ...] >> t = [-3 : 0.1 : 3]>> z = polyval(p, t)Integrating polynomials >> **P** = polyint[p] >> area = polyval(**P**, **a**) - polyval(**P**, **b**)

Curve Fitting

- Fit a polynomial through points (x_i, y_i)
 - >> **X** = [x1 x2 ... xn];
 - >> **Y** = [y1 y2 ... yn];
- Built-in function polyfit
 - >> C1 = **polyfit**(X, Y, 1);
 - >> C2 = polyfit(X, Y, 2);
 - >> Cm = polyfit(X, Y, m);

Graphics

- Line styles: -- -. :

Multiple Graphs on One Plot

Built-in function hold
>> g1 = plot(X, Y, 'ro')
>> hold on
>> g2 = plot(x, y1, 'b-')
>> hold on
>> g2 = plot(x, y2, 'g--')
>> hold off

Subplots on One Figure

Built-in function subplot

- >> s1 = **subplot**(1, 3, 1)
- >> g1 = **plot**(**x**, **y1**)
- >> s2 = **subplot**(1, 3, 2)
- >> g2 = plot(x, y2)
- >> s3 = **subplot**(1, 3, 3)
- >> g3 = plot(x, ym)

Customizing Graphs

- Annotating graphs
 - >> **plot** (X, Y, 'ro')
 - >> legend ('Points')
 - >> title ('Coordinates')
 - >> **xlabel** ('X')
 - >> **ylabel** ('Y')
- Plot Edit mode: icon k in Figure editor
- Property Editor: View->Property Editor
- Saving figures: File->Save As

MATLAB Matrix Mathematics

Built-In Functions Matrix Operations Linear Equations

Linear Algebra Functions

Matrices & vectors >> [n, m] = **size**(A) >> n = length(X)>> **det**(A) >> M1 = **ones**(n, m) >> M0 = zeros(n, m)>> En = **eye**(n) >> N1 = **diag**(En) >> [evecs, evals] = **eig**(A) >> rank (A); trace (A)

Matrix Operations

Operators + and ->> $X = [x_1 x_2 x_3];$ >> $Y = [y_1 \ y_2 \ y_3];$ >> A = X + YA = $x_1 + y_1 = x_2 + y_2 = x_3 + y_3$ Operators *, /, and ^ $>> Ainv = A^{-1}$ Matrix math is default!

Element-Wise Operations

• Operators .*, ./, and .^ >> $Z = [z_1 \ z_2 \ z_3]'$ >> $B = [Z.^2 \ Z \ Z.^0]$ $B = z_1^2 \ z_1 \ 1 z_2^2 \ z_2 \ 1 z_3^2 \ z_3 \ 1$

Solving Linear Equations

- Example:
 - Find the quadratic that passes through three points (x_1,y_1) , (x_2,y_2) , and (x_3,y_3) , i.e. find (c_1, c_2, c_3) such that:

$$y_1 = c_1 x_1^2 + c_2 x_1 + c_3$$
$$y_2 = c_1 x_2^2 + c_2 x_2 + c_3$$
$$y_3 = c_1 x_3^2 + c_2 x_3 + c_3$$

Solving Linear Equations (continued)

- Matrix form: Y = AC
- Solution:
 - Define matrix A

>> A = [X.^2 X ones(3,1)];

Solve matrix equation

>> C = A **** Y

Matrix Math Exercise

Exercise 1: MatrixMath.m

- Matrices and vectors
- Element-wise and matrix operations
- Systems of linear equations
- Eigenvalues and eigenvectors
- Polynomials
- Curve fitting
- 2D plotting

Follow instructions in exercise handout ...

MATLAB Programming

Data Types & Operators Program Control Statements Script & Function M-Files

Data Types

Numeric

>> x = 5; y = 5.34; z = 0.23e+3

- Default: double-precision floating point
- Can be converted to integers, etc.
- Numeric manipulation

>> y = 5.3456;

>> x = round(y);

>> format long

Complex numbers

>> x = 5 + 6**i**

l'liī

Data Types (continued)

- Characters and strings
 - >> a = '5'
 - >> b = 'Hello'
 - String conversions

>> x = 5; a = num2str(x)

>> a = '5'; x = **str2num**(a)

• String manipulations

>> **isempty**(b)

>> strcmp(b, 'hi there')

>> abc = **lower**('ABC')

Data Types (continued)

- Keywords

 if, switch, for, end, global, for, ...
 DO NOT USE AS VARIABLE NAMES!

 Special variables

 nargin, pi, i, j, ...

 Structures

 person.name = 'Jane'; person.age = 20

 Cell Arrays
 - person = { 'Jane' 'female'; 20 1996}

Operators

Arithmetic: x+y; A*B; X.*Y; etc.

Logical

- Element-wise AND: a & b
- Element-wise OR: a | b
- "Short cuts": || and &&
- Relational

a == 5; a >= b; b ~= 6;

Operator precedence
 () { } [] -> Arithmetic -> Relational -> Logical

M-File Programming

Script M-Files

- Automate a series of steps.
- Share workspace with other scripts and the command line interface.

Function M-Files

- Extend the MATLAB language.
- Can accept input arguments and return output arguments.
- Store variables in internal workspace.

A MATLAB Program

- Always has one script M-File
- Uses built-in functions as well as new functions defined in function M-files
- Created in MATLAB Editor / Debugger
 - >> edit program.m
 - Debugging mode

Function M-Files

Example: orbitalvelocity.m

function V = orbitalvelocity(R, g, H)

% H1 line: ORBITALVELOCITY computes V.

- % Help text: this text appears when
- % you type "help orbitalvelocity".

% Comment: function body is below

 $V = sqrt(g * R^2 / (R + H);$

return

Variable Types

- Local (default)
 - Every function has its own local variables.
 - Scripts share local variables with functions they call and with the base workspace.
- Global

global speedoflight windspeed

- Functions, scripts, and the base workspace share global variables.
- Persistent

persistent R, C

Can be declared and used only in functions.

Information Services and Technology

Program Flow Control: for

x = [1 : 0.01 : 10]; a = 60; b = 30; N = length(x); y = zeros(1, N); for n = 1 : N y(n) = a - b*cos(pi/3 + x(n)*pi/6) end P = plot (x, y, 'ro')

Program Flow Control: if

g = input('Enter g: ');

end

Program Flow Control: switch

switch units
 case `metric'
 R = 6376; g = 9.814;
 case `English'
 R = 3963; g = 32.2;
 otherwise
 error(`Unknown units.')
end

Command Window I/O

Get input from Command Window
 num = input('What altitude: ')
 str = input('Which planet: ', 's')
 Display output in Command Window

```
o Strings
disp('Velocity is 500.')
error('Unknown units.')
```

• If there are numbers to display:

```
message = ['Velocity is: ' str2num(V)]
disp(message)
```

Information Services and Technology

File Input / Output

- Import Wizard for data import File->Import Data ...
- File input with load
 - B = load('datain.txt')
- File output with save save('dataout', 'A', '-ascii')

Programming Exercise

- Exercise 2: velocityprogram.m
 - User defined functions: orbitalvelocity.m
 - Funciton and script M-Files
 - Program flow control: if and switch statements
 - Control Window input and output
- Follow instructions in exercise handout ...

Resources

- web.mit.edu/ist/topics/math
- web.mit.edu/acmath/matlab/unified
- web.mit.edu/acmath/matlab/course16

Questions?

