

## A Provably Convergent Multifidelity Optimization Algorithm not Requiring High-Fidelity Derivatives

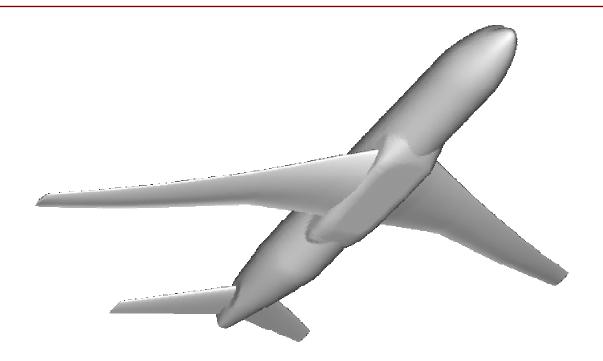
Multidisciplinary Design Optimization Specialist Conference April 14, 2010

**Andrew March & Karen Willcox** 



#### Motivation





- BCFD viscous solution: 2920<sup>1</sup> CPU hours
  - Pre/post-processing time not included
- Can this configuration be optimized?

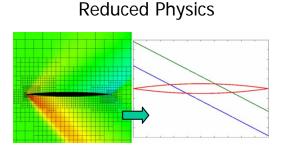


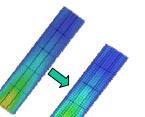
# Multifidelity Surrogates



- Definition: High-Fidelity
  - The best model of reality that is available and affordable, the analysis that is used to validate the design.
- Definition: Low(er)-Fidelity
  - A method with unknown accuracy that estimates metrics of interest but requires lesser resources than the high-fidelity analysis.

Hierarchical Models

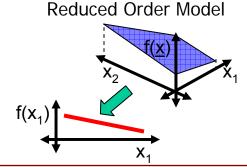


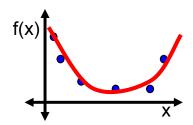


Coarsened Mesh

**Regression Model** 

Approximation Models







# Main Messages



- Bayesian model calibration offers an efficient framework for multifidelity optimization.
- Can reduce the number of high-fidelity function evaluations compared to other multifidelity methods.
- Does not require high-fidelity gradient estimates.
- Provides a flexible and robust alternative to nesting when there are multiple low-fidelity models.



#### **Motivation-Calibration Methods**



- First-order trust-region methods:
  - Efficient for multifidelity optimization when derivatives are available or can be approximated efficiently
  - Calibrated surrogate models are only used for one iteration
- Pattern-search methods:
  - High-fidelity information can be reused
  - Can be slow to converge
- Bayesian calibration methods (e.g., Efficient Global Optimization)
  - Reuse high-fidelity information from iteration to iteration
  - Can be quite efficient in practice
  - Heuristic, no guarantee they converge to an optimum
- Goal: Develop a multifidelity optimization algorithm that combines
  Bayesian calibration and reuse of high-fidelity information in a manner
  provably convergent to an optimum of the high-fidelity function



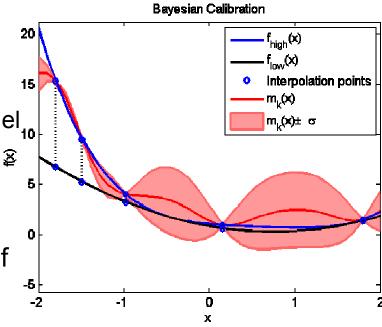
# Bayesian Model Calibration



 Define a surrogate model of the high-fidelity function:

$$m_k(\mathbf{x}) \equiv f_{low}(\mathbf{x}) + e_k(\mathbf{x}) \approx f_{high}(\mathbf{x})$$

- The error model, e(x):
  - Is a radial basis function model
  - Interpolates  $f_{\rm high}({\bf x})$   $f_{\rm low}({\bf x})$  exactly at all selected calibration points
- Convergence can be proven if surrogate model is fully linear within a trust region



Define trust region at iteration k:

$$B_k = \left\{ \mathbf{x} \in \mathfrak{R}^n : \left\| \mathbf{x} - \mathbf{x}_k \right\| \le \Delta_k \right\}$$



# Definition: Fully Linear Model



• Definition: For all **x** within a trust region of size  $\Delta_k \in (0, \Delta_{max})$ , a fully linear model,  $m_k(\mathbf{x})$ , satisfies

$$\left\| \nabla f_{high}(\mathbf{x}) - \nabla m_k(\mathbf{x}) \right\| \le \kappa_g \Delta_k$$

for a Lipschitz constant  $\kappa_q$ , and

$$\left| f_{high}(\mathbf{x}) - m_k(\mathbf{x}) \right| \le \kappa_f \Delta_k^2$$

with a Lipschitz constant  $\kappa_{f}$ 

- Conn et al. (2009) shows that in a trust region setting, fully linear models are sufficient to prove convergence to a stationary point of  $f_{high}(\mathbf{x})$ .
  - Requires:  $f_{high}(\mathbf{x})$  is continuously differentiable, has Lipschitz continuous first derivative, and is bounded from below
  - Multifidelity method also requires that  $f_{low}(\mathbf{x})$  is continuously differentiable and has Lipschitz continuous first derivative



### Fully Linear RBF Models



• Standard radial basis function model:

$$e_k(\mathbf{x}) = \sum_{i=1}^{|y|} \lambda_i \phi(\|\mathbf{x} - \mathbf{x}_k - \mathbf{y}_i\|; \xi) + \sum_{i=1}^{n+1} v_i \pi(\mathbf{x} - \mathbf{x}_k)$$

- Radial basis function (RBF) model requirements:

  - $\phi(r)$  has zero derivative at r=0
  - Polynomial basis,  $\pi$ , is linear
- Wild et al. (2008) showed that an RBF model can be made fully linear by construction
  - Places conditions on the sample points used to construct the RBF model

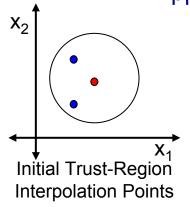


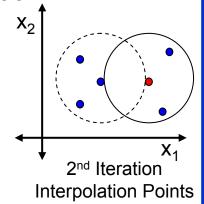
#### **Function Evaluation Points**



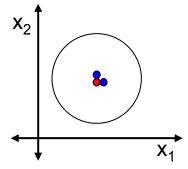
- RBF model has sufficient local behavior to guarantee convergence
- It also captures some global behavior
- First-order trust region approaches only look at the center of the current trust region
- RBF model will likely require fewer high-fidelity evaluations

# Radial Basis Function Calibration Approach

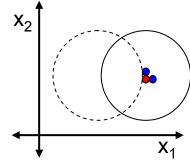




#### First-Order Trust Region Approach







2<sup>nd</sup> Iteration Finite Difference Points



#### Unconstrained Algorithm Summary



• Solve the trust-region subproblem to determine a candidate step,  $\mathbf{s}_k$ :  $\min_{\mathbf{s}_k \in \Re^n} m_k(\mathbf{x}_k + \mathbf{s}_k)$ 

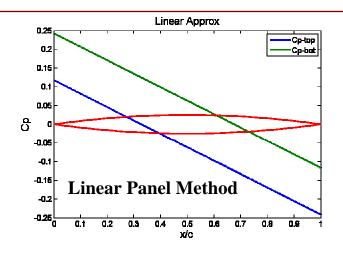
$$s.t. \quad \left\| \mathbf{s}_{k} \right\| \leq \Delta_{k}$$

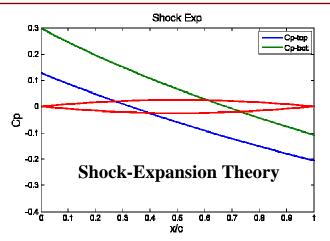
- Evaluate  $f_{\text{high}}$  at the candidate point and compute the ratio of actual to predicted reduction:  $\rho_k = \frac{f_{high}(\mathbf{x}_k) f_{high}(\mathbf{x}_k + \mathbf{s}_k)}{m_k(\mathbf{x}_k) m_k(\mathbf{x}_k + \mathbf{s}_k)}$
- Accept/reject iterate:  $\mathbf{x}_{k+1} = \begin{cases} \mathbf{x}_k + \mathbf{s}_k & \rho_k > 0 \\ \mathbf{x}_k & \text{otherwise} \end{cases}$
- Update trust region size:  $\Delta_{k+1} = \begin{cases} \min\{2\Delta_k, \Delta_{\max}\} & \rho_k \geq \eta \\ 0.5\Delta_k & \rho_k < \eta \end{cases}$
- Form new fully linear model  $m_{k+1}(\mathbf{x})$ , on  $\{\mathbf{x}: ||\mathbf{x}-\mathbf{x}_{k+1}|| \le \Delta_{k+1}\}$
- Perform convergence check:  $\|\nabla m_k(\mathbf{x}_k)\| \le \varepsilon_1$  and  $\Delta_k \le \varepsilon_2$

and reduce size of trust region until convergence proved [called the criticality check in Conn et al. (2009)]

# Supersonic Airfoil Test Problem

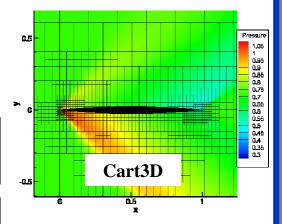






- Biconvex airfoil in supersonic flow
  - $\alpha$ = 2°,  $M_{\infty}$ =1.5
  - (t/c) = 5%

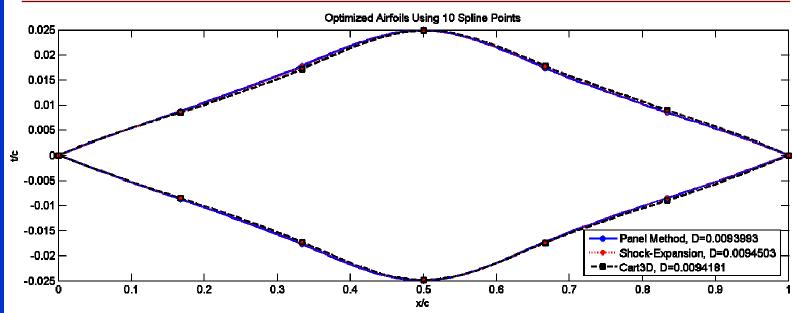
|                | <b>Linear Panels</b> | Shock Expansion | Cart3D  |
|----------------|----------------------|-----------------|---------|
| C,             | 0.1244               | 0.1278          | 0.12498 |
| % Difference   | 0.46%                | 2.26%           | 0.00%   |
|                |                      |                 |         |
| C <sub>D</sub> | 0.0164               | 0.0167          | 0.01666 |
| % Difference   | 1.56%                | 0.24%           | 0.00%   |





#### Airfoil Parameterization



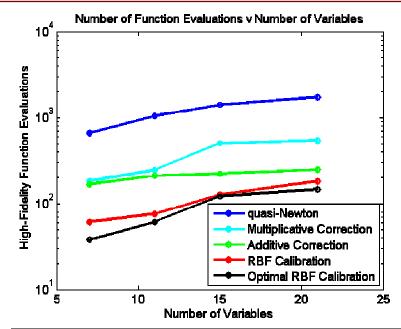


- Panel method and shock-expansion theory require sharp leading and trailing edges
- Parameterization has equal number of spline points on upper and lower surface and angle of attack
- Figure shows minimum drag solutions for 11 design variables

## Airfoil Optimization Results



- Models:
  - Low-Fidelity: Panel Method
  - High-Fidelity: S-E Theory
- Airfoil parameterization:
  - Angle of Attack
  - Equal # of upper/lower surface spline points
- Optimization tolerance:
  - ||step||≤5x10<sup>-6</sup> or
  - $||dm/dx|| \le 5x10^{-4}$
- Criteria: Fewest highfidelity function evaluations
  - Average of 5 runs with random ICs



| # of Variables: | 7   | 11   | 15   | 21   |
|-----------------|-----|------|------|------|
| Quasi-Newton    | 667 | 1048 | 1408 | 1731 |
| β-Correlation   | 183 | 246  | 503  | 546  |
| Add-Correction  | 168 | 211  | 223  | 249  |
| RBF $\alpha$ =2 | 61  | 76   | 127  | 182  |
| RBF α*          | 38  | 61   | 122  | 146  |



#### Combining Multiple Fidelity Levels



Trust Models with

Lower Variance

Combined Estimate

#### **Nesting**

# High-Fidelity Combine Similar Models Models Models Model 1 Model 2

- Nested Approach
  - "Classic approach"
  - Possible exponential scaling in function evaluations,
    - e.g. 50 high-fidelity evaluations, 2500 medium-fidelity evaluations, 125,000 low-fidelity evaluations
- Maximum Likelihood Approach
  - Flexibility in selecting low/medium-fidelity function calls
  - Robust to poor models



Maximum Likelihood

#### Combining Multiple Lower-Fidelities



 The RBF error interpolation can be treated as a Kriging model that predicts the high-fidelity function with a normally distributed error:

$$f_{high}(\mathbf{x}) \approx f_{med}(\mathbf{x}) + \mathcal{N}(e_{med}(\mathbf{x}), \sigma_{med}^2(\mathbf{x}))$$

$$f_{high}(\mathbf{x}) \approx f_{low}(\mathbf{x}) + \mathcal{N}(e_{low}(\mathbf{x}), \sigma_{low}^2(\mathbf{x}))$$

 Using Kriging models for each of the lower-fidelity functions, a maximum likelihood estimate for the high-fidelity function is:

$$f_{high}(x) \approx \left(f_{low} + e_{low}\right) \left(\frac{\sigma_{med}^2}{\sigma_{low}^2 + \sigma_{med}^2}\right) + \left(f_{med} + e_{med}\right) \left(\frac{\sigma_{low}^2}{\sigma_{low}^2 + \sigma_{med}^2}\right)$$

$$\frac{1}{\sigma_{high}^2} = \frac{1}{\sigma_{low}^2} + \frac{1}{\sigma_{med}^2}$$

- To fit in the original multifidelity algorithm, only one of the two lowerfidelity functions needs to be sampled at the required calibration points.
  - This allows substantial flexibility in selecting when each lower-fidelity function is used.



#### 3-Fidelity Supersonic Airfoil Results



- Maximum likelihood approach reduced high-fidelity function calls for all cases.
  - Results use the same calibration points for all lower-fidelity functions
  - Fancier sampling methods can be used
- Nested approach failed to converge with a non-smooth high-fidelity function (Cart3D):

|                 | Cart3D | Shock-Expansion Theory | Panel Method |
|-----------------|--------|------------------------|--------------|
| Two-Fidelities  | 88     | 0                      | 47679        |
| Max. Likelihood | 66     | 23297                  | 23297        |
| Nested          | 66*    | 7920*                  | 167644       |

**Function Calls** 

- The maximum likelihood approach is robust to the poor information.
  - A camberline model estimates drag poorly (thickness is ignored)
  - The best result of the nested approach is shown, average result otherwise

|                 | Shock-Expansion Theory | Panel Method | Camberline |
|-----------------|------------------------|--------------|------------|
| Two-Fidelities  | 126                    | 43665        | 0          |
| Max. Likelihood | 84                     | 30057        | 30057      |
| Nested          | 212**                  | 59217**      | 342916**   |



#### Conclusion



- Explained the need for convergent high-fidelity derivativefree methods
- Demonstrated convergence of an unconstrained multifidelity optimization algorithm using Bayesian model calibration
  - Through numerical experiments, showed that the method works for nonsmooth functions
  - Has performance comparable to other state-of-the-art design methods
- Developed a maximum likelihood method to combine multiple lower fidelities into a single estimate of the highfidelity function.
  - Showed that this technique converges faster than nesting, is robust to poor information, and allows flexible sampling.



# Acknowledgements



- The authors gratefully acknowledge support from NASA Langley Research Center contract NNL07AA33C technical monitor Natalia Alexandrov.
- A National Science Foundation graduate research fellowship.
- Michael Aftosmis and Marian Nemec for support with Cart3D.





# **Questions?**

