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Multifidelity optimization approaches seek to bring higher-fidelity analyses earlier into
the design process by using performance estimates from lower-fidelity models to accelerate
convergence towards the optimum of a high-fidelity design problem. Current multifidelity
optimization methods generally fall into two broad categories: provably convergent meth-
ods that use either the high-fidelity gradient or a high-fidelity pattern-search, and heuristic
model calibration approaches, such as interpolating high-fidelity data or adding a Kriging
error model to a lower-fidelity function. This paper presents a multifidelity optimization
method that combines these two ideas; our method iteratively calibrates lower-fidelity in-
formation to the high-fidelity function, and is provably convergent to an optimum of the
high-fidelity design problem. The algorithm developed minimizes a high-fidelity objective
function subject to a high-fidelity constraint and other simple constraints. The algorithm
never computes the gradient of a high-fidelity function; however, it demonstrates con-
vergence using sensitivity information from the calibrated low-fidelity models, which are
constructed to have negligible error in a neighborhood around the solution. The method
is demonstrated for aerodynamic shape optimization and shows an 80% reduction in the
number of high-fidelity analyses compared with a single-fidelity sequential quadratic pro-
gramming formulation and a similar number of high-fidelity analyses compared with a
multifidelity trust-region algorithm that estimates the high-fidelity gradient using finite
differences.

I. Introduction

Complex systems are expensive to build and test, so system designers will instead analyze these systems
with the best computational models available. These high-fidelity methods can be computationally

expensive and finding optimal or even good designs using them is a daunting task. Typically designers use
lower-fidelity analysis methods to design the system and then verify the performance with the high-fidelity
methods. The drawback of this approach is that designing with low-fidelity models can lead to poor design
decisions. Multifidelity approaches offer a solution to this problem; they can can guarantee a design that
is better with respect to high-fidelity model estimates, but use low-fidelity analyses to reduce the required
number of high-fidelity evaluations. This reduction is commonly achieved by calibrating low-fidelity analysis
methods to high-fidelity analysis results by either adding an error model, scaling or shifting the output,
or mapping the design space. However, a complication with some of these calibration methods is that
high-fidelity analyses may underly both design objective functions and design constraints. In order for the
high-fidelity design to be improved, feasibility must be assured; any error in the calibration method for the
constraints may improve the high-fidelity design objective but produce an infeasible design. A multifidelity
optimization method should therefore be able to guarantee that high-fidelity performance will be improved,
by using an appropriate model calibration method to safeguard against constraint violation and reduce the
high-fidelity evaluations of both constraints and objectives.

A powerful technique commonly used for this multifidelity optimization problem is trust-region model
management, where at all design iterates the gradients of low-fidelity objective function and constraints are
either scaled or shifted such that they match the value and gradient of their high-fidelity counterpart.1,2

This technique is provably convergent to a locally optimal high-fidelity design and in practice provides a 2–3
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fold reduction in the number of high-fidelity function calls.1 However, it is common in engineering design
problems that the gradient of a high-fidelity function is unavailable and estimating the gradient is unreliable
or too expensive. In these cases, multifidelity methods such as Efficient Global Optimization (EGO)3 or
Surrogate Management Framework (SMF)4 can be used. In EGO a Gaussian process regression model is
fit to the high-fidelity objective function. The mean of the Gaussian process interpolates the value of the
high-fidelity function, whereas, the mean square error of the Gaussian process models the uncertainty in the
high-fidelity function value. This error is zero at all locations where the value of the high-fidelity function
is known and increases with distance away from sample points. Optimization is then performed on the
Gaussian process model, and the high-fidelity function is sampled at locations likely to reduce to the value of
the function over the current observed minimum. This technique works well in practice, can be made globally
convergent,5 can be used in a multifidelity setting using Bayesian model calibration methods,6–8 and does
not require a high-fidelity derivative estimate. However, the method may be globally biased and attempt to
explore the entire design space as opposed to simply reducing the objective function. In addition, the method
has been shown to be sensitive to both the initial high-fidelity samples5 and to the exact metric of selecting
points likely to improve the high-fidelity function value;9 moreover, methods to handle constraints are still
somewhat heuristic.5,9, 10 SMF is a derivative-free pattern-search method augmented with a prediction of a
locally optimal design from a surrogate model. The underlying pattern-search method ensures convergence,
so a broad range of surrogate models are allowable. Of specific interest is conformal space mapping where
a low-fidelity function is calibrated to the high-fidelity function at locations where the value is known.11

In SMF, constraints may be handled directly on the surrogate models either with gradient information or
with penalties, and for the gradient-free high-fidelity pattern-search can be handled with an augmented
Lagrangian,12–14 exact penalty method,15 or constraint filtering.16

In many cases, sensitivity information is very useful and can accelerate convergence of a derivative-based
optimization method towards a local optimum. Accordingly, for multifidelity optimization of a function
where the gradient is known, trust-region model management is likely the best method to find a locally
optimal design. However, if high-fidelity gradient information is unknown, trust-region model management
requires finite differences to produce a surrogate model that satisfies first-order requirements at each design
iterate. Finite differences may not always be a viable choice due to noise in the function evaluations, number
of design variables, design locations where the objective function fails to exist, or simply computational
requirements. In these situations gradient-free multifidelity techniques such as EGO or SMF could be
considered, since they converge quickly if the model calibration methods are robust. This paper poses
the question: can a low-fidelity surrogate model be calibrated in a sufficiently robust manner as to use
low-fidelity sensitivity information to optimize a high-fidelity system with a limited number of high-fidelity
evaluations? The answer to this question requires finding a surrogate modeling technique that can capture
enough high-fidelity behavior to prove convergence to a high-fidelity optimum, using as few high-fidelity
function evaluations as a finite difference based calibration approach.

Creating a fully linear model is one possible surrogate modeling technique to ensure low-fidelity sensitivity
information predicts high-fidelity sensitivities well. A fully linear model, formally defined in the next section,
establishes Lipschitz-type error bounds between the high-fidelity function and the surrogate model. This
ensures that the error between the high-fidelity gradient and surrogate model gradient is locally bounded
without ever calculating the high-fidelity gradient. Conn et al. showed polynomial interpolation models can
be made fully linear, provided the interpolating set satisfied certain geometric requirements,17 and further
developed an unconstrained gradient-free optimization technique using fully linear models.18,19 Wild et
al. demonstrated that a radial basis function interpolation could satisfy the requirements for a fully linear
model and be used in Conn’s derivative-free optimization framework.20–22 March and Willcox generalized
this method to the cases with arbitrary low-fidelity functions or multiple low-fidelity functions using Bayesian
model calibration methods typically associated with EGO.23 This paper demonstrates how fully linear models
can be used for constrained optimization of computationally expensive functions when their derivatives are
not available. The constraints are partitioned into constraints with and without available derivatives. The
constraints without available derivatives are approximated with multifidelity methods; whereas the other
constraints are handled either implicitly with a penalty method or explicitly. Two constrained multifidelity
methods are presented, the first optimizes a high-fidelity objective function subject to constraints with
available derivatives. The second formulation optimizes a high-fidelity objective function subject to high-
fidelity constraints and constraints with available derivatives.

Section II of this paper presents the derivative-free method to optimize a high-fidelity objective function
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subject to constraints with available derivatives. Fully linear surrogate models of the objective function are
minimized within a trust-region setting until convergence to a high-fidelity optimum is demonstrated. Sec-
tion III presents a technique for minimizing a high-fidelity objective function subject to both constraints with
available derivatives and computationally expensive constraints with unavailable derivatives. This algorithm
finds a feasible point using the first formulation to reduce the value of the high-fidelity constraint subject
to the constraints with available derivatives. After a feasible point is found, the high-fidelity objective is
minimized using fully linear surrogate models for both the high-fidelity objective and high-fidelity constraint.
Only points that maintain feasibility are accepted. Section IV presents an aerodynamic shape optimization
problem to demonstrate the proposed multifidelity optimization techniques and compares the number of
high-fidelity function evaluations with other methods. The conclusion in Section V discusses extensions of
the method to the cases when there are multiple lower-fidelity models or when constraints are hard (when
the objective function fails to exist if the constraints are violated).

II. Constrained Optimization of a Multifidelity Objective Function

We consider a setting where we have two (or more) models that represent the physical system of interest:
a high-fidelity function that accurately estimates system metrics of interest but is expensive to evaluate, and
a low-fidelity function with lower accuracy but cheaper evaluation cost. We define our high-fidelity function
as fhigh(x) and our low-fidelity function as flow(x), where x ∈ Rn is the vector of n design variables. Our goal
is to solve a constrained optimization problem without ever directly computing or estimating the gradient
of the high-fidelity function, but generating sensitivity information from the low-fidelity function to reduce
the required number of high-fidelity evaluations. The minimization problem considered is to minimize the
high-fidelity objective function subject to equality constraints, h(x), and inequality constraints g(x),

min
x∈Rn

fhigh(x) (1)

s.t. h(x) = 0
g(x) ≤ 0,

where we assume gradient information from h(x) and g(x) is available or can be estimated accurately. To
establish convergence it is necessary to assume that all of the functions in Eq. 1 and the low-fidelity models are
twice continuously differentiable, are Lipschitz continuous, and have Lipschitz continuous first-derivatives.
In addition we will assume that the solution to Eq. 1, x∗, is feasible and is a regular point (satisfies strict
linear independent constraint qualification).

II.A. Trust-region Model Management

From an initial design vector x0, the trust-region method generates a sequence of design vectors that each
reduce a merit function consisting of the high-fidelity function value and penalized constraint violation,
where we denote xk to be this design vector on the kth trust-region iteration. Following the general Bayesian
calibration approach in Ref. 7, we define ek(x) to be a model of the error between the high- and low-fidelity
functions on the kth trust-region iteration, and we construct a surrogate model mk(x) for fhigh(x) as

mk(x) = flow(x) + ek(x). (2)

We define the trust region at iteration k, Bk, to be the region centered at xk with size ∆k,

Bk = {x : ‖x− xk‖ ≤ ∆k}, (3)

where any norm can be used, provided there exist constants c1 and c2 such that

‖ · ‖2 ≤ c1‖ · ‖ and ‖ · ‖ ≤ c2‖ · ‖2. (4)

To solve the constrained optimization problem presented in Eq. 1 we define a merit function, Φ(xk, σk),
where σk is a parameter that must go to infinity as the iteration number k goes to infinity and serves to
increase the penalty placed on the constraint violation. We also must assume that the merit function and the
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trust-region iterates satisfy the following four properties. First, the merit function with the initial penalty,
σ0, must be bounded from below within a relaxed level-set, L(x0, σ0), defined as

L(x0, σ0) = {x ∈ Rn : Φ(x, σ0) ≤ Φ(x0, σ0)} (5)
B(xk) = {x ∈ Rn : ‖x− xk‖ ≤ ∆max} (6)

L(x0, σ0) = L(x0, σ0)
⋃

xk∈L(x0,σ0)

B(xk), (7)

where ∆max is the maximum allowable trust-region size and the relaxed level-set is required because the
trust-region algorithm may attempt to evaluate the high-fidelity function at points outside of the level set
at x0. Second, the level sets of Φ(xk, σk > σ0) must be contained within L(x0, σ0). Third, L(x0, σ0) must
be a compact set, and fourth, all design iterates xk must remain within L(x0, σ0).

Although other merit functions are possible, we restrict our attention to merit functions based on
quadratic penalty functions because it is trivial to show that they are bounded from below if the objec-
tive function obtains a finite global minimum. The merit function used in this method is the objective
function plus the scaled sum-squares of the constraint violation, where g+(x) are the values of the violated
inequality constraints,

Φ(x, σk) = fhigh(x) +
σk
2

h(x)Th(x) +
σk
2

g+(x)Tg+(x). (8)

The parameter σk is a penalty weight, which must go to +∞ as the iteration k goes to +∞. Note that when
using a quadratic penalty function for constrained optimization, the sequence of iterates generated, {xk}, can
either terminate at a feasible regular point at which the Karush-Kuhn-Tucker (KKT) conditions are satisfied,
or at a point that minimizes the squared norm of the constraint violation, h(x)Th(x) + g+(x)Tg+(x).24,25

Accordingly, we assume that the iterates generated by minimizing the merit function are such that the
sequence {xk} always remains within L(x0, σ0) and terminates at a limit point, x∗ that is both regular and
feasible.

We now define a surrogate merit function, Φ̂(x, σk), which replaces the objective function with a surrogate
model of the expensive objective function.

Φ̂(x, σk) = mk(x) +
σk
2

h(x)Th(x) +
σk
2

g+(x)Tg+(x). (9)

Optimization is performed on this function, and updates to the trust-region are based on how changes in
this surrogate merit function compare with changes in the original merit function, Φ(x, σk).

We further require that the surrogate models mk(x) are fully linear, where the following definition of a
fully linear model is from Conn et al.:

Definition 1. Let a function fhigh(x) : Rn → R that is continuously differentiable and has a Lipschitz
continuous derivative, be given. A set of model functionsM = {m : Rn → R,m ∈ C1} is called a fully linear
class of models if the following occur:

There exist positive constants κf , κg and κblg such that for any x ∈ L(x0, σ0) and ∆k ∈ (0,∆max] there
exists a model function mk(x) inM with Lipschitz continuous gradient and corresponding Lipschitz constant
bounded by kblg, and such that the error between the gradient of the model and the gradient of the function
satisfies

‖∇fhigh(x)−∇mk(x)‖ ≤ κg∆k ∀x ∈ Bk (10)

and the error between the model and the function satisfies

|fhigh(x)−mk(x)| ≤ κf∆2
k ∀x ∈ Bk. (11)

Such a model mk(x) is called fully linear on Bk.19
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II.B. Trust-region Subproblem

At each trust-region iteration a point likely to decrease the merit function is found by solving one of two
minimization problems on the fully linear model for a step sk, on a trust region of size ∆k:

min
sk∈Rn

mk(xk + sk) (12)

s.t. h(xk + sk) = 0
g(xk + sk) ≤ 0
‖sk‖ ≤ ∆k,

or

min
sk∈Rn

Φ̂k(xk + sk, σk) (13)

s.t. ‖sk‖ ≤ ∆k.

Ideally the first trust-region subproblem, Eq. 12, will be used for optimization; however, typical nonlinear
programming techniques do not allow a user to specify which constraints must be satisfied, so if some of the
constraints are violated it may not be possible to reduce the value of the merit function and guarantee that
the trust-region constraint is satisfied. Accordingly, when the current iterate is infeasible, the second trust-
region subproblem, Eq. 13, must be used. A problem with this subproblem is that the norm of the objective
function Hessian grows without bound due to the penalty increasing to infinity. Therefore, a fundamental
assumption in trust-region algorithms, that the subproblem have a bounded norm for the Hessian, can
become violated. So, the algorithm must be structured in a way that once the design iterate is “close” to
feasible, the subproblem in Eq. 12 must be used, since the Hessian of this subproblem remains bounded.

We require that for whichever trust-region subproblem is used, the subproblem must be solved such
that the 2-norm of the first-order optimality conditions is less than a constant τk. This requirement is
stated as ‖∇xLk‖ ≤ τk, where Lk is the Lagrangian for the trust-region subproblem used. There are two
requirements for τk. First τk < ε, where ε is the desired termination tolerance for the optimization problem
in Eq. 1. Second, τk must decrease to zero as the number of iterations goes to infinity. Accordingly, we
define τk = min [βε, c∆k], with a constant β ∈ (0, 1) to satisfy the overall tolerance criteria, and a constant
c ∈ (a, 1) multiplying ∆k to assure that τk goes to zero. The constant a will be defined as part of a sufficient
decrease condition that forces the size of the trust-region to decrease to zero in the next section.

II.C. Trust-region Updating

Without using the high-fidelity function gradient, the trust-region update scheme must ensure the size of
the trust-region decreases to zero to establish convergence. To do this, we use a requirement similar to the
fraction of Cauchy decrease requirement in an the unconstrained trust-region formulation, see for example
Ref. 19. We require that the improvement in our merit function is at least a small constant a, 0 < a ≤ ε,
multiplying ∆k,

Φ̂(xk, σk)− Φ̂(xk + sk, σk) ≥ a∆k. (14)

The sufficient decrease condition is enforced through the trust region update parameter, ρk. The update
parameter is the ratio of the actual reduction in the merit function to the predicted reduction in the merit
function unless the sufficient decrease condition is not met,

ρk =

0 Φ̂(xk, σk)− Φ̂(xk + sk, σk) < a∆k

Φ(xk,σk)−Φ(xk+sk,σk)

Φ̂(xk,σk)−Φ̂(xk+sk,σk)
otherwise.

(15)

The size of the trust region, ∆k, must now be updated based on the quality of the surrogate model prediction.
The size of the trust region is increased if the surrogate model predicts the change in the function value well,
kept constant if the prediction is fair, and the trust region is contracted if the model predicts the change
poorly. Specifically, we update the trust region size using

∆k+1 =


min{γ1∆k,∆max} if η1 ≤ ρk ≤ η2,

γ0∆k if ρk ≤ η0,

∆k otherwise,

(16)
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where 0 < η0 < η1 < 1 < η2, 0 < γ0 < 1, and γ1 > 1. Regardless of whether or not a sufficient decrease has
been found, the trust-region location will be updated if the trial point has decreased the value of the merit
function,

xk+1 =

xk + sk if Φ(xk, σk) > Φ(xk + sk, σk)

xk otherwise.
(17)

A new surrogate model, mk+1(x), is then built such that it is fully linear on a region Bk+1 having center
xk+1 and size ∆k+1. The new fully linear model is constructed using the procedure of Wild et al.20 with
the calibration technique of March and Willcox.23

II.D. Termination

For termination, we must establish that the first-order KKT conditions,

‖∇fhigh(xk) +A(xk)Tλ(xk)‖ ≤ ε, (18)
‖
[
h(xk),g+(xk)

]
‖ ≤ ε (19)

are satisfied at xk, where A(xk) is defined to be the Jacobian of all active constraints at that point,

A(xk) =
[
∇h(xk),∇g+(xk)

]T
. (20)

The constraint violation criteria, Eq. 19, can be evaluated directly. However, the first-order condition,
Eq. 18, cannot be verified directly in the derivative-free case because the gradient ∇fhigh(xk) is unknown.
Therefore, we must use the property of a fully linear model given in Eq. 10, which shows that as ∆k → 0,
then ‖∇fhigh(x) − ∇mk(x)‖ → 0. We know that when the constraint violation termination condition is
satisfied the trust-region problem in Eq. 12 can be solved. Therefore if the trust-region constraint is inactive,
we know that

‖∇m(xk) +A(xk)T λ̂(xk)‖ ≤ min [βε, c∆k] , (21)

where λ̂ are the appropriate Lagrange multipliers computed using the surrogate model as opposed to the
high-fidelity function. Therefore a ∆k sufficiently small, for example ∆k ≤ ε2 for a small constant ε2 is
sufficient to show ‖∇fhigh(x)−∇mk(x)‖ ≈ 0, ‖λ̂− λ‖ ≈ 0, and ‖∇fhigh(xk) +A(xk)T λ̂(xk)‖ ≤ ε.

II.E. Convergence Discussion

To demonstrate convergence of this algorithm we must first show that the trust-region subproblem that
handles the constraints explicitly, Eq. 12, can be solved in a finite number of iterations, secondly that
the size of the trust-region must go to zero, and finally that the algorithm cannot stop before the KKT
conditions are satisfied for the original optimization problem, Eq. 1. To demonstrate that the trust-region
subproblem handling the constraints directly can be solved we must show that a feasible point (or point
feasible to within numerical tolerance) must exist within a trust region that will be encountered by solving
the surrogate penalty trust-region subproblem, Eq. 13.

We begin by establishing a bound on the constraint violation in terms of the penalty parameter σk. We
use the definition of A+(x) from Conn et al.,26

A+(x) = A(x)T (A(x)A(x)T )−1, (22)

so that least square Lagrange multipliers λ which approximate,

∇fhigh(x) +A(x)Tλ = 0, (23)

can be found by the matrix-vector product,

λ(x) = −A+(x)T∇fhigh(x). (24)
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Given the assumption that minimizing a quadratic penalty function terminates at a point that is both feasible
and regular, Conn et al. shows that if the objective function is used exactly, then there exists an iteration
k after which all A+(xk) will exist, be bounded such that ‖A+(xk)‖ ≤ κ1 for a positive constant κ1, and
converge to A+(x∗).26 Conn et al. then establishes the bound for the constraint violation,

‖
[
h(xk)T g+(xk)T

]
‖ ≤ κ1ωk + ‖λ(x∗)‖+ κ2‖xk − x∗‖

σk
, (25)

where κ2 is a positive constant and ‖∇Φ(xk, σk)‖ = ‖∇fhigh(xk)+σkA(xk)T
[
h(xk)T g+(xk)T

]T ‖ ≤ ωk, for
a convergence tolerance ωk.26 Using the surrogate model, for any solution to Eq. 13 where the trust-region
is an inactive constraint, we have that, ‖∇Φ̂(xk, σk)‖ = ‖∇mk(xk) + σkA(xk)T

[
h(xk)T g+(xk)T

]T ‖ ≤ τk.
Accordingly, when the trust-region constraint is inactive, using the definitions of τk and a fully linear model
we have that,

‖
[
h(xk)T g+(xk)T

]
‖ ≤ κ1(c+ κg)∆k + ‖λ(x∗)‖+ κ2‖xk − x∗‖

σk
. (26)

Now, using the fact that all xk lie within the compact set L(x0, σ0), and that x∗ is a regular point we can say
that there exists a finite constant that bounds the numerator. Therefore by increasing the penalty parameter
σk to infinity we may force the constraint violation to zero. Moreover, if we examine the constraint violation
bound of Eq. 26 further, we see that the bound has the form κ3∆k/σk + κ4/σk, with κ3, κ4 being arbitrary
positive constants. It will be shown shortly that {∆k} converges to zero, therefore we must have that {σk}
increases to infinity strictly faster than {∆k} converges to zero, or that the series σk∆k diverges, in order
to mitigate the term κ4/σk. This criteria is enforced by construction and ensures that an iteration k exists
such that a feasible point will reside in the interior of a trust region of size ∆k and the subproblem using
the constraints explicitly, Eq. 12, can be solved.

We now use our sufficient decrease condition, that ρk = 0 unless Φ̂(xk, σk) − Φ̂(xk + sk, σk) ≥ a∆k, to
establish the proposition,

lim
k→+∞

∆k = 0. (27)

From the sufficient decrease condition, we know that the trust region size decreases unless the change in
the merit function Φ(xk, σk) − Φ(xk + sk, σk) ≥ η0a∆k. Therefore we must show that the total number of
times in which the size of the trust region is kept constant or increased must be bounded. To demonstrate
this, we have assumed a priori that the merit function is bounded from below and also that the trust-region
algorithm remains within a level-set of the function from where it initiated. Let us now consider the merit
function written in an alternate form,

Φ(xk, σk) = fhigh(xk) +
σk
2
‖
[
h(xk),g+(xk)

]
‖2. (28)

From Eq. 26 we know that if σk is large enough such that the bound on the constraint violation is less than
unity, then we have established that at each subsequent iteration,

‖
[
h(xk)T g+(xk)T

]
‖2 ≤

[
κ1(c+ κg)∆k + ‖λ∗‖+ κ2‖xk − x∗‖

σk

]2

. (29)

Now combining Eqs. 28 and 29, we can show that at an iteration k an upper bound in the total remaining
change in the merit function is

fhigh(xk)− min
x∈L(x0,σ0)

fhigh(x) +
[κ1(c+ κg)∆k + ‖λ(x∗)‖+ κ2‖xk − x∗‖]2

σk
. (30)

Given that that ∆k is always bounded from above by ∆max, ‖λ(x∗)‖ is bounded because x∗ is a regular
point, and ‖xk − x∗‖ is bounded because we’ve assumed L(x0, σ0) is a compact set. Therefore, if the series
{1/σk} has a finite sum, then the total improvement in the merit function is finite. Accordingly, the sum of
the series {∆k} must be finite, and ∆k → 0 as k →∞.

We have currently placed two restrictions on the series {σk}, that it grow faster than 1/∆k and that
{1/σk} has a finite sum. A third restriction comes from the fact that we may not grow σk arbitrarily quickly
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for two reasons, first the solution xk+1 can move significantly far from xk such as to cause problems in the
trust region framework and secondly, the error between the surrogate model and high-fidelity function may
cause arbitrarily poor estimates for xk+1. To place a conservative upper bound on the growth rate for the
series {σk} we compare the value of the merit function at a point Φ(xk +p, σk) with its linearized prediction
based on Φ(xk, σk). From the mean value theorem, we know there exists a t ∈ (0, 1) such that,

Φ(xk + p, σk) = Φ(xk, σk) +∇Φ(xk + tp, σk)Tp. (31)

We may also create the linearized prediction of Φ(xk + p, σk), Φ̃(xk + p, σk) as,

Φ̃(xk + p, σk) = Φ(xk, σk) +∇Φ(xk, σk)Tp, (32)

which provides us the bound,

‖Φ(xk + p, σk)− Φ̃(xk + p, σk)‖ ≤ ‖∇Φ(xk + tp, σk)−∇Φ(xk, σk)‖‖p‖. (33)

If κfg is the Lipschitz constant for ∇fhigh(x), κc is the maximum Lipschitz constant for the constraints, and
κcd is the maximum Lipschitz constant for a constraint gradient we can show that

‖Φ(xk + p, σk)− Φ̃(xk + p, σk)‖ ≤ (34)[
κfg + σk

(
κc‖

[
h(xk)T g+(xk)T

]
‖+ κcd‖A(xk)‖‖p‖+ κcκcd‖p‖2

)]
‖p‖2.

We have a similar result for Φ̂(x, σk) by replacing κfg with the sum κfg + κg using the definition of a fully
linear model, and by bounding ‖p‖ by ∆k. Therefore, we may show the error in a linearized prediction of
the surrogate model will go to zero provided that the series {σk∆2

k} converges to zero. {∆k} will converge
R-linearly to zero with constant γ0, therefore {σk} must grow strictly slower than {1/γ2k

0 }. Accordingly,
if the penalty parameter {σk} grows at a rate exceeding both {k} and {1/∆k} then {∆k} will converge to
zero and an iterate xk will exist for a finite k such that the trust-region problem handling the constraints
explicitly will be feasible. In addition, if {σk} grows slower than {1/∆2

k} then the error between the predicted
values of the merit function and the actual values of the merit function will converge to zero within the trust
region. It also suggests that a good choice for {σk} has the form σk = max

[
ek/10, 1/∆1.1

k

]
.

To demonstrate that the sequence of iterates generated by this algorithm terminates at a point x∗ where
the KKT conditions must be satisfied to within a tolerance of ε, we will assume for contradiction that the
algorithm terminates at a regular and feasible point x∗ at which the KKT conditions are not satisfied. We
have established for these assumptions that the algorithm will always terminate by solving the trust-region
subproblem in Eq. 12. If the KKT conditions are not satisfied, then as the trust-region size decreases to
zero the KKT conditions will not be satisfied for the surrogate model. Therefore, the possible solutions to
Eq. 12 are the current iterate or a point on the trust-region boundary. If the solution to the trust-region
subproblem is the current iterate, then ‖∇mk(xk)‖ ≤ βε because the error between the surrogate model and
high-fidelity function will decrease to zero. This shows that ‖∇fhigh(x)‖ ≤ ε is a necessary contradiction. If
the solution to Eq. 12 is always on the trust-region boundary and the trust-region continues to shrink, then
the decrease in the surrogate model value must be less than a∆k. For any sufficiently small trust-region
size, the fully linear model ensures that the error between the surrogate model and high-fidelity function
decreases to zero. Accordingly, for sufficiently small trust-region size, this shows that ‖∇fhigh(x)‖ ≤ a, and
since a < ε then we have established a contradiction and the KKT conditions are satisfied to a tolerance of
ε.

II.F. Implementation

The numerical implementation of the multifidelity optimization algorithm, which does not compute the
gradient of the high-fidelity objective function, is presented as Algorithm 1. A set of possible parameters
that may be used in this algorithm are listed in Table 2 in Section IV. A key element of this algorithm is
the logic to switch from the penalty function trust-region subproblem, Eq. 13, to the subproblem that uses
the constraints explicitly, Eq. 12. Handling the constraints exactly will generally lead to faster convergence
and fewer function evaluations; however, a feasible solution to this subproblem likely does not exist at early
iterations. If either the constraint violation is sufficiently small, ‖

[
h(xk)T g+(xk)T

]
‖ ≤ ε, or the linearized

steps, δh, satisfying h(x) +∇h(x)T δh = 0 for all equality and inequality constraints are all smaller than the
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size of the trust region, then the subproblem with the explicit constraints is attempted. If the optimization
fails, then the penalty function subproblem is solved.

This method may be accelerated with the use of multiple lower-fidelity models. March and Willcox23

suggest a multifidelity filtering technique to combine estimates from multiple low-fidelity functions into a
single maximum likelihood estimate of the high-fidelity function value. That technique will work unmodified
within this multifidelity optimization framework and will likely improve performance.

III. Multifidelity Objective and Constraint Optimization

We now consider a more general constrained optimization problem with a computationally expensive
objective function and computationally expensive constraints. We assume for both the expensive objective
and expensive constraints that the gradients are either unavailable, unreliable or expensive to estimate.
Accordingly, we augment the multifidelity optimization problem in Eq. 1 with the high-fidelity constraint,
chigh(x) ≤ 0. In addition, we have a low-fidelity estimate of this constraint, clow(x), which estimates the
same metric as the high-fidelity constraint, but with unknown error. Therefore, our goal is to find the vector
x ∈ Rn of n design variables that solves the nonlinear constrained optimization problem,

min
x∈Rn

fhigh(x) (35)

s.t. h(x) = 0
g(x) ≤ 0

chigh(x) ≤ 0,

where h(x) and g(x) represent vectors of inexpensive equality and inequality constraints with derivatives that
are either known or may be estimated cheaply. The same assumptions for the expensive objective function
formulation are made for the functions presented in this formulation, including that a quadratic penalty
function with the new high-fidelity constraint is bounded from below within an initial expanded level-set.
A point of note is that multiple high-fidelity constraints can be used if an initial point x0 is given that is
feasible with respect to all constraints; however, due to the effort required to construct approximations of
the multiple high-fidelity constraints, it is recommended that all of the high-fidelity constraints be combined
into a single high-fidelity constraint through, as an example, a discriminant function.27,28 This optimization
problem will be solved using the multifidelity optimization method presented in Section II to find a feasible
point, and then an interior point formulation is presented in Section III.B to solve the optimization problem
in Eq. 35. Convergence of the algorithm is discussed in Section III.C, and the numerical implementation is
presented in Section III.D.

III.A. Finding a Feasible Point

This algorithm begins by finding a point that is feasible with respect to all of the constraints and then
minimizes the high-fidelity objective function subject to all of the constraints in a manner similar to an
interior-point method. In order to find an initial feasible point, the algorithm presented in Section II iterates
on the optimization problem,

min
x∈Rn

chigh(x) (36)

s.t. h(x) = 0
g(x) ≤ 0,

until a point that is feasible with respect to Eq. 35 is found. If this optimization problem is unconstrained
then the trust-region algorithm of Conn et al.19 is used with the multifidelity calibration method of March
and Willcox.23 The optimization problem in Eq. 36 may violate one of the assumptions of the multifidelity
objective function method in that chigh(x) may not be bounded from below. This issue will be addressed in
the numerical implementation of the method in Section III.D.

III.B. Interior Point Trust-region Method

To minimize the high-fidelity objective function subject to the constraints, this formulation again uses the
general Bayesian calibration approach in Ref. 7 to create fully linear surrogate models for both the high-
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Algorithm 1: Multifidelity Objective Trust-Region Algorithm
1: Update tolerance, τk = min [βε, c∆k].
2: Choose and solve a trust-region subproblem:

2a: If the maximum linearized step to constraint feasibility for all active constraints is smaller
than the current trust region size, ∆k then solve:

min
sk∈Rn

mk(xk + sk)

s.t. h(xk + sk) = 0
g(xk + sk) ≤ 0
‖sk‖ ≤ ∆k,

to convergence tolerance τk.
2b: If 2a is not used or fails to converge to the required tolerance, solve the trust-region sub-

problem:

min
sk∈Rn

Φ̂k(xk + sk, σk)

s.t. ‖sk‖ ≤ ∆k.

to convergence tolerance τk.
3: If fhigh(xk + sk) has not been evaluated previously, evaluate the high-fidelity function at that point.

3a: Store fhigh(xk + sk) in database.
4: Compute the merit function Φ(xk, σk),Φ(xk+sk, σk) and the surrogate merit function, Φ̂(xk+sk, σk).
5: Compute the ratio of actual improvement to predicted improvement,

ρk =

0 Φ̂(xk, σk)− Φ̂(xk + sk, σk) < a∆k

Φ(xk,σk)−Φ(xk+sk,σk)

Φ̂(xk,σk)−Φ̂(xk+sk,σk)
otherwise.

6: Update the trust region size according to ρk,

∆k+1 =


min{γ1∆k,∆max} if η1 ≤ ρk ≤ η2

γ0∆k if ρk ≤ η0,

∆k otherwise,

7: Accept or reject the trial point according to improvement in the merit function,

xk+1 =

xk + sk Φ(xk, σk)− Φ(xk + sk, σk) > 0

xk otherwise.

8: Create new model mk+1(x) fully linear on {x : ‖x− xk+1‖ ≤ ∆k+1}.
9: Increment the penalty, σk+1 = max

[
ek+1/10, 1/∆1.1

k+1

]
.

10: Check for convergence, if the trust region constraint is inactive, ‖∇mk+1(xk+1)+A(xk+1)T λ̂‖ ≤ βε,
‖ [h(xk),g+(xk)] ‖ ≤ ε, and ∆k ≤ ε2 the algorithm is converged, otherwise go to step 1.
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fidelity objective function and the high-fidelity constraint. The surrogate model for the objective function is
mk(x) as defined in Eq. 2. For the constraint, the surrogate model, m̄k(x), is defined as

m̄k(x) = clow(x) + ēk(x). (37)

From the fact that m̄(x) is a fully linear model for chigh(x), we know

‖∇chigh(x)−∇m̄k(x)‖ ≤ κcg∆k ∀x ∈ Bk (38)
|chigh(x)− m̄k(x)| ≤ κcf∆2

k ∀x ∈ Bk. (39)

In addition, we require that our procedure to construct fully linear models ensures that at the current design
iterate, the fully linear models have the exact value of the function they are modeling. Accordingly, we have
that

fhigh(xk) = mk(xk) (40)
chigh(xk) = m̄k(xk). (41)

This is required so that every trust-region subproblem is feasible at the initial point xk.
The trust-region subproblem used is to minimize the surrogate high-fidelity objective function subject to

the easy constraints, the surrogate high-fidelity constraint, and the trust-region constraint,

min
sk∈Rn

mk(xk + sk) (42)

s.t. h(xk + sk) =0
g(xk + sk) ≤0

m̄k(xk + sk) ≤max{chigh(xk),−e∆k}
‖sk‖ ≤∆k.

The trust-region subproblem is solved to the same termination tolerance as the multifidelity objective function
formulation, ‖∇xLk‖ ≤ τk, where Lk is the Lagrangian. The surrogate model constraint does not have zero
as a right hand side to account for the fact the algorithm is looking for interior points. The right hand side,
max{chigh(xk),−e∆k}, where e is a positive constant greater than c used in the definition of τk, assures that
the constraint is initially feasible and that protection of constraint violation decreases to zero as the number
of iterations increase to infinity.

The center of the trust region is updated if a decrease in the objective function is found at a feasible
point,

xk+1 =

xk + sk if fhigh(xk) > fhigh(xk + sk) and chigh(xk + sk) ≤ 0

xk otherwise.
(43)

The trust-region size update must ensure that the predictions of the surrogate models are accurate and that
the size of the trust region goes to zero in the limit as the number of iterations goes to infinity. Therefore, we
again impose a sufficient decrease condition, that the change in the objective function is at least a constant,
a, multiplying ∆k,

∆k+1 =

min{γ1∆k,∆max} if fhigh(xk + sk)− fhigh(xk) ≥ a∆k and chigh(xk + sk) ≤ 0

γ0∆k otherwise.
(44)

New surrogate models, mk+1(x) and m̄k+1(x), are then built such that they are fully linear on a region
Bk+1 having center xk+1 and size ∆k+1. The new fully linear models are constructed using the procedure of
Wild et al.20 with the calibration technique of March and Willcox.23

Convergence of the algorithm is verified by assuring the KKT conditions are satisfied on the surrogate
models and that the trust-region radius is sufficiently small to establish that the error between the surrogate
model gradients and the high-fidelity function gradients is sufficiently small.
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III.C. Multifidelity Objective and Constraints Convergence Discussion

To demonstrate convergence of this algorithm we must first show that the trust region size goes to zero and
second that the algorithm cannot stop before the KKT conditions are satisfied for the high-fidelity problem.
To establish that the trust region size goes to zero, we use the assumption that a quadratic penalty function
including all of constraints is bounded from below. This means that the high fidelity objective function must
be bounded from below within the feasible region of Eq. 36. We therefore know that from the first feasible
iterate found, the difference between the high-fidelity function at that point and the value of the high-fidelity
function at an optimum of this problem is finite. Since we have required that the decrease in the objective
function is at least a constant a multiplying ∆k this means the sum of the series {∆k} is bounded, and
accordingly

lim
k→+∞

∆k = 0. (45)

We now establish that this algorithm must converge to a limit point, x∗, where the KKT conditions,

‖∇fhigh(xk) +A(xk)Tλ(xk) +∇chigh(xk)λc‖ ≤ ε, (46)
‖
[
h(xk),g+(xk)

]
‖ ≤ ε, (47)

chigh(xk) ≤ 0, (48)

with λc the Lagrange multiplier for the high-fidelity constraint, are satisfied. The constraint violation criteria,
Eq. 47 and Eq. 48, are established by construction and the use of Algorithm 1. To establish the first-order
condition, Eq. 46, we must use the property of a fully linear model given in Eqs. 10 and 38, which shows that
as ∆k → 0, then ‖∇fhigh(x)−∇mk(x)‖ → 0 and a similar conclusion for the high-fidelity constraint. When
the trust-region subproblem given in Eq. 42 has been solved and the trust-region constraint is inactive, we
know that

‖∇m(xk) +A(xk)T λ̂(xk) +∇m̄(xk)λm̄‖ ≤ min [βε, c∆k] , (49)

where λ̂ are the appropriate Lagrange multipliers computed using the surrogate model as opposed to the
high-fidelity function (see Eq. 24) and λm̄ is a similar Lagrange multiplier for the surrogate model of the
high-fidelity constraint. Thus we have established that as ∆k → 0, then ‖∇fhigh(x) − ∇mk(x)‖ → 0,
‖∇chigh(x)−∇m̄k(x)‖ → 0, ‖λ̂−λ‖ → 0, ‖λc−λm̄‖ → 0, and ‖∇fhigh(xk)+A(xk)T λ̂(xk)+∇chigh(xk)λm̄‖ ≤
ε. In addition, if no constraints are active we have only established convergence to a point such that,
‖∇fhigh(x)‖ ≤ a, but this also satisfies the first-order KKT conditions. The other way in which this
algorithm might fail, is that the sequence of iterates could always have chigh(xk + sk) > 0, in which case the
trust region will shrink to zero without making any progress. However, a necessary contradiction is that the
error in the value of a fully linear model decreases with the square of the trust region size. The fact that
a margin is kept with respect to the high-fidelity constraint violation and that the error in the value of the
constraint value prediction decays at a faster rate than the error in the first-order KKT condition shows the
prediction of the constraint surrogate model value will not force the size of the trust-region to zero before
the KKT conditions are satisfied.

III.D. Multifidelity Objective and Constraint Implementation

The numerical implementation of this multifidelity optimization algorithm is presented as Algorithm 2. A set
of possible parameters that may be used in this algorithm are listed in Table 2 in Section IV. An important
implementation issue with this algorithm is finding the initial feasible point. Algorithm 1 is used to minimize
the high-fidelity constraint value subject to the constraints with available derivatives in order to find a point
that is feasible. However, Algorithm 1 uses a quadratic penalty function to handle the constraints with
available derivatives if the constraints are violated. This requires that the objective function is bounded
from below to assure the penalty method is effective. Accordingly, a more general problem than Eq. 36 to
find an initial feasible point is to use,

min
x∈Rn

max{chigh(x) + d, 0}2 (50)

s.t. h(x) = 0
g(x) ≤ 0.
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The maximization in the objective prevents the need for the high-fidelity constraint to be bounded from
below. The constant d is used to account for the fact that the surrogate model will have some error in
its prediction of chigh(x), so looking for a slightly negative value of the constraint may save iterations as
compared to seeking a value that is exactly zero. For example, if d is larger than the κcf in Eq. 39 and the
value of the constraint surrogate model is more negative than the size of the trust region squared, then we
are assured the actual value of the high-fidelity constraint is negative.

A similar issue is in the solution of Eq. 42, where a slightly negative value of the surrogate constraint is
desired. If this subproblem is solved with an interior point algorithm this should be satisfied automatically;
however, if a sequential quadratic programming method is used the constraint violation will have a numerical
tolerance that is either slightly negative or slightly positive. It may be necessary to bias the subproblem to
look for a value of the constraint that is more negative than the optimizer constraint violation tolerance to
assure the solution is an interior point.

A final implementation note is that if a high-fidelity constraint has numerical noise or steep gradients
it may be wise to shrink the trust region at a slower rate, increasing γ0. This will help to ensure that the
trust-region does not decrease to zero at a suboptimal point.

IV. Supersonic Airfoil Design Test Problem

This section presents results of the two multifidelity optimization algorithms on a supersonic airfoil design
problem. The airfoil design problem has 11 parameters, the angle of attack, 5 spline points on the upper
surface and 5 spline points on the lower surface. However, there is an actual total of 7 spline points on
both the upper and lower surfaces because the leading and trailing edges must be sharp for the low-fidelity
methods used. The airfoils are constrained such that the minimum thickness-to-chord ratio is 0.05 and that
the thickness everywhere on the airfoil must be positive. In addition, there are lower and upper bounds for
all spline points.

Three supersonic airfoil analysis models are available: a linearized panel method, a nonlinear shock-
expansion theory method, and Cart3D, an Euler CFD solver.29 Note, that Cart3D has a finite convergence
tolerance so there is some numerical noise in the lift and drag predictions. In addition, because random
airfoils are used as initial conditions, Cart3D may fail to converge, in which case the results of the panel
method are used. Figure 1 shows computed pressure distributions for each of the models for a 5% thick
biconvex airfoil at Mach 1.5 and 2◦ angle of attack. Table 1 provides the estimated lift and drag coefficients
for the same airfoil and indicates the approximate level of accuracy of the codes with respect to each other.

(a) Panel method. (b) Shock-expansion. (c) Cart3D.

Figure 1. Supersonic airfoil model estimated pressure distribution comparisons for a 5% thick biconvex airfoil at Mach
1.5 and 2◦ angle of attack.

The following sections present results for three optimization examples each using this airfoil problem to
demonstrate the capabilities of the optimization algorithms presented. In the first example, Section IV.A,
the airfoil drag will be minimized using the constrained multifidelity objective function formulation presented
in Section II with only the simple geometric constraints. In the second example, Section IV.B, the airfoil lift
to drag ratio will be maximized subject to a constraint that the drag coefficient is less than 0.01, where the
constraint will be handled with the multifidelity framework presented in Section III. In the final example,
Section IV.C, the airfoil lift to drag ratio will be maximized subject to the constrained drag coefficient and
both the objective function and the constraints are handled with the multifidelity framework presented in
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Algorithm 2: Multifidelity Objective and Constraint Trust-Region Algorithm
0: Find a feasible design vector using Algorithm 1 to iterate on:

min
x∈Rn

max{chigh(x) + d, 0}2

s.t. h(x) = 0
g(x) ≤ 0.

1: Update tolerance, τk = min [βε, c∆k].
2: Solve the trust-region subproblem:

min
sk∈Rn

mk(xk+ sk )

s.t. h(xk + sk) = 0
g(xk + sk) ≤ 0

m̄k(xk + sk) ≤ min{chigh(xk),−e∆k}
‖sk‖ ≤ ∆k.

3: If fhigh(xk + sk) or chigh(xk + sk) have not been evaluated previously, evaluate the high-fidelity
functions at that point.

3a: Store fhigh(xk + sk) and chigh(xk + sk) in a database.
4: Accept or reject the trial point according to:

xk+1 =

xk + sk if fhigh(xk) > fhigh(xk + sk) and chigh(xk + sk) ≤ 0

xk otherwise.

5: Update the trust region size according to:

∆k+1 =

min{γ1∆k,∆max} if fhigh(xk + sk)− fhigh(xk) ≥ a∆k and chigh(xk + sk) ≤ 0

γ0∆k otherwise.

6: Create new models mk+1(x) and m̄k+1(x) fully linear on {x : ‖x− xk+1‖ ≤ ∆k+1}.
7: Check for convergence, if the trust region constraint is inactive,
‖∇m(xk) + A(xk)T λ̂(xk) +∇m̄(xk)λm̄‖ ≤ βε, and ∆k ≤ ε2, the algorithm is converged, otherwise
go to step 1.
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Section III. The initial airfoils for all problems will be randomly generated and likely will not satisfy the
constraints.

Panel Shock-Expansion Cart3D
CL 0.1244 0.1278 0.1250
% Diff 0.46% 2.26% 0.00%
CD 0.0164 0.0167 0.01666
% Diff 1.56% 0.24% 0.00%

Table 1. 5% thick biconvex airfoil results comparison
at Mach 1.5 and 2◦ angle of attack. Percent difference
is taken with respect to the Cart3D results.

The three airfoil problems will be solved with four
optimization algorithms: Sequential Quadratic Program-
ming30 (SQP), a first-order consistent multifidelity trust-
region algorithm that uses a sequential quadratic pro-
gramming formulation and an additive correction,2 the
high-fidelity-gradient-free approach presented in this pa-
per using a Gaussian radial basis function and a fixed
spatial correlation parameter, exp−r2/ξ2 with ξ = 2,
and the approach presented in this paper using a max-
imum likelihood estimate to find an improved correlation
length, ξ = ξ∗, for the Gaussian radial basis function.23

The Gaussian correlation functions used in these results are all isotropic, meaning they are the same in all
directions. An anisotropic correlation function will likely speed convergence of this algorithm and reduce
sensitivity to the problem scaling. The parameters used for the optimization algorithm are presented in
Table 2.

Constant Description Value
a Sufficient decrease constant 1× 10−4

β Overall Convergence tolerance multiplier 1× 10−2

c Convergence tolerance based on trust region size 1× 10−2

d Artificial lower bound for constraint value 1
e Additional conservatism for constraint violation 0.1
ε, ε2 Termination Tolerance 5× 10−4

γ0 Trust region contraction ratio 0.5
γ1 Trust region expansion ratio 2
η0 Trust region contraction criterion 0.25
η1, η2 Trust region expansion criterion 0.75, 2.0
∆0 Initial trust region radius 1
∆max Maximum trust region size 20
σk Penalty parameter max

[
ek/10, 1/∆1.1

k

]
δx Finite difference step 1× 10−5

Table 2. List of constants used in the algorithm. All parameters used in constructing the radial basis function error
model are the same is in Ref. 23.

IV.A. Multifidelity Objective Function Results

This section presents optimization results in terms of the number of function evaluations required to find
the minimum drag for a supersonic airfoil at Mach 1.5 with only geometric constraints on the design.
Two cases are tested, the first uses the shock-expansion method as the high-fidelity function and the panel
method as the low-fidelity function, the second uses Cart3D as the high-fidelity function and the panel
method as the low-fidelity function. These problems are solved using the multifidelity optimization algorithm
for a computationally expensive objective function and constraints with available derivatives presented in
Section II. The average number of high-fidelity function evaluations required to find a locally optimal design
are presented in Table 3, and show that this approach uses approximately 78% fewer high-fidelity function
evaluations than SQP and approximately 30% fewer function evaluations than the first order consistent
trust-region method using finite difference gradient estimates.

IV.B. Multifidelity Constraint Results

This section presents optimization results in terms of the number of function evaluations required to find the
maximum lift to drag ratio for a supersonic airfoil at Mach 1.5 subject to both geometric constraints and
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High-Fidelity Low-Fidelity SQP First-Order TR RBF, ξ = 2 RBF, ξ = ξ∗

Shock-Expansion Panel Method 314 (-) 110 (-65%) 73 (-77%) 68 (-78%)
Cart3D Panel Method 359∗(-) 109 (-70%) 80 (-78%) 79 (-78%)

Table 3. The average number of high-fidelity function evaluations to minimize the drag of a supersonic airfoil with only
geometric constraints. The asterisk for the Cart3D results means a significant fraction of the optimizations failed and
the average is taken over fewer samples. The numbers in parentheses indicate the percentage reduction in high-fidelity
function evaluations relative to SQP.

the requirement that the drag coefficient is less than 0.01. The lift to drag ratio is computed with the panel
method; however, the drag coefficient constraint is handled using the multifidelity technique presented in
Section III. Two cases are examined, in the first the shock-expansion method is the high-fidelity constraint
and the panel method is the low-fidelity constraint, in the second case Cart3D is the high-fidelity constraint
and the panel method is the low-fidelity constraint. Table 4 presents the average number of high-fidelity
constraint evaluations required to find the optimal design using SQP, a first-order consistent trust-region
algorithm and the techniques developed in this paper. A significant decrease in the number of high-fidelity
function evaluations is observed when compared with SQP; however, performance is almost the same as the
first-order consistent trust-region algorithm.

High-Fidelity Low-Fidelity SQP First-Order TR RBF, ξ = 2 RBF, ξ = ξ∗

Shock-Expansion Panel Method 827 (-) 104 (-87%) 104 (-87%) 115 (-86%)
Cart3D Panel Method 909∗(-) 100 (-89%) 103 (-89%) 105 (-88%)

Table 4. The average number of high-fidelity constraint evaluations required to maximize the lift to drag ratio of a
supersonic airfoil estimated with a panel method subject to a multifidelity constraint. The asterisk for the Cart3D
results means a significant fraction of the optimizations failed and the average is taken over fewer samples. The numbers
in parentheses indicate the percentage reduction in high-fidelity function evaluations relative to SQP.

IV.C. Multifidelity Objective Function and Constraint Results

This section presents optimization results in terms of the number of function evaluations required to find
the maximum lift to drag ratio for a supersonic airfoil at Mach 1.5 subject to geometric constraints and the
requirement that the drag coefficient is less than 0.01. In this case, both the lift to drag ratio and the drag
coefficient constraint are handled using the multifidelity technique presented in Section III. In the first case,
the shock-expansion method is the high-fidelity analysis used to estimate both metrics of interest and the
panel method is the low-fidelity analysis, in the second case Cart3D is the high-fidelity analysis and the panel
method is the low-fidelity analysis. Table 5 presents the number of function evaluations required to find the
optimal design using SQP, a first-order consistent trust-region algorithm and the techniques developed in
this paper. Again a significant reduction in the number of high-fidelity function evaluations, both in terms
of the constraint and the objective, are observed compared with SQP, and a similar number of high-fidelity
function evaluations are observed when compared with the first-order consistent trust region approach using
finite differences.

High-Fidelity Low-Fidelity SQP First-Order TR RBF, ξ = 2 RBF, ξ = ξ∗

Objective: Shock-Expansion Panel Method 773 (-) 132 (-83%) 93 (-88%) 90 (-88%)
Constraint: Shock-Expansion Panel Method 773 (-) 132 (-83%) 97 (-87%) 96 (-88%)

High-Fidelity Low-Fidelity SQP First-Order TR RBF, ξ = 2 RBF, ξ = ξ∗

Objective: Cart3D Panel Method 1168∗(-) 97 (-92%) 104 (-91%) 112 (-90%)
Constraint: Cart3D Panel Method 2335∗(-) 97 (-96%) 115 (-95%) 128 (-94%)

Table 5. The average number of high-fidelity objective function and high-fidelity constraint evaluations to optimize a
supersonic airfoil for a maximum lift to drag ratio subject to a maximum drag constraint. The asterisk for the Cart3D
results means a significant fraction of the optimizations failed and the average is taken over fewer samples. The numbers
in parentheses indicate the percentage reduction in high-fidelity function evaluations relative to SQP.
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V. Conclusion

This paper has presented two algorithms for multifidelity constrained optimization of computationally
expensive functions when their derivatives are not available. The first method minimizes a high-fidelity
objective function without using its derivative while satisfying constraints with available derivatives. The
second method minimizes a high-fidelity objective without using its derivative while satisfying both con-
straints with available derivatives and an additional high-fidelity constraint without an available derivative.
Both of these methods support multiple lower-fidelity models through the use of a multifidelity filtering
technique without any modifications to the methods. The performance of the methods show a significant re-
duction in the number of high-fidelity function evaluations required to optimize a computationally expensive
function when an appropriate low-fidelity function is used compared to a single-fidelity sequential quadratic
programming formulation. In addition, this paper demonstrated that these methods performed similarly to
a first-order consistent trust-region algorithm with gradients estimated using finite-differences. This shows
that these methods provide significant opportunity for optimization of computationally expensive functions
without available gradients.

The behavior of the algorithms presented are slightly atypical of nonlinear programming methods. Al-
though the algorithms guarantee convergence to a local minimum of the high-fidelity problem, the local
minimum they converge to may not be the one in the immediate vicinity of the initial iterate. For example,
the initial model may completely ignore the fact that the initial iterate is on a local minimum and move
the iterate to a different point with a lower function value in another region of the design space. In addi-
tion, provided the trust-region subproblems can be solved, this algorithm should still be able to converge to
high-fidelity optima at which the KKT conditions are not satisfied. This situation occurs when constraint
qualification conditions are not satisfied and can cause robustness issues for nonlinear programming methods.
In the algorithms presented, the design vector will approach a local minimum and the sufficient decrease
test for the change in the objective function value will fail. This causes the size of the trust region to decay
to zero around the local minimum even though the KKT conditions are not satisfied.

In the case of hard constraints, or when the objective function fails to exist if the constraints are violated,
it is still be possible to use the algorithm that approximates both a high-fidelity objective and constraint.
After the initial feasible point is found, no design iterate will be accepted if the high-fidelity constraint is
violated. Therefore the overall flow of the algorithm is unchanged. What must be changed is the technique
to build fully linear models. In order to build a fully linear model, the objective function must be evaluated
at a set of n+ 1 points that span Rn. This requirement prohibits equality constraints and means that strict
linear independent constraint qualification must be satisfied everywhere in the design space (preventing
two inequality constraints from mimicking an equality constraint). If these two additional conditions hold
then it will be possible to construct fully linear models everywhere in the feasible design space and use
this algorithm to optimize computationally expensive functions with hard constraints. Therefore this paper
has presented a provably convergent multifidelity optimization algorithm that does not require estimating
high-fidelity gradients, enables the use of multiple low-fidelity models, enables optimization of functions with
hard constraints, exhibits robustness to optima at which the KKT conditions are not satisfied, and performs
similarly in terms of the number of function evaluations to finite difference based multifidelity optimization
methods.
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