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This paper presents a provably convergent multi�delity optimization algorithm for un-
constrained problems. The method uses a radial basis function interpolation to capture the
error between a high-�delity function and a low-�delity function. The error interpolation is
added to the low-�delity function to create a surrogate model of the high-�delity function
in the neighborhood of a trust region. When appropriately distributed spatial calibration
points are used, the low-�delity function and radial basis function interpolation generate
a fully linear model. This condition is su�cient to prove convergence in a trust-region
framework. In the case when there are multiple lower-�delity models, the predictions of
all calibrated lower-�delity models can be combined with a maximum likelihood estimator
constructed using Kriging variance estimates from the radial basis function models. This
procedure allows for 
exibility in sampling lower-�delity functions, does not alter the con-
vergence proof of the optimization algorithm, and is shown to be robust to poor low-�delity
information. The algorithm is compared with an unconstrained single-�delity quasi-Newton
algorithm and two �rst-order consistent multi�delity trust-region algorithms. For simple
functions the quasi-Newton algorithm uses slightly fewer high-�delity function evaluations;
however, for more complex supersonic airfoil design problems it uses signi�cantly more.
In all cases tested, our radial basis function calibration approach uses fewer high-�delity
function evaluations when compared with �rst-order consistent trust-region schemes.

Nomenclature

B A closed and bounded set in Rn
B Trust region
C Continuous function
c A positive �nite constant
d High-�delity function sample point
�x Finite di�erence step size
e(x) Error model
f(x) Objective function
H Hessian of the surrogate model
L Expanded level-set in Rn
L Level-set in Rn
M Space of all fully linear models
m(x) Surrogate model of the high-�delity function
N Normal distribution
n number of design variables
pmax Maximum number of points to be used in the interpolation
RBF Radial Basis Function
r Radius
s Trust region step
x Design vector
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xi Component i of the design vector
Y Set of calibration vectors used in an error model
y Vector from current iterate to a high-�delity sample point
� Trust region contraction ratio used in convergence check
� Termination tolerance for gradient norm
�2 Termination tolerance for trust region size
� Trust region radius
� Radial basis function

0 Trust region contraction ratio

1 Trust region expansion ratio
� Trust region update criterion
� Bound related to function smoothness
� Coe�cient of a radial basis function
� Mean of a Gaussian process
� Coe�cients of the polynomial basis
� Polynomial basis for Rn
� A component of the polynomial basis
� Positive constant, used to build fully linear models
� Ratio of actual improvement to predicted improvement
�2 Variance of a Gaussian process
� Radial basis function correlation length

Superscript
� Optimal

Subscript
0 Initial iterate
bhm Bound for Hessian of the surrogate model
blg Upper bound on the Lipschitz constant
est Maximum likelihood estimate
f Relating to function
FCD Fraction of Cauchy Decrease
g Relating to gradient
high Relating to the high-�delity function
i Index of a point included in the current error model basis
j Index of any high-�delity sample point
k Index of trust-region iteration number
low Relating to a lower-�delity function
max User-set maximum value of that parameter
min User-set minimum value of that parameter
med Relating to an intermediate-�delity function

I. Introduction

The expense of either building or testing a complex system drives system designers to use computational
algorithms to model their systems with as much accuracy as possible. The computational requirements

of these high-�delity analyses can be immense and designing systems using formal optimization methods
with them is di�cult, if not impractical. However, most system designers have other lower-�delity models
available that provide estimates of system performance with considerably lower computational requirements.
Even if such models are not available, other approaches such as response surface methodology,1{3 reduced
order modeling,4 or using coarser discretizations,5 can generate surrogates of high-�delity analyses that may
be treated as lower-�delity models. This paper presents a multi�delity optimization approach that employs
low-�delity information to systematically reduce use of the high-�delity analysis during the optimization,
but guarantees convergence to a high-�delity optimal design.
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There are several di�erent multi�delity optimization strategies that optimize a high-�delity function
using a lower-�delity surrogate. One class of approaches uses trust regions. These methods are provably
convergent to a local optimum of the high-�delity function, if at the center of the trust region the low-�delity
function value and derivative are scaled or shifted to be equal to the high-�delity function and gradient.5{7

Another multi�delity approach is to combine a pattern-search with conformal space mapping, where the
least squares di�erence between a low-�delity function and high-�delity function is minimized at a collection
of points by mapping the low-�delity design space to the high-�delity design space. This method is also
provably convergent to an optimum of the high-�delity function.8 A third general approach is E�cient
Global Optimization (EGO) developed by Jones et al.9 In this method, a Bayesian uncertainty approach
is used to �nd regions in the design space with a high likelihood of having an optimal solution. EGO uses
a combination of a regression model and an uncertainty estimate based on distance from known points as
a way to �nd better points. An improvement to Jones’ approach is to use model calibration techniques to
model the di�erence or quotient between a high- and low-�delity function as opposed to modeling the high-
�delity function itself. In this way, a low-�delity model can increase the e�ciency of �nding an optimum of
a high-�delity function in situations where using only a regression surface requires a considerable number of
function evaluations for calibration.10{12 These model calibration techniques are generally based on heuristic
methods and are not provably convergent to an optimum of the high-�delity function.

In this paper, we present a provably convergent multi�delity optimization algorithm based on model
calibration. The �rst-order-consistent trust-region methods mentioned above can be thought of as employing
model calibration; however, the calibration is only local and temporary, since sample points from previous
iterations are not re-used. The challenge we address here is to produce a surrogate model that captures
local function behavior su�ciently well to prove convergence, while capturing global function behavior to
speed convergence. Carter proved that a trust-region algorithm is convergent provided the error between the
gradient of the function and the gradient of surrogate model is bounded by a constant times the gradient of
the function.13 Oeuvray showed that a radial basis function interpolation satis�es this criterion from Carter,
provided the interpolation points satisfy certain conditions.14 Conn et al. then showed that both the error
between a function and a smooth interpolation model as well as the error between the function’s derivative
and the interpolation model’s derivative can be bounded by appropriately selecting interpolation points.15

Conn et al. also proved that any interpolation model that can locally be made fully linear (de�ned in the
next section) can be used in a provably convergent trust-region framework.16 Wild et al. then developed
an algorithm to produce fully linear radial basis function interpolation models and showed that his method
could be used within Conn’s provably convergent optimization framework.17{19

This paper combines the provably convergent optimization frameworks of Wild et al. and Conn et al. with
Bayesian model calibration ideas to result in a provably convergent multi�delity optimization approach that
does not require high-�delity gradient information. Section II provides an overview of the derivative-free
trust-region algorithm using fully linear models proposed by Conn et al. 16 Section III discusses the approach
of Wild et al. 17 to build a fully linear model using RBF functions, and presents our extension to the case of
multi�delity model calibration. Section IV provides an overview of the computational implementation of the
method and suggests a way to incorporate the method of generating fully linear models from Wild et al. 19

with 
exible Bayesian model calibration techniques. Section V demonstrates the multi�delity optimization
algorithm on an analytical example and a supersonic airfoil design problem. Section VI then develops the
extension of our approach to the case when there are multiple lower-�delity models. Finally, Section VII
concludes the paper.

II. Trust-Region-Based Multi�delity Optimization

We consider a setting where we have two (or more) models that represent the physical system of interest:
a high-�delity function that accurately estimates system metrics of interest but is expensive to evaluate, and
a low-�delity function with lower accuracy but cheaper evaluation cost. We de�ne our high-�delity function
as fhigh(x) and our low-�delity function as flow(x), where x 2 Rn is the vector of n design variables. Our
goal is to solve the unconstrained optimization problem

min
x2Rn

fhigh(x); (1)

using information from evaluations of flow(x) to reduce the required number of evaluations of fhigh(x).
We use the derivative-free trust-region algorithm of Conn et al. 16 to solve (1). From an initial design
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vector x0, the trust-region method generates a sequence of design vectors that each reduce the high-�delity
function value, where we denote xk to be this design vector on the kth trust-region iteration. Following the
general Bayesian calibration approach in Ref. 11, we de�ne ek(x) to be a model of the error between the
high- and low-�delity functions on the kth trust-region iteration, and we construct a surrogate model mk(x)
for fhigh(x) as

mk(x) = flow(x) + ek(x): (2)

We de�ne the trust region at iteration k, Bk, to be the region centered at xk with size �k,

Bk = fx : kx� xkk � �kg; (3)

where any norm can be used, provided there exist constants c1 and c2 such that

k � k2 � c1k � k and k � k � c2k � k2: (4)

If the high-�delity function fhigh(x) and the surrogate models mk(x) satisfy certain conditions, this
framework provides a guarantee of convergence to a local minimum of the high-�delity function fhigh(x).
Speci�cally, the convergence proof requires that the high-�delity function fhigh(x) be (i) continuously di�er-
entiable, (ii) have a Lipschitz continuous derivative, and (iii) be bounded from below within a region of a
relaxed level-set, L(x0), de�ned as

L(x0) = fx 2 Rn : fhigh(x) � fhigh(x0)g (5)
B(xk) = fx 2 Rn : kx� xkk � �maxg (6)

L(x0) = L(x0)
[

xk2L(x0)

B(xk); (7)

where �max is the maximum allowable trust-region size. The relaxed level-set is required because the trust-
region algorithm may attempt to evaluate the high-�delity function at points outside of the level set at x0.
The convergence proof further requires that the surrogate models mk(x) are fully linear, where the following
de�nition of a fully linear model is from Conn et al.:16

De�nition 1. Let a function fhigh(x) : Rn ! R that satis�es the conditions (i){(iii) above, be given. A
set of model functions M = fm : Rn ! R;m 2 C1g is called a fully linear class of models if the following
occur:

There exist positive constants �f ; �g and �blg such that for any x 2 L(x0) and �k 2 (0;�max] there exists a
model function mk(x) inM with Lipschitz continuous gradient and corresponding Lipschitz constant bounded
by kblg, and such that the error between the gradient of the model and the gradient of the function satis�es

krfhigh(x)�rmk(x)k � �g�k 8x 2 Bk (8)

and the error between the model and the function satis�es

jfhigh(x)�mk(x)j � �f�2
k 8x 2 Bk: (9)

Such a model mk(x) is called fully linear on Bk.16

At iteration k, the trust-region algorithm solves the subproblem

min
sk

mk(xk + sk) (10)

s.t. kskk � �k

to determine the trust-region step sk. The steps found in the trust-region subproblem must satisfy a su�cient
decrease condition. At iteration k, we require that the model mk(x) have a �nite upper bound on the 2-norm
of its Hessian matrix evaluated at xk: kHk(xk)k � �bhm < 1. This bound on the Hessian may be viewed
as a bound on the Lipschitz constant of the gradient of mk(xk).16 The su�cient decrease condition requires
the step to satisfy the fraction of Cauchy decrease. As given in Ref. 16 and Ref. 18, this requires that for
some constant, �FCD 2 (0; 1), the step sk satis�es

mk(xk)�mk(xk + sk) � �FCD
2
krmk(xk)kmin

�
krmk(xk)k

�bhm
;
krmk(xk)k2
krmk(xk)k

�k

�
: (11)
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The high-�delity function fhigh is then evaluated at the new point, xk + sk. We compare the actual
improvement in the function value with the improvement predicted by the model by de�ning

�k =
fhigh(xk)� fhigh(xk + sk)
mk(xk)�mk(xk + sk)

: (12)

The trial point is accepted or rejected according to

xk+1 =

8<:xk + sk if �k > 0

xk otherwise:
(13)

If the step is accepted, then the trust region is updated to be centered on the new iterate xk+1. The size of
the trust region, �k, must now be updated based on the quality of the surrogate model prediction. The size
of the trust region is increased if the surrogate model predicts the change in the function value well and the
trust region is contracted if the model predicts the function change poorly. Speci�cally, we update the trust
region size using

�k+1 =

8<:minf
1�k;�maxg if �k � �

0�k if �k < �;

(14)

where 0 < � < 1, 0 < 
0 < 1, and 
1 > 1.
A new fully linear model, mk+1(x), is then built using the radial basis function interpolation approach

described in the next section. That surrogate model will be fully linear on a region Bk+1 having center xk+1

and size �k+1.
To check for algorithm termination, the gradient of the model is computed at xk+1. If krmk+1(xk+1)k > �

for a small �, the trust-region algorithm will continue to iterate, solving the next subproblem on the new
trust region, Bk+1, with the updated model, mk+1(x). However, if krmk+1(xk+1)k � �, we need to con�rm
that the algorithm has reached a stationary point of fhigh(x). If gradients of the high-�delity function are
available, one could evaluate if krfhigh(xk+1)k � � directly. In the general derivative-free case, we use the
condition in Eq. 8, and show that if �k+1 ! 0 then krfhigh(xk+1) � rmk+1(xk+1)k ! 0. In practice we
achieve this by updating the model to be fully linear on a trust region with size some fraction, 0 < � < 1,
of �k+1. This process continues until either krmk+1(xk+1)k > �, in which case the trust-region algorithm
will continue with the updated model and updated �k+1, or �k+1 � �2, for a small �2, which terminates the
algorithm. This process of checking for convergence is referred to as the criticality check in Conn et al.16

III. Interpolation-Based Multi�delity Models

In this section we discuss a method of creating surrogate models that satisfy the conditions for provable
convergence presented in Section II. This section �rst presents an overview of the radial basis function (RBF)
interpolation approach of Wild et al.,17 where the interpolation points are chosen so that the resulting model
is fully linear. Next, we present an extension of this approach to the case of multi�delity models.

De�ne dj to be the jth point in the set of designs at which the high-�delity and low-�delity functions
have been sampled. De�ne yi to be the vector from the current iterate (i.e., center of the current trust
region), xk, to any sample point inside or within the vicinity of the current trust region, di, that is selected
to be an interpolation point. Also de�ne Y to be the set of the zero vector and all of the vectors yi. This
notation is shown graphically in Figure 1.

The RBF interpolation is de�ned so that by construction the surrogate model is equal to the high-
�delity function at all interpolation points. That is, the error between the high- and low-�delity functions is
interpolated exactly for all points de�ned by the vectors within Y,

ek(xk + yi) = fhigh(xk + yi)� flow(xk + yi) 8yi 2 Y: (15)

The RBF interpolation has the form

ek(x) =
jYjX
i=1

�i� (kx� xk � yik) +
n+1X
i=1

�i�i(x� xk); (16)
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Figure 1. Graphical representation of the notation used to de�ne points and vectors in and around the trust region.

where � is any positive de�nite, twice continuously di�erentiable RBF with �0(0) = 0, and the second term
in (16) represents a linear tail, where �i denotes the ith component of the vector �(x� xk) = [1 (x� xk)]T .
The coe�cients �i and �i represent the RBF interpolation, and are found by the QR-factorization technique
of Wild et al.17 In order for the model to be fully linear, the RBF coe�cients �i and �i must be bounded in
magnitude. This is achieved by using the interpolation point selection method in Wild et al.17 The process
can be summarized as follows. First, the existing high-�delity sample points, dj , in the vicinity of the trust
region are tested for a�ne independence. If fewer than n+1 a�nely independent points are found, additional
high-�delity function evaluations are required to generate them. Second, we test all other points dj at which
the high-�delity function value is known, by measuring the impact of their addition as interpolation points
on the RBF coe�cients �i and �i. Those points that ensure the RBF coe�cients remain bounded are used
as additional interpolation points to update the model. Wild proved that this RBF interpolation model
construction algorithm produces a fully linear model for a function satisfying conditions (i) and (ii) above.18

In order for Wild’s interpolation approach to be applicable in our Bayesian calibration setting, we require
that the error function de�ned by fhigh(x) � flow(x) satis�es conditions (i) and (ii) above. Condition (i),
that the function is continuously di�erentiable, is satis�ed if both fhigh(x) and flow(x) are continuously
di�erentiable. To establish condition (ii), that the derivative of fhigh(x)�flow(x) is Lipschitz continuous, we
require that both rfhigh(x) and rflow(x) be Lipschitz continuous in the relaxed level set de�ned in Eq. (7).
For the high-�delity function we require

krfhigh(x1)�rfhigh(x2)k
kx1 � x2k

� �high 8x1;x2 2 L(x0); (17)

and for the low-�delity function,

krflow(x1)�rflow(x2)k
kx1 � x2k

� �low 8x1;x2 2 L(x0); (18)

with Lipschitz constants �high and �low, respectively. Since the di�erence between any two functions with
Lipschitz continuous �rst derivatives is also Lipschitz continuous, we obtain

kr[fhigh(x1)� flow(x1)]�r[fhigh(x2)� flow(x2)]k
kx1 � x2k

� �high + �low 8x1;x2 2 L(x0); (19)

where the Lipschitz constant of the di�erence is bounded by �high + �low. Accordingly, the convergence
proof for the trust-region algorithm used in Conn et al. 16 holds, and this multi�delity algorithm is provably
convergent to an optimum of the high-�delity function.
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IV. Numerical Implementation of Algorithms

This section presents an overview of the numerical implementation of the multi�delity optimization
algorithm and suggests a manner in which the method of Wild et al. 19 to generate fully linear models
can be used in a 
exible Bayesian calibration setting. The �rst subsection, Section IV.A, implements the
the trust region based optimization algorithm presented in Section II. Whenever creation of a new fully
linear model is needed, the method discussed in Section III is implemented using the algorithm presented in
Section IV.B.

IV.A. Trust Region Implementation

Algorithm 1 provides an overview of the numerical implementation of the trust-region optimization method
presented in Section II. For each trust-region iteration, the algorithm guarantees that a step is found that
satis�es the fraction of Cauchy decrease, Eq. 11. The algorithm only samples the high-�delity function
when necessary for convergence, and it stores all high-�delity function evaluations in a database so that
design points are never re-evaluated. Whenever an updated surrogate model is needed, the model generation
method described in the following subsection creates a surrogate model using this database of high-�delity
function evaluations together with new high-�delity evaluations when necessary. The parameters of the
trust-region optimization algorithm were de�ned in Section II, while recommended values and sensitivity of
results to those values will be presented in Section V.
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Algorithm 1: Trust-Region Algorithm for Iteration k

1: Solve the trust-region subproblem using nonlinear programming techniques to �nd the sk that solves,

min
sk

mk(xk + sk)

s.t. kskk � �k:

1a: If the subproblem solution fails to satisfy the fraction of Cauchy decrease, Eq. 11, the simple
line search from Conn et al. is used.16

2: If fhigh(xk + sk) has not been evaluated previously, evaluate the high-�delity function at that point.
2a: Store fhigh(xk + sk) in database.

3: Compute the ratio of actual improvement to predicted improvement,

�k =
fhigh(xk)� fhigh(xk + sk)
mk(xk)�mk(xk + sk)

:

4: Accept or reject the trial point according to �k,

xk+1 =

8<:xk + sk if �k > 0

xk otherwise:

5: Update the trust region size according to �k,

�k+1 =

8<:minf
1�k;�maxg if �k � �

0�k if �k < �:

5: Create a new model mk+1(x) that is fully linear on fx : kx� xk+1k � �k+1g using Algorithm 2.
6: Check for convergence: if krmk+1(xk+1)k > �, algorithm is not converged|go to step 1. Otherwise,

6a: While krmk+1(xk+1)k � � and �k+1 > �2,
6b: Reduce the trust region size, ��k+1 ! �k+1.
6c: Update model mk+1(x) to be fully linear on fx : kx�xk+1k � �k+1g using Algorithm 2.
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IV.B. Fully Linear Bayesian Calibration Models

Algorithm 2 presents the numerical implementation of the method to generate fully linear surrogate models,
allowing for a Bayesian maximum likelihood estimate of the RBF correlation length. The RBF models used
in Bayesian model calibration have a length scale parameter that provides 
exibility. For instance, in the
Gaussian RBF model, �(r) = e�r

2=�2 , the parameter � is a variable length scale that can alter the shape
of the correlation structure. If the interpolation errors are assumed to have a Gaussian distribution, then
a maximum likelihood estimate can be used to estimate the value of � that best represents the data.20,21

Therefore, our process to generate a fully linear surrogate model uses the method of Wild et al.17 on a set of
candidate length scales, �i 2 f�1; : : : ; �ng. A fully linear model is constructed for each candidate length scale,
and the likelihood of each length scale is computed. The trust region algorithm then uses the surrogate model
constructed with ��, where �� is chosen as the value of � corresponding to the maximum likelihood. This
maximum likelihood approach can improve the model calibration, and also provides 
exibility in selecting
sample points in the extension to the case when there are multiple lower-�delity models (as will be discussed
in Section VI).

Algorithm 2: Create Fully Linear Models Allowing Maximum Likelihood Correlation Lengths
1: Compute the likelihood for all RBF correlation lengths, �i 2 f�1; : : : ; �ng with steps 2-5.
2: Generate a set of n+ 1 a�nely independent points in the vicinity of the trust region:

2a: Set y1 = 0, and add y1 to the set of calibration vectors Y.
2b: Randomly select any high-�delity sample point, d2, within the current trust region and add

the vector y2 = d2 � xk to Y.
2c: For all unused high-�delity sample points within the current trust region, add the vector

y = dj � xk to Y if the projection of y onto the nullspace of the span of the vectors in the
current Y is greater than �1�k, 0 < �1 < 1.

2d: If fewer than n + 1 vectors are in calibration set, repeat step 2c allowing a larger search
region of size �3�k, �3 > 1.

2e: While fewer than n+ 1 vectors are in Y,
2f: Evaluate the high-�delity function at a point within the nullspace of the span of the

vectors in Y and add y = d� xk to Y.
2g: Store the results of all high-�delity function evaluations in the database.

3: Consider the remaining unused high-�delity sample points within a region centered at the current
iterate with size �4�k, �4 > 1. Add points so that the total number of interpolation points does not
exceed pmax, the RBF coe�cients remain bounded, and the surrogate model is fully linear (using,
for example, the AddPoints algorithm of Wild et al. 19).

4: Compute the RBF coe�cients using the QR factorization technique of Wild et al. 17

5: If only n + 1 vectors are in the calibration set, Y, assign the likelihood of the current correlation
length, �i, to �1. Otherwise compute the likelihood of the RBF interpolation using standard
methods.20,21

6: Select the �i with the maximum likelihood.
6a: If the maximum likelihood is �1 choose the largest �i. This model corresponds to a linear

regression of the high-�delity function at the calibration points included in Y, but still satis�es
conditions for convergence.

7: Return the set of calibration vectors Y, RBF coe�cients, and updated database of high-�delity
function evaluations.

V. Multi�delity Optimization Examples

This section demonstrates the multi�delity optimization scheme for two examples. The �rst is an ana-
lytical example considering the Rosenbrock function and the second is a supersonic airfoil design problem.
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V.A. Rosenbrock Function

The �rst example multi�delity optimization example is the Rosenbrock function,

min
x2R2

fhigh(x) =
�
x2 � x2

1

�2
+ (1� x1)2 : (20)

The minimum of the Rosenbrock function is at x� = (1; 1) and f(x�) = 0. Table 2 presents the number of
high-�delity function evaluations required to optimize the Rosenbrock function using a variety of low-�delity
functions. All of the low-�delity functions have a di�erent minimum than the Rosenbrock function, with the
exception of the case when the low-�delity function is set equal to the Rosenbrock function, corresponding to
a perfect low-�delity function. Convergence results are presented for the case when the low-�delity function
is parabolic, flow(x) = x2

1 + x2
2, in Figure 2(a), and a surface plot of the Rosenbrock function and this low-

�delity function is shown in Figure 2(b). For all of the examples in this section the optimization parameters
used are given in Table 1 and are discussed in the remainder of this subsection.

Parameter Description value
�(r) RBF Correlation e�r

2=�2

� RBF spatial correlation length See Table 2
�0 Initial trust region size max[10; kx0k1]
�max Maximum trust region size 103�0

�; �2 Termination tolerances 5� 10�4


0 Trust region contraction ratio 0.5

1 Trust region expansion ratio 2
� Trust region expansion criterion 0.2
� Trust region contraction ratio used in convergence check 0.9
�FCD Fraction of Cauchy decrease requirement 10�4

pmax Maximum number of calibration points 50
�1 Minimum projection into null-space of calibration vectors 10�3

�2 RBF coe�cient conditioning parameter 10�4

�3 Expanded trust-region size to �nd basis, �3�k 10
�4 Maximum calibration region size, �4�k 10
�x Finite di�erence step size 10�6

Table 1. Optimization parameters used in the Rosenbrock function demonstration.

We use a Gaussian RBF, �(r) = e�r
2=�2 , to build the RBF error interpolation and two methods of

selecting the spatial correlation length, �. The �rst method is to �x a value of �, and the second approach
is based on Kriging methods, which assume interpolation errors are normally distributed and maximize
the likelihood that the RBF surface predicts the function.20,21 To save computation time, the maximum
likelihood correlation length is estimated by examining 10 correlation lengths between 0.1 and 5.1, and
the correlation length that has the maximum likelihood is chosen. If all correlation lengths have the same
likelihood, the maximum correlation length is used. The results in Table 2 show that the correlation length
has a moderate impact on the convergence rate of the method. For this problem, using either � = 2 or ��,
the correlation length that maximizes the likelihood at each trust-region iteration, leads to the best result.

The results in Table 2 show that using a multi�delity framework can reduce the number of high-�delity
function calls. As a baseline, the average number of function calls for a quasi-Newton method directly
optimizing the Rosenbrock function is 69. The Bayesian calibration approach uses between 5 and 180
high-�delity function evaluations depending on the quality of the low-�delity model. The worst case, 180
high-�delity function evaluations, corresponds to not having a lower-�delity model and simply approximating
the function with a RBF interpolation. The best case, 5 high-�delity evaluations, corresponds to the case
when the low-�delity function exactly models the high-�delity function. With a moderately good low-�delity
function (e.g., a 4th degree polynomial), the multi�delity method performs similarly to the quasi-Newton
method. Clearly the performance of this method compared to conventional optimization methods depends
considerably on the quality of the low-�delity function used. However, when this method is compared with
other multi�delity methods such as the �rst-order consistent trust-region approaches of Alexandrov et al.,5 it
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uses fewer high-�delity function evaluations. Results for two �rst-order consistent trust-region methods are
presented in Table 2 along with the results of the Bayesian calibration method. The �rst uses a multiplicative
correction de�ned in Ref. 5, while the second uses an additive correction. The �rst-order consistent methods
require n+ 1 high-�delity function evaluations to estimate the high-�delity gradient at each xk.

For this simple high-�delity function, the �rst-order consistent trust-region methods and the quasi-Newton
method require less than half the wall-clock time that the Bayesian calibration method requires. Building the
RBF models requires multiple matrix inversions, each of which requires O(pmax(pmax + n+ 1)3) operations,
where n is the number of design variables and pmax is the user-set maximum number of calibration points
allowed in a model. Accordingly, the Bayesian calibration method is only recommended for high-�delity
functions that are expensive compared to the cost of repeatedly solving for RBF coe�cients.

Low-Fidelity Function � = 1 � = 2 � = 3 � = 5 �� Mult.-Corr. add-Corr.
flow(x) = 0 148 107 177 223 178 289 503
flow(x) = x2

1 + x2
2 129 77 106 203 76 312 401

flow(x) = x4
1 + x2

2 74 74 73 87 65 171 289
flow(x) = fhigh(x) 5 5 5 5 7 7 6
flow(x) = �x2

1 � x2
2 195 130 132 250 100 352 fail

Table 2. Table of average number of function evaluations required to minimize the Rosenbrock function, Eq. 20, from a
random initial point on x1; x2 2 [�5; 5]. Results for a selection of Gaussian radial bases function spatial parameters, �, are
shown. �� corresponds to optimizing the spatial parameter according to a maximum likelihood criteria.20 Also included
are the number of function evaluations required using �rst-order consistent trust region methods with a multiplicative
correction and an additive correction. For a standard quasi-Newton method the average number of function evaluations
is 69.

As with any optimization algorithms, tuning parameters can a�ect performance signi�cantly; however,
the best choices for these tuning parameters can be highly problem dependent. A sensitivity study measured
the impact of algorithm parameters on the number of high-�delity function evaluations for the Rosenbrock
example using flow(x) = x2

1 +x2
2 as the low-�delity function (Figure 2). For all of these tests, one parameter

is varied and the remainder are all set to the values in Table 1. The conclusions drawn are based on the
average of at least ten runs with random initial conditions on the interval x1; x2 2 [�5; 5]. While these
conclusions may provide general useful guidance for setting algorithm parameters, similar sensitivity studies
are recommended for application to other problems.

The parameter � is the trust region expansion criterion, where the trust region expands if �k � � and
contracts otherwise. The sensitivity results show that lower values of � have the fewest high-�delity function
calls, and any value 0 � � � 0:2 performs well. For the trust region expansion ratio, 
1, the best results
are at 
1 � 2, and high-�delity function evaluations increase substantially for other values. Similarly, for
the contraction ratio, 
0, the best results are observed at 
0 � 0:5, with a large increase in high-�delity
function evaluations otherwise. For the fraction of Cauchy decrease, �FCD, the results show the number of
high-�delity evaluations is fairly insensitive to any value 0 < �FCD < 10�2. Similarly, for the trust-region
contraction ratio used in the algorithm convergence check, �, the number of high-�delity function evaluations
is insensitive to any value 0:5 < � < 0:95.

The method of Wild et al. to generate fully linear models requires four tuning parameters, �1, �2, �3,
and �4.17,19 The parameter �1 (0 < �1 < 1) determines the acceptable points when �nding the a�nely
independent basis in the vicinity of the trust region in Algorithm 2. As �1 increases, the calibration points
added to the basis must have a larger projection into the null-space of the current basis, and therefore fewer
points are admitted to the basis. We �nd for the Rosenbrock example that the fewest function evaluations
occurs with �1 � 10�3; however, for any value of �1 within two orders of magnitude of this value, the
number of function evaluations increases by less than 50%. The second parameter, �2 (0 < �2 < 1), is used
in the AddPoints algorithm of Wild et al. 19 to ensure that the RBF coe�cients remain bounded when
adding additional calibration points. The number of allowable calibration points increases as �2 decreases
to zero; however, the matrix used to compute the RBF coe�cients also becomes more ill-conditioned. For
our problem, we �nd that �2 � 10�4 enables a large number of calibration points while providing acceptable
matrix conditioning. The two other parameters, �3 and �4, used in the calibration point selection algorithm,
are signi�cant to the algorithm’s performance. The parameter �3 (�3 > 1) is used if n+1 a�nely independent
previous high-�delity sample points do not exist within the current trust region. If fewer than n+ 1 points
are found, the calibration algorithm allows a search region of increased size fx : kx � xkk � �3�kg in
order to �nd n + 1 a�nely independent points prior to evaluating the high-�delity function in additional
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(a) Convergence plot.

(b) Parabolic low-�delity function and the Rosenbrock function.

Figure 2. Rosenbrock function and a similar low-�delity model.
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locations. The results show that the number of function calls is insensitive to �3 for 1 < �3 � 10, with �3 � 3
yielding the best results. The parameter �4 (�4 > 1) represents the balance between global and local model
calibration, as it determines how far points can be from the current iterate, xk, and still be included in the
RBF interpolation. Points that lie within a region fx : kx � xkk � �4�kg are all candidates to be added
to the interpolation. Calibration points outside of the trust region will a�ect the shape of the model within
the trust region, but the solution to the subproblem must lie within the current trust region. The results of
our analysis show that �4 � 10 is the best value, with the number of high-�delity function calls increasing
substantially if �4 < 5 or �4 > 15.

V.B. Supersonic Airfoil Optimization

As an engineering example, a supersonic airfoil is optimized for minimum drag at Mach 1.5. Three analysis
tools are available: a supersonic linear panel method, a shock-expansion theory panel method, and an Euler
solver Cart3D.22 Figure 3 shows the approximate level of detail used in the models, and Table 3 compares
the lift and drag estimates from each of the models for a 5% thick biconvex airfoil at Mach 1.5 and 2� angle
of attack. The linear panel method and shock-expansion theory both require sharp leading and trailing edges
on the airfoil, so the airfoils are parameterized by a set of spline points on the upper and lower surfaces and
the angle of attack. The leading and trailing edge points of both surfaces are constrained to be coincident to
maintain the sharp leading and trailing edges. Accordingly, an airfoil with eleven variables is parameterized
by the angle of attack, and has seven spline points on the upper and lower surfaces, but only �ve points on
each surface can be varied.

(a) Panel method. (b) Shock-expansion. (c) Cart3D.

Figure 3. Supersonic airfoil model comparisons at Mach 1.5 and 2� angle of attack.

Panel Shock-Expansion Cart3D
CL 0.1244 0.1278 0.1250
% Di� 0.46% 2.26% 0.00%
CD 0.0164 0.0167 0.01666
% Di� 1.56% 0.24% 0.00%

Table 3. 5% thick biconvex airfoil results comparison
at Mach 1.5 and 2� angle of attack. Percent di�erence
is taken with respect to the Cart3D results.

To demonstrate the RBF calibration approach to op-
timization, the linear supersonic panel method is used as
the low-�delity function and shock-expansion theory is
used as the high-�delity function. For supersonic 
ow, a
zero thickness airfoil will have the minimum drag, so the
airfoil must be constrained to have a thickness to chord
ratio greater than 5%. This is accomplished by adding a
penalty function, so that if the maximum thickness of the
airfoil is less than 5%, the penalty term 1000(t=c� 0:05)2

is added to the drag. A similar penalty is added if the
thickness anywhere on the airfoil is less than zero.

The optimization parameters used by this method are the same as in Table 1, with the exception that
the RBF correlation length is either � = 2 or optimized at each iteration. A consecutive step size of less
than 5 � 10�6 is an additional termination criteria for all of the multi�delity methods compared. The
number of high-�delity function evaluations required to optimize the airfoil for each of the methods using
a di�erent number of design variables is presented in Figure 4. The airfoil optimization shows that both
the �rst-order consistent methods and the RBF calibration method perform signi�cantly better than the
quasi-Newton method. This is largely because the multi�delity methods have a signi�cant advantage over
the single �delity methods in that the physics-based low-�delity model is a reasonable representation of
the high-�delity model. However, the RBF calibration approach uses less than half the number of function
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evaluations than the multiplicative-correction approach. In addition, the additive correction outperforms
the multiplicative correction for this problem, but the RBF calibration outperformed it. The method of
maximizing the likelihood of the RBF calibration performs slightly better than just using a �xed correlation
length.

Figure 4. Number of shock-expansion theory evaluations required to minimize the drag of a supersonic airfoil verse
the number of parameters. The low-�delity model is the supersonic panel method.

As a �nal test case, the panel method was used as a low-�delity function to minimize the drag of an airfoil
with Cart3D as the high-�delity function. Cart3D has an adjoint-based mesh re�nement, which ensures the
error caused by the discretization is less than a tolerance. Accordingly, the drag computed by Cart3D is
not Lipschitz continuous because there is �nite precision and a �nite di�erence estimate of the derivative
only measures numerical noise. However, in the calibration algorithm the trust region radius converges to
zero, which forces a small step size and this is a supplemental termination criteria. So the method is not
provably convergent in this case, but it still does converge to the correct solution. On average, the airfoil
parameterized with 11 variables requires 88 high-�delity (Cart3D) function evaluations. A comparison of
the optimum airfoils from the panel method, shock-expansion theory, and Cart3D is presented in Figure 5.

Figure 5. Minimum drag airfoils from each of the three analysis models. The panel method airfoil is generated by a
quasi-Newton method, but the shock-expansion and Cart3D airfoils are generated with this RBF calibration method
using the panel method as a low-�delity model.

14 of 18

American Institute of Aeronautics and Astronautics



VI. Combining Multiple Fidelity Levels

This section addresses how the radial basis function interpolation technique can be extended to optimize
a function when there are multiple lower-�delity functions. For instance, consider the case when our goal is
to �nd the x� that minimizes fhigh(x), and there exists two or more lower-�delity functions, an intermediate-
�delity, fmed(x), and a low-�delity, flow(x). The typical approach to solve this problem is to nest the
lower-�delity function; that is, to use the intermediate �delity function as the low-�delity model of the high-
�delity function, and to use the lowest-�delity function as the low-�delity model of the intermediate-�delity
function. To do this, two calibration models are needed,

fhigh(x) � fmed(x) + emed(x) (21)
fmed(x) � flow(x) + elow(x): (22)

In the nested approach, the high-�delity optimization is performed on the approximate high-�delity function,
which is the medium-�delity function plus the calibration model emed. However, to determine the steps in
that optimization, another optimization is performed on a lower-�delity model. This low-�delity optimization
is performed on the model

m(x) � flow(x) + elow(x) + emed(x); (23)

but only the low-�delity calibration model elow is adjusted.
A problem with the nested approach is that on the low-�delity optimization, a constrained optimiza-

tion that uses model calibration techniques must be performed due to the trust region at the higher level.
Moreover, this method likely requires a considerable reduction in the resources required to run each of the
lower-�delity models. The reason for this is that in order to take one step in the high-�delity space, an
optimization is required on the medium-�delity function. However, for each step in medium-�delity space,
an optimization is required on the lower-�delity function. So, if an optimization routine requires 50 function
evaluations to converge, then for one high-�delity step, 50 intermediate-�delity evaluations will be required,
and 2,500 lower-�delity evaluations will be required. If the number of optimization iterations is of the same
order at each level, then there will be an exponential scaling in the number of function evaluations required
between �delity levels.

An alternative to nesting multiple lower-�delity functions is to use a maximum likelihood estimator
to estimate the high-�delity function. Since the multi�delity optimization method proposed in this paper
uses radial basis function interpolants, a variance estimate of the interpolation error can be created using
standard Gaussian process techniques.20,21 In the case of multiple �delity levels, the calibration of fhigh(x) �
flow(x)+e(x) is modi�ed so that the error model, e(x) is treated as the mean of a Gaussian process, and the
error model also includes a variance model. In this case, the error model, normally distributed with mean
�(x) and variance �2(x), is written as N

�
�(x); �2(x)

�
. In the case of multiple lower-�delity functions there

are multiple estimates of the high-�delity function, for example,

fhigh(x) � fmed(x) +N
�
�med(x); �2

med(x)
�

(24)

fhigh(x) � flow(x) +N
�
�low(x); �2

low(x)
�
: (25)

From these two or more models, a maximum likelihood estimate of the high-�delity function weights each
prediction according to a function of the variance estimates. The high-�delity maximum likelihood estimate
has a mean fest, given by

fest(x) = (fmed(x) + �med(x))
�

�2
low(x)

�2
low(x) + �2

med(x)

�
+ (flow(x) + �low(x))

�
�2

med(x)
�2

low(x) + �2
med(x)

�
(26)

The estimate of the high-�delity function also has a variance, �2
est, which is less than either of the variances

of the lower-�delity models since

1
�2

est(x)
=

1
�2

low(x)
+

1
�2

med(x)
: (27)

A schematic of the behavior of this maximum likelihood estimate is shown in Figure 6. In the �rst case with
two similar models, the combined estimate has a similar mean with a reduced variance. In the second case
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with two dissimilar estimates, the combined estimate has the average mean of the two models again with
lower variance. In the third case when one model has a considerably smaller variance than the other model,
the combined estimate has a similar mean and slightly reduced variance than the model with the lower
variance. Accordingly, the maximum likelihood estimate is the best probabilistic guess of the high-�delity
function at a non-calibrated point.

Figure 6. Behavior of the combined maximum likelihood estimate given the behavior of the individual estimates.

This method provides 
exibility while still being provably convergent to a high-�delity optimum using
our multi�delity optimization approach. The requirements for convergence are that the surrogate model
upon which the optimization is performed be smooth and exactly interpolate the function at the necessary
calibration points. Using this maximum likelihood estimator, only one of the lower-�delity functions needs
to be sampled at the calibration points because at a calibration point an individual Gaussian process model
has zero variance. Accordingly, at that calibration point the model is known to be correct, so that prediction
is trusted implicitly and the other lower-�delity information is not used. Also, with a smooth Gaussian
process covariance function, the variance estimate will be a smooth function. This makes the model of
the high-�delity function, fest(x), a smooth model that satis�es the optimization algorithm requirements
for convergence to a high-�delity optimum. Therefore, the user may choose any method of selecting which
lower-�delity models are calibrated at a required calibration point, as only one needs to be. For example,
the calibration procedure could choose a ratio, such as one intermediate-�delity update for every three low-
�delity updates, or simply update both the intermediate-�delity and low-�delity models each time a new
calibration point is needed.

Optimization results show that the nesting approach su�ers from poor scaling between �delity levels and
that the maximum likelihood approach speeds convergence of our multi�delity optimization method even if
the lowest-�delity function is a poor representation of the high-�delity function. In all examples presented,
the calibration strategy employed for the maximum likelihood method is to update all lower-�delity models
whenever the optimization method requires a new calibration point.

The �rst example is an optimization of the Rosenbrock function with two parabolic lower-�delity func-
tions. The number of required function evaluations for each �delity level is presented in Table 4. Using
the maximum likelihood approach, the number of high-�delity function evaluations has been reduced by
34%, and the number of combined lower-�delity evaluations has been reduced by 27%. However, combining
the multiple lower-�delity functions through nesting leads to a large increase in the number of function
evaluations at each level.

Method (x2 � x2
1)2 + (1� x1)2 (x1 � 1)2 + x2

2 x2
1 + x2

2

Two-Fidelities 87 0 6975
Max. Likelihood 57 2533 2533
Nested 137 4880 50455

Table 4. Number of function calls required to optimize the Rosenbrock function using multiple lower-�delity functions.
The maximum likelihood approach requires the least high-�delity function evaluations to converge and the nested
approach the most.
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The second example is to optimize a supersonic airfoil for minimum drag with respect to an Euler code,
Cart3D. Two lower-�delity methods are used: shock-expansion theory and a panel method. These results
also show that the maximum likelihood approach converges faster and with fewer calibration points than the
original multi�delity method using only the panel method. The nesting approach failed to converge as the
step size required in the intermediate-�delity optimization became too small. The likely cause of this is that
the adjoint-based mesh re�nement used in Cart3D allows numerical oscillations in the output functional at a
level that is still signi�cant in the optimization, and this makes the necessary calibration surface non-smooth.
The lack of smoothness violates the convergence criteria of this method.

Method Cart3D Shock-expansion Panel Method
Two-Fidelities 88 0 47679
Max. Likelihood 66 23297 23297
Nested 66* 7920* 167644*

Table 5. Number of function calls required to optimize an airfoil for minimum drag using the Euler equations (Cart3D)
with multiple lower-�delity models. An asterisk indicates that solution was not converged due to numerical limitations.

The �nal example demonstrates that the maximum likelihood approach can still bene�t from a poor low-
�delity model. The results in Table 6 are for minimizing the drag of a supersonic airfoil using shock-expansion
theory, with the panel method as an intermediate-�delity function; however, unlike the preceding example,
the lowest-�delity model is quite poor and uses the panel method only on the camberline of the airfoil. Using
this method, any symmetric airfoil at zero angle of attack has no drag and many of the predicted trends
are incorrect compared to the panel method or shock-expansion theory. The optimization results show an
important bene�t of this maximum likelihood approach: even adding this additional bad information, the
number of high-�delity function calls has been reduced by 33%, and the number of intermediate-�delity
function calls has decreased by 31%. An additional point of note is the magnitude to which the nested
approach su�ers by adding poor low-�delity information. In most test problems, the nested optimization
was terminated due to an exceptionally large number of function evaluations. The results presented are the
minimum number of function evaluations the nested approach required to converge.

Method Shock-expansion Panel Method Camberline
Two-Fidelities 126 43665 0
Max. Likelihood 84 30057 30057
Nested 212* 59217* 342916*

Table 6. Number of function calls required to optimize an airfoil for minimum drag using shock-expansion theory
with multiple lower-�delity models. An asterisk indicates a minimum number of function evaluations as opposed to an
average value from random starting points.

VII. Conclusion

This paper has presented a provably convergent multi�delity optimization method that does not require
computation of derivatives of the high-�delity function. The optimization results show that this method
reduces the number of high-�delity function calls required to �nd a local minimum compared with other
state-of-the-art methods. The method creates surrogate models that retain accurate local behavior while
also capturing some global behavior of the high-�delity function. However, a downfall of the method is
that the overhead increases dramatically with the number of design variables and the number of calibration
points used to build the radial basis function model. Accordingly, this approach is only recommended
for high-�delity functions that require a considerable wall-clock time. This paper has also shown that a
multi�delity optimization method based on a maximum likelihood estimator is an e�ective way of combining
many �delity levels to optimize a high-�delity function. The maximum likelihood estimator permits 
exible
sampling strategies among the low-�delity models and is robust with respect to poor low-�delity estimates.
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