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Abstract

In classical complexity theory, the two definitions of probabilistically checkable proofs – the con-
straint satisfaction and the nonlocal games version – are computationally equal in power. In the quan-
tum setting, the situation is far less clear. The resultMIP∗ = RE of Ji et. al. [JNV+20a] and refinements by
Natarajan and Zhang [NZ23] show that multiprover interactive proof systemswith polylogarithmically
long messages can solve any decision problem in RE, including undecidable problems like the halting
problem. These results show that any connection between the “constraint satisfaction” or “Hamilto-
nian” quantum PCP conjecture and nonlocal games must involve restricting the players in the game to
be computationally efficient. This note contains two main results: (1) we give a “quantum games PCP
for AM” in the form of a new construction of a succinct MIP∗ protocol with efficient provers for the
canonical AM-complete problem, and (2) we explain an error in the energy amplification procedure of
Natarajan and Vidick [NV18b] which invalidates their claim to have constructed a quantum games PCP
for a QMA-complete problem. In surveying the obstacles remaining towards a quantum games PCP for
QMA, we highlight the importance and challenge of understanding gap amplification for Hamiltonians
even when locality is replaced by much weaker constraints, such as bounds on the “Pauli spectrum”
of the Hamiltonian. We hope these questions will motivate progress towards new “baby versions” of
Hamiltonian quantum PCP conjecture.

1 Introduction

1.1 Interactive proofs with entanglement

How powerful is an interactive proof system with provers sharing quantum entanglement? In 2020, Ji,
Natarajan, Vidick, Wright, and Yuen proved that such an interactive proof system can be used to decide all
recursively enumerable languages [JNV+20a]. Equivalently, they proved the equality MIP∗ = RE between
the respective complexity classes.

More specifically, they showed that RE is captured by nonlocal games, which can be thought of as an
interaction between a verifier and two arbitrarily powerful devices, often denoted as Alice and Bob. Alice
and Bob are spatially separated but allowed to share entanglement. The verifier (using private randomness)
samples questions for Alice and Bob who then answer using their shared entanglement. The verifier then
evaluates a binary relation on the question and answer pairs, and accepts or rejects accordingly.

A direct consequence of the MIP∗ = RE result [JNV+20a] is the construction of a protocol with the
following properties. A verifier — whose input is the description of a Turing machine, ⟨𝑇 ⟩, and intention
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is to decide whether 𝑇 halts or not — sends messages 𝑞1, 𝑞2 to entangled and non-communicating Alice
and Bob, respectively. The verifier receives answers 𝑎1, 𝑎2, respectively, and then performs a randomized
computation 𝑉𝑇 (𝑞1, 𝑞2, 𝑎1, 𝑎2). The property of the protocol is that there exists a strategy for Alice and Bob
which causes the verifier to accept with probability 1 if 𝑇 halts while all strategies for Alice and Bob cause
the verifier to reject with high probability if 𝑇 does not halt. Crucially, the algorithm 𝑉𝑇 has a runtime
which is poly(𝑛) where 𝑛 = |⟨𝑇 ⟩| is the length of the description of the Turing machine; this implies that
the questions and answers also have length at most poly(𝑛). While the complexity of the verifier must be
at least linear in 𝑛 (by standard arguments), can the communication be shortened? More specifically, can
the questions and answer lengths be made shorter?

The answer is – surprisingly – yes! Natarajan and Zhang [NZ23] improved the MIP∗ = RE re-
sult [JNV+20a] to prove that estimating the entangled value of a nonlocal game with either questions or
answers of length poly log(𝑛) captures the RE complete problem of deciding if a Turing machine 𝑇 halts.
This result can be seen as partial progress towards resolving the quantum games PCP conjecture where
PCP stands for Probabalistically Checkable Proofs. We will state this conjecture more precisely below in
Section 1.4, but first, to put the result in context, let us take a detour to the classical PCP theorem, and the
complexity of classical nonlocal games.

1.2 Probabilistically Checkable Proofs and Games

The power of nonlocal games—or multiprover interactive proof systems—with classical, unentangled play-
ers, was exactly characterized in a sequence of results [BFL91, FGL+96,AS98,H0̊1]1 leading up to the PCP
theorem. This theorem has several equivalent formulations, but in terms of multiprover interactive proofs
(or more colloquially, nonlocal games), it states that the class NP is exactly equal to the class of prob-
lems that can be decided by one-round, two-proverMIP proof systems with 𝑂(log 𝑛)-length questions and
𝑂(1)-length answers.

Note the following two key points of the classical games PCP theorem. Firstly, the parameters for
the question and answer length immediately yield the more familiar “probabilistically checkable proofs"
version of the PCP theorem. This is because any deterministic strategy to a 2-prover nonlocal game with
length-𝑞 questions and length-𝑎 answers can be written down in a table of size 𝑂(2𝑞 ⋅𝑎), and the interaction
between the provers and verifier can be simulated by querying 2𝑎 bits in the table. This means that for
any language in NP, there is a probabilistically checkable proof system for it: the verifier receives a string
of length 𝑂(2𝑞 ⋅ 𝑎) = poly(𝑛) (which in the honest case is the table corresponding to the optimal prover
strategy), and makes 2𝑎 = 𝑂(1) queries to it. If the answer is YES, then the verifier will accept the honest
proof string with high probability, whereas if the answer is NO, it will reject all proof strings with high
probability. In fact, the implication goes the other way as well: any probabilistically checkable proof with

1The sequence of results stems from a result by Babai, Fortnow, and Lund [BFL91] which showed a multiround interaction
between multiple provers and a verifier for NEXP with 𝑂(poly(𝑛)) sized total question length and 𝑂(poly(𝑛)) sized total an-
swer length. Later results [FGL+96, AS98, H0̊1] reduced the round complexity to 1, answer length to 𝑂(1), and demonstrated a
compression which gave the stated equivalence to NP.
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polynomial-sized proofs implies a two-player interactive proof system with 𝑂(log 𝑛)-length questions and
𝑂(1)-length answers. This is due to a standard transformation called the clause-variable game; a detailed
treatment can be found in Thomas Vidick’s lecture notes on the quantum PCP conjecture [Vid14]. Thus,
the two formulations of the classical PCP theorem are equivalent.

Secondly, the protocol arising from the games version of the PCP theorem is prover efficient2. In the
classical nonlocal games setting, we find that in reduction from any language ∈ NP to a family of nonlocal
games, the honest classical provers in the game can generate (in polynomial time) the winning answers
to the questions from the witness 𝑤 to the original NP language. In other words, the honest provers only
need to be P𝑤 powerful. Meanwhile, the protocol is sound against arbitrarily powerful classical powers.

1.3 The quantum PCP conjectures

In the quantum case, we have no PCP theorem, but rather several formulations of quantum PCP conjec-
tures, which are not known to be equivalent. A standard version of the conjecture is the “Hamiltonian
qPCP conjecture", which states that a gapped version of the local Hamiltonian problem is QMA-complete
under quantum polynomial-time reductions.

Conjecture 1 (Quantum PCP [AN02,AAV13]). It is QMA-complete under quantum polynomial-time reduc-

tions to decide3 whether a local Hamiltonian on 𝑛 qubits and 𝑚 = Θ(𝑛) terms has ground energy (minimum

eigenvalue) ≤ 𝑚/10 (YES instance) or ≥ 𝑚/5 (NO instance) even when promised that one of the cases holds.

This conjecture can equivalently be stated in terms of the existence of probabilistically checkable quan-
tum proofs for any language in QMA. This conjecture is discussed extensively in the survey by Aharonov,
Arad, and Vidick [AAV13]. Another version of the conjecture concerns the “proof-checking” property of a
quantum PCP. It is known that the proof-checking version of the conjecture is equivalent ot the Hamilto-
nian version under quantum polynomial-time reductions since the previously mentioned survey [AAV13].
A recent note by Burhman, Helsen, and Weggemans [BHW24] has resolved certain questions about the
adaptivity of the proof-checking and connections to the complexity class QCMA – however, we do not
discuss the proof-checking version any further in this note.

In addition to trying to generalize the proof-checking version of the classical PCP, attempts have been
made to formulate a quantum games PCP, generalizing the statement of the classical PCP theorem in terms
of games orMIP proof systems for NP. This direction was first proposed by Fitzsimons and Vidick [FV15],
but in light of the subsequent progress in our understanding ofMIP∗, it is worth revisiting it. Motivated by

2There is also a natural concern of the efficiency of a verifier. In some context a proof that is both verifier and prover efficient
is called doubly efficient. However, in most such cases, such as the Goldwasser, Kalai, and Rothblum interactive proofs [GKR15],
the notion of efficiency is of a fine grained nature concerning the efficiency of the verifer and prover in terms of the size or depth
of the formula. Specifically, for [GKR15], the verifier should run in time 𝑂(𝑛poly(𝑑)) and space 𝑂(log 𝑛) and the prover in time
poly(𝑛) where 𝑑 is the depth of the circuit. However, in this note we are focused on the coarser perspective on complexity and
therefore we are content with the verifier being efficient if they are a BPP or BQP device. Therefore, to emphasize the importance
on making the prover efficient, we call these problems only prover efficient and not doubly efficient.

3The constants of 1/10 and 1/5 could be replaced with any other choice of constants.
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our presentation of the classical games PCP, we propose that a reasonable statement of a quantum games
PCP conjecture should satisfy the following requirements:

• It should put QMA into a class of MIP∗ proof systems with short questions and answers.

• The MIP∗ proof system should have question length 𝑞 = 𝑂(log 𝑛) and answer length 𝑎 = 𝑂(1).

• Honest provers should be efficient, given (copies of) the QMA witness.

The purpose of these requirements is not to blindly mimic the classical case, but to preserve the hope that
the resulting MIP∗ proof system will say something about the Hamiltonian qPCP conjecture. In particu-
lar, one may hope that these constraints will result in a proof system where the honest provers’ strategy
involves constructing some kind of polynomial-sized quantum probabilistically checkable proof, by per-
forming an efficient transformation on the QMA witness.

1.4 Towards a quantum games PCP

We previously remarked that the Natarajan and Zhang result [NZ23] is only partial progress towards a
quantum games PCP. This is because it fails to satisfy the second and third requirements given above (and
arguably only satisfies the first requirement by a technicality, since the result applies to all of RE and not
just QMA).

The fact that the Natarajan and Zhang result does not achieve the gold standard of 𝑂(log 𝑛) sized
questions and 𝑂(1) sized answers, and instead requires poly log(𝑛) sized questions and answers, is the
more minor of two reasons. We believe the roadblock to be more minor as the original games PCP for NP
by Feige et. al. [FGL+96] involved 𝑂(poly log 𝑛) length messages and subsequent improvements yielded
𝑂(log 𝑛) length messages [AS98,ALM+98]. It seems plausible that similar improvements can be achieved
in theMIP∗ setting by refining known techniques (although it is worth noting that, as remarked in [NZ23],
achieving this improvement will require improving or replacing the analysis of the quantum soundess of
the low-degree test in [JNV+20b]).

The second – and more substantial roadblock – is the complexity of the honest provers. The quantum
analog of the efficient-provers property is to consider scenarios where the honest prover is not all-powerful
but rather is only BQP-powerful but imbued with the solution to the particular problem. For example, in
the case of a NP problem 𝑥 , we can morally think of the honest provers, by analogy, as BQP𝑤 powerful
where 𝑤 is the witness to the problem. More technically, the provers will need to share entanglement
and potentially this entanglement may rely on the witness 𝑤. Recall that a nonlocal game consists of
three phases: (a) a setup phase where Alice and Bob generate their specific entangled state 𝜌𝐴𝐵, (b) an
interaction phase where the game is played with the verifier, (c) and a grading phase done exclusively
by the verifier. The technical definition of efficient provers will be one where (a) the setup phase can be
performed by a quantum polynomial-time (QPT) device with access to 𝑤 and (b) the interaction phases
can be performed by QPT devices with access to their respective share of the state 𝜌𝐴𝐵. To extend this
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definition to QMA, a class where the witness is quantum, we define an efficient nonlocal game capturing
a language in QMA like the NP definition except the classical proof 𝑤 is replaced by |𝜓⟩⊗poly(𝑛) in the setup
phase, where |𝜓⟩ is the quantum witness for the problem. The rationale for multiple copies of the witness
is that the efficient provers cannot (in general) clone |𝜓⟩, and many standard reductions between QMA

protocols (e.g. amplification procedures) require multiple copies of the witness.
It is important to emphasize that prover efficiency is a property of a reduction from one language to

another and not a property of a complexity class. This is because complexity class equalities and reductions
between languages within a complexity class may not be prover efficient. The most pertinent example to
keep in mind is that, even though QMA ⊆ NEXP, and therefore, the QMA-complete local Hamiltonian
problem can be reduced to a NEXP-complete problem such as Succinct-3-Coloring, the witness for the
coloring problem is likely not efficiently computable from the quantum witness to the local Hamiltonian
problem. Therefore, when discussing prover efficiency we will be careful to specify a language (and not a
complexity class) and a specific model of the proof.

A priori, one might suspect that the construction of prover-efficient nonlocal games with short ques-
tions would be easiest for a language in the class QMAwhere the witness is a quantum state since the state
of the honest provers could simply be the witness for the QMA problem. However, as we remark in this
note, there are significant roadblocks to constructing such games and a construction is not known. We
believe that this is the most practical question remaining in the pantheon of nonlocal game theory and,
therefore, the appropriate question to be called the quantum PCP games conjecture.

Conjecture 2 (Quantum PCP (Games Version)). There exists a prover-efficientMIP∗ protocol with 𝑂(log 𝑛)-
length questions and 𝑂(1)-length answers for QMA.

More formally, for every language  ∈ QMA, there exists a polynomial time verifier 𝑉 and quantum polyno-

mial time provers 𝑃1,… , 𝑃𝑘 such that:

1. If 𝑥 ∈ , then there exists a poly(𝑛)-qubit state |𝜓⟩ such that 𝑉 on input 𝑥 , interacting with 𝑃1,… , 𝑃𝑘 on
input (𝑥, |𝜓⟩⊗poly(𝑛)), accepts with probability 2/3. In particular, the provers 𝑃1,… , 𝑃𝑘 , in the setup phase
of the protocol, generate their shared entangled state in polynomial time from the input (𝑥, |𝜓⟩⊗poly(𝑛)).

2. If 𝑥 ∉ , then for any (not necessarily efficient) provers 𝑃∗1 ,… , 𝑃∗𝑘 , the verifier 𝑉 given input 𝑥 and

interacting with 𝑃∗1 ,… , 𝑃∗𝑘 accepts with probability at most 1/3.

We remark that here, |𝜓⟩ is allowed to be an arbitrary state depending on 𝑥 . However, one may think of it

as a QMA witness for 𝑥 : indeed, any MIP∗ protocol of this form implies a QMA protocol for , where honest
witness is |𝜓⟩⊗𝑛, and the QMA verifier simulates the interaction between 𝑉 and 𝑃1,… , 𝑃𝑘 (since the provers are
efficient).

TheMIP∗ = RE result of [JNV+20a] does not directly say anything about the efficiency of the provers,
but by inspecting the strategy for the honest provers given in the completeness case of the protocol, we can
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obtain explicit upper bounds on the prover runtimewhen the language to be decided is in a time-bounded
complexity class. Unfortunately, these bounds are not good enough for QMA, because they only depend
on the classical nondeterministic time complexity of . Specifically, for any problem in NTIME[𝑡(𝑛)], the
honest prover strategy requires quantum time poly(𝑡(𝑛)), given a classical nondeterministic witness of
size 𝑡(𝑛). This strategy requires the prover to compute a PCP-style encoding 𝜋 of a classical tableau of the
execution of a Turing machine solving the problem in 𝑡(𝑛) steps, and prepare on the order of poly log 𝑡(𝑛)
EPR pairs; in response to a verifier question, the prover measures the EPR pairs to obtain indices into the
encoded tableau, and reports the value of the tableau at those indices. For the specific case of BQP or QMA,
the best known NTIME[𝑡(𝑛)] bounds on these classes are 𝑡(𝑛) = exp(𝑛). Moreover, for QMA, even given
copies of the witness state, we do not know how an quantum prover could compute entries of 𝜋 in time
less than 𝑡(𝑛).

1.5 Contributions of this note

In this note, we prove two results and comment on the current state of affairs. The first is that prover-
efficient nonlocal games exist for AM protocols with poly log(𝑛) sized questions and answers. Second, we
describe the error in the incorrect result in Natarajan and Vidick [NV18b] claiming a reduction from the
local Hamiltonian problems to quantum games PCPs. Lastly, we remark on the outstanding roadblocks for
the games version of the QPCP conjecture – i.e. constructing prover-efficient nonlocal games for QMA.

2 Preliminaries

2.1 Nomenclature and notation

The majority of this note regards the computational complexity of computing the entangled value of a
nonlocal game or the QMA-complete problem of computing the minimum eigenvalue of a local Hamil-
tonian. To simplify the reductions between these two problems, we will instead consider computing the
maximum eigenvalue of a local Hamiltonian.

The problems can be expressed as optimization problems, but for connections to the pantheon of com-
putational complexity classes, it is useful to consider the promise-gapped version of the decision problem.
The problem of deciding, for a game 𝐺 whether the entangled value, 𝜔∗(𝐺), is ≥ than 𝑐 (YES instances)
or ≤ 𝑠 (NO instances) is the promise-gapped version of the problem with pgap = 𝑐 − 𝑠. Likewise, the
promise-gapped version of the local Hamiltonian problem is to decide for a local Hamiltonian 𝐇, whether
(YES instances) 𝜆max(𝐇) ≥ 𝑐 or (NO instances) 𝜆max(𝐇) ≤ 𝑠.

The principle goal of this note is to perform reductions between games and Hamiltonians that amplify
the promise gap. Notationally, we will discuss “amplifying the promise gap” of the game (or the Hamilto-
nian) when we precisely mean generate a reduction from a set of games (or Hamiltonian instances) to a
new set of games (or Hamiltonian instances) with a promise gap between YES and NO instances greater
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than the promise gap of the initial set. Lastly, unless specified otherwise, when discussing games we are
always referring to the decision problem of estimating the entangled value of the game.

2.2 The computational power of prover non-efficient nonlocal games

As previously mentioned in the Introduction, stemming from the introspection (i.e. question and answer
reduction) tools developed in [NW19, JNV+20a], Natarajan and Zhang [NZ23] proved that any Turing
machine halting question can be transformed into a nonlocal game. This is the state-of-the-art in terms
of succinct nonlocal games. Note, the following theorem states nothing about the efficiency of the honest
provers.

Theorem 3 (Theorem 58 in [NZ23]). MIP∗[𝑞 = 𝑂(1), 𝑎 = 𝑂(poly log 𝑛)] = RE.

The appropriate interpretation is the every Turing machine halting problem, defined by input ⟨𝑇 ⟩
with 𝑛 def= |⟨𝑇 ⟩| can be reducing to deciding the quantum value 𝜔⋆ of a nonlocal game described by a
table with constant sized questions and 𝑂(poly log 𝑛) sized answers – i.e. the tableau of the verification
function4 𝑉 (𝑞1, 𝑞2, 𝑎1, 𝑎2). Moreover, the table of the game can be computed from the description of the
Turing machine in classical quasi-polynomial time. Equivalently, MIP⋆ ⊇ RE under quasi-polynomial time
reductions since the Turing machine halting problem is RE-complete. The containment MIP⋆ ⊆ RE under
quasi-polynomial time reductions is straightforward.

The nuance of the 𝑂(poly log 𝑛) sized questions versus the 𝑂(log 𝑛) sized questions in the classi-
cal games PCP stems from 𝑂(poly log 𝑛) sized questions required for the quantum low individual degree

test [JNV+20b] which is a seminal step in the introspection arguments used in [JNV+20a] and [NZ23]. We
believe (but it deserves a closer inspection through the entire lengthy proof) that a more efficient alterna-
tive to the quantum low individual degree test would close the gap on the polylogarithmic vs logarithmic
difference between the quantum and classical variants.

3 An efficient nonlocal game for all AM languages

An AM protocol for deciding language membership 𝑥 ∈  is an interaction between a prover (Merlin) and a
public-key verifier (Arthur) where in the firstmessageArthur sends a uniformly random 𝑟 ∈ {0, 1}poly(𝑛) = 𝑅
and thenMerlin responds with𝑤(𝑟) according to a witness𝑤 ∶ 𝑅 → {0, 1}poly(𝑛). Arthur follows by running
a deterministic computation 𝑉 (𝑥, 𝑟 , 𝑤(𝑟)).

It is well known that AM protocols can be constructed with completeness 1 and soundness ≤ 1/3.
We can call an honest prover efficient (or for brevity, efficient) if the honest prover can be simulated
by a P𝑤 machine – i.e. a polynomial-time machine which has access to 𝑤 but no other “super-natural”
computational abilities. In the entangled game setting, we are interested in understand efficient nonlocal
games where the honest provers can be simulated by BQP𝑤 machines. The amplification from P to BQP is

4This table has size 𝑂(4𝑞+𝑎) = quasipoly(𝑛).
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inherently necessary as the provers must share entanglement in order to have more computational power
than NP — and as we don’t know if AM = NP, we must consider entangled strategies.

To understand the efficient nonlocal game forAM at a high level, consider the following honest provers,
Alice and Bob. They receive no input from the verifier, and instead sample their own questions by mea-
suring |𝑟 | EPR pairs in the same basis to generate the same question string 𝑟 . Alice’s answer to the verifier
is simply 𝑟 , and Bob’s answer to the verifier is (𝑟 , 𝑤(𝑟)). The verifier then checks that the answers have
consistent strings 𝑟 and that 𝑉 (𝑥, 𝑟 , 𝑤(𝑟)) accepts.

Notice, that if the randomness 𝑟 is sampled correctly, then by the soundness of the originalAM problem,
the provers are incapable of any deceit as they must answer a witness for 𝑟 . Of course, the principal issue
is that we cannot trust nefarious provers to sample their own questions. This is where we can use the
introspection tools of [JNV+20a]. With introspection, a verifier can use poly log(𝑛) sized questions and
force the provers to sample their own questions. This gives us a game with short questions and long
answers for AM.

The next step is to have the provers grade their own witness — or equivalently, answer-reduction.
Since Bob’s proof has both 𝑟 and 𝑤 and 𝑥 is public, Bob can generate a probabilistically checkable proof

of proximity (PCPP) of the fact that 𝑉 (𝑥, 𝑟 , 𝑤) accepts. Applying this intuition into the answer reduction
argument of [JNV+20a] gets us short questions and answers.

Theorem 4. For every language  ∈ AM, there is a reduction from  to a language of nonlocal games with

questions and answers of size 𝑂(poly log(𝑛)) such that (a) there is a reduction from problems in  to the

entangled value of the game and (b) for any YES instance of the language  with witness 𝑤 = 𝑤(𝑟), the honest
provers only need be BQP-powerful with knowledge of 𝑤.

Furthermore, one might ask whether prover-efficient succinct nonlocal games are achievable for lan-
guages in classes significantly larger than AM or QMA, such as NEXP, NEEXP, or even RE. While one
can make such claims, the issue – as we suggested earlier – is in the subtelties of the definition of prover
efficiency. Consider, for instance, a reduction from the NEXP-complete language of Succinct-3-Coloring
to a nonlocal game. A consequence of Impagliazzo, Kabanets, and Wigderson [IKW02] shows that unless
NEXP ⊆ Σ2, the coloring function for Succinct-3-Coloring problems cannot be expressed succinctly. There-
fore, assuming this monumental complexity class collapse is false, we can only prove prover efficiency in
a model of oracle access to the witness instead of the prover actually holding the witness itself5.

Secondly, its worth noting that we know of prover-efficient nonlocal games for the class PCP[𝑞 =
poly(𝑛), 𝑎 = 𝑂(1)] as the original proof ofMIP⋆ ⊂ MIP by Ito andVidick [IV12] is prover efficient. However,
the transformation from awitness of aNEXP-complete language such as Succinct-3-Coloring to one for the
PCP equivalent languagemay not be prover efficient. For this to be the case, we need that the witness𝑤′ for

5An astute reader might find this argument peculiar since we considered provers with access to the AMwitness function 𝑤(𝑟)
in the previous example. Indeed, if the function 𝑤 were efficiently describable, the problem is actually in the class MA as the
prover could send the description of the function 𝑤, upon which the verifier could sample randomness and verify that 𝑤 ≅ 1. The
principle difference in these two examples is that the derandomization of AM = MA = NP is well believed to be true, while the
collapse of the polynomial hierarchy in NEXP ⊆ AM is widely believed to be false.
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the PCP version of the instance can be simulated with polynomial queries to the witness 𝑤 of the NEXP

version of the instance. To the best of our knowledge, applications of the known PCP transformations
such as that of Dinur [Din07] require exponentially many queries to 𝑤. While we remark, but do not
explicitly prove here, that a similar proof to the AM argument above yields a quantum games PCP for the
canonical language for PCP[𝑞 = poly(𝑛), 𝑎 = 𝑂(1)] that is prover efficient in the sense that the prover
has oracle access to the witness for the PCP, we want to emphasize that this doesn’t necessarily yield a
prover-efficient argument for all NEXP languages. A similar remark extends for languages in complexity
classes past NEXP.

4 The difficulty in constructing nonlocal games for languages in QMA

Given that MIP∗ allows for quantum provers, it seems natural to ask for efficient-prover protocols for a
quantum problem: rather than a classical complexity class like AM, can we achieve such protocols for
QMA? This is the “quantum games PCP” conjecture, first proposed by Fitzsimons and Vidick [FV15]. In
2018, Natarajan and Vidick claimed [NV18b] a resolution of this conjecture; however, this result relied
on an earlier result of Vidick [Vid16] on the quantum soundness of the plane-vs-point low-degree test,
whose proof turned out to have a bug. Nevertheless, the authors believed that a version of the result with
weakened parameters—polylogarithmic instead of logarithmic questions—would hold using the weakened
replacement for Vidick’s low-degree test result obtained by Ji et al. [JNV+20a]. Unfortunately, it was
discovered that the Natarajan and Vidick protocol for QMA is flawed in another way, so that it is now
open whether QMA can be put in MIP∗[𝑞 = 𝑂(log 𝑛), 𝑎 = 𝑂(log 𝑛)] with efficient provers even if Vidick’s
original low-degree result is recovered. In this section we explain Natarajan and Vidick’s approach, why
it fails, and state a corrected version of their faulty amplification lemma.

4.1 A template for MIP∗ protocols for QMA

The protocol in [NV18b] arose from a line of work originated by Fitzsimons and Vidick [FV15] in 2014. This
work gave a prover-efficient protocol for the local Hamiltonian problemwith short quantummessages, and
subconstant soundness gap. The key idea was to distribute the ground state |𝜓⟩ amongst multiple provers
using an error correcting code as a quantum “secret sharing” scheme. Specifically, in their protocol, there
are five provers, and the ground state is encoded qubit-by-qubit with the [[5, 1, 3]] error correcting code
with a share being sent to each prover. To verify the energy, the verifier asks each prover for a small
number of qubits from their share, and then jointly decodes the shares to measure a single local term of
the Hamiltonian on the decoded state.

A series of works [Ji17, NV17] improved this protocol to one with classical messages, by using self-

testing, a powerful tool in the nonlocal games literature, to force the provers to perform the measurements
themselves on their shares, and honestly report their measurement outcomes to the verifier. The main new
technical result of [NV18b], which now appears in a streamlined and self-contained form in the Appendix
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of [JNV+20a] is the quantum low-degree test, a powerful self-test that can force the provers to perform
tensor products of Pauli 𝑋 - and 𝑍-measurements, and has constant soundness gap and polylogarithmic
question size.

Using this result, [NV18b] gave a “gap-preseving” protocol to approximate the ground energy of a
Hamiltonian 𝐇 consisting of a sum of (possibly high-weight) tensor products of Pauli 𝑋 - and 𝑍-operators.

1. Ask the provers to share the ground state using a qubit-by-qubit encoding, but using the [[7, 1, 3]]
Steane code. This means there are 7 provers.

2. Check that the provers share a valid code state, by commanding them to measure the stabilizers of
the code. Since the Steane code is CSS, the stabilizers consist only of tensor products of 𝑋 and 𝑍 ,
and so can be measured by the self-test.

3. Pick a term from the Hamiltonian 𝐇. Measure the energy of the provers’ state with respect to this
term by asking them to measure the corresponding logical operator on the code state. Again, since
the Steane code is CSS, and each term of 𝐇 is a tensor product of Paulis, the logical operator is itself
a tensor product of 𝑋 - and 𝑍-operators, and can be measured by the self-test.

This protocol is “gap-preserving” in that the optimal success probability of the provers is related lin-
early to the ground energy of the Hamiltonian independently of the number of qubits: an energy gap of 𝛿
in the Hamiltonian corresponds to a gap in acceptance probabilities of 𝑂(𝛿), independent of the number
of qubits 𝑛.

In order to use this protocol to solve a QMA-complete problem with a constant soundness gap, it
suffices to find a family of Hamiltonians 𝐇 of the described form, for which finding the ground energy
up to a constant factor is QMA-hard. Natrajan and Vidick attempted this by designing an amplification
procedure for the known QMA-hard problem of approximating the ground energy of a local 𝑋𝑋 + 𝑍𝑍
Hamiltonian up to inverse polynomial gap [CM16].

Unfortunately, this amplification procedure was incorrect6! The issue arises from the normalization

of the energy of the Hamiltonian. Typically, one measures the energy on a scale set by the operator
norm of 𝐇, so that a “constant energy gap” means that the energy gap scales as Ω(‖𝐇‖) independently
of the number of qubits 𝑛. However, a careful examination of the protocol described above reveals that
the relevant scale is not the operator norm, but the 1-norm of the vector of coefficients of 𝐇 in the Pauli
basis, a quantity which we define below as the Pauli 1-norm. While the procedure of [NV18b] preserves
the operator norm, it causes the Pauli 1-norm to grow exponentially, destroying the amplified energy gap
upon renormalization. In the remainder of this section, we explain why this is the correct normalization to
consider, and then describe the Natarajan and Vidick amplification procedure and give the correct scaling
of the norms.

6The issue was first realized by Alex Lombardi who informed Natarajan and Vidick of it in a personal communication.
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4.2 Measuring the energy of a state via Pauli tensor measurements

As we described in our summary of Natarajan and Vidick [NV18b], it is a general technique in nonlocal
games to be able to force the provers to measure the energy of the specific state |𝜓⟩ they possess with
respect to a single Pauli observable of the verifier’s choice. The intention is to use this ability to estimate
⟨𝜓|𝐇|𝜓⟩ with the honest provers running the protocol with |𝜓⟩ being the state of maximal eigenvalue.
Formally, consider a Hamiltonian 𝐇 expressed in a decomposition as a summation over Paulis,

𝐇 = ∑
𝑃∈𝑆

𝛽𝑃𝑃. (1)

Then the following procedure has an acceptance probability whose bias away from 1/2 is proportional to
the energy of the state.

1. Pick a Pauli 𝑃 from 𝑆 with probability 𝐏𝐫[𝑃] def=
|𝛽𝑃 |

∑𝑃∈𝑆 |𝛽𝑃 |
.

2. Measure 𝑃 to get a bit 𝑏 ∈ {±1}.

3. Accept if 𝑏 = sign(𝛽𝑃 ).

The acceptance probability can be calculated directly as

𝐏𝐫[accept] = ∑
𝑃∈𝑆

𝐏𝐫[𝑃] ⋅ 𝐏𝐫[𝑏 = sign(𝛽𝑃 )] (2a)

= ∑
𝑃∈𝑆

|𝛽𝑃 |
∑𝑃∈𝑆 |𝛽𝑃 |

𝐏𝐫[𝑏 ⋅ sign(𝛽𝑃 ) = 1] (2b)

= ∑
𝑃∈𝑆

|𝛽𝑃 |
∑𝑃∈𝑆 |𝛽𝑃 |

⋅(
1
2
+
1
2
sign(𝛽𝑃 ) ⟨𝑏⟩𝜓) (2c)

=
1
2
+
1
2
⋅∑
𝑃

𝛽𝑃
∑𝑃∈𝑆 |𝛽𝑃 |

⟨𝜓|𝑃 |𝜓⟩ (2d)

=
1
2
+

⟨𝜓|𝐇|𝜓⟩
2‖𝐇‖ ,1

. (2e)

In the last line we introduce the notion of the ‖⋅‖ ,1, the Pauli 1-norm, which is the minimum weight of
∑𝑃∈𝑆 |𝛽𝑃 |when a Hamiltonian𝐇 is expressed in a decomposition as a summation over Paulis (as in eq. (1)).

Therefore, it is important to note that in all known constructions [FV15, NV18b] of nonlocal games
from local Hamiltonians – including the proposal byNatarajan andVidick [NV18b] – rely on aHamiltonian
energymeasurement test with analysis analogous to the above calculation. The consequence of the success
probability in eq. (2), is that the promise gap of the resultant nonlocal game family game is

pgap(game) ≥ max
𝐇∈Hamiltonian

{
1

‖𝐇‖ ,1

}
⋅ pgap(Hamiltonian). (3)
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Previously, we stated that the Natrajan and Vidick transformation [NV18b] generates a reduction from
local Hamiltonians to nonlocal games with a promise gap of the game polynomial in the promise gap of
the Hamiltonian. This is because they consider 𝑋𝑋 + 𝑍𝑍 Hamiltonians which by definition have a Pauli
1-norm of at most 𝑂(𝑛2). This is not the case for general Hamiltonians as the Pauli 1-norm can vastly vary
from more “standard” norms as illustrated by the following example.

Remark 5. The Pauli 1-norm is always an upper bound on the operator norm, but it can be much larger than

it. Consider the Hadamard matrix

𝐻 =
1√
2
(𝑋 + 𝑍). (4)

This has ‖𝐻 ‖ = 1 but ‖𝐻 ‖ ,1 =
√
2. This gap can be exponentially amplified by tensor powers:

‖𝐻⊗𝑛‖ = 1, ‖𝐻⊗𝑛‖ ,1 =
√
2𝑛. (5)

The principal error in Natarajan and Vidick [NV18b] is that they considered generating a nonlocal
game for the tensor-product amplification of the Hamiltonian𝐇 and they incorrectly calculated the ampli-
fication of the Pauli 1-norm in this transformation. Therefore, they incorrectly concluded a nonlocal game
of constant promise gap from the tensor-product amplification of a QMA-complete family of 𝑋𝑋 + 𝑍𝑍
Hamiltonians. The following lemma provides the rectified amplification and accounts for the amplifica-
tion of the Pauli 1-norm.

4.3 Hamiltonian promise gap and Pauli 1-norm amplification

Lemma 6 (Hamiltonian promise gap amplification). Consider a 𝑛-qudit 𝓁-local Hamiltonian 𝐇 such that

−1 ≼ 𝐇 ≼ 1 and further assume a promise that 𝜆max(𝐇) ≥ 1 − 1/𝑝 or 𝜆max(𝐇) ≤ 1 − 1/𝑞. Then there exists

an efficient transformation producing a 𝓁 ⋅ 𝑘-local Hamiltonian 𝐇′ such that −1 ≼ 𝐇′ ≼ 1 and that

𝜆max(𝐇′) ≥ 1 −
𝑘
𝑝

or 𝜆max(𝐇′) ≤ 2𝐞−
𝑘
2𝑞 − 1, (6)

respective to the two promised cases. Furthermore, the Pauli 1-norm of 𝐇′ can be bounded as

‖𝐇′‖ ,1 ≤ 1 + 2(
1 + ‖𝐇‖ ,1

2 )

𝑘

. (7)

Note that if ‖𝐇‖ ,1 ≤ 1, then ‖𝐇′‖ ,1 ≤ 3 and is, therefore, bounded. However, it is unknown whether
there exists a family of local Hamiltonians which capture QMA for which the Pauli 1-norm is bounded and
amplification is possible.
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One might consider two strategies to adjust a Hamiltonian such that its Pauli 1-norm is manageable.
However, neither of these will prove successful for achieving a nonlocal game with consant promise gap.
The first would be to be to scale the Hamiltonian 𝐇 ↦ 𝜃𝐇; for an appropriate 𝜃 ≤ 1/‖𝐇‖ ,1, this would
certainly give a threshold on the Pauli 1-norm but the promise gap parameters of 1 − 1/𝑝 and 1 − 1/𝑞
would also move and make amplification difficult. This does not seem like a viable strategy.

The second is to consider applying a randomized restriction to the amplified Hamiltonian𝐇′ to reduce
the Pauli 1-norm. Similar to Lemma 36 of [AN22], we can consider sampling 𝑚 = Ω(𝑛/𝛿2) terms from the
Hamiltonian𝐇′ to generate a Hamiltonian𝐇′′. Application of the operator Chernoff bound [Tro12, Lemma
2.8] gives that

𝐏𝐫 [‖‖𝐇
′ − 𝐇′′‖‖ ≥ 𝛿] ≤ 2𝑛𝐞−𝑚𝛿

2/32 ≤ 1/3. (8)

If we apply this after having amplified 𝐇′ to a constant promise gap, we can select 𝛿 = 𝑂(1), we arrive at a
Hamiltonian with manifestly fewer terms but a Pauli 1-norm that still scales with 𝑂(𝑛), at best. Therefore,
the resulting nonlocal games promise gap will not be a constant.

Proof of Lemma 6. The intention is to amplify the promise gap by considering a tensor product of the
original Hamiltonian. We exploit the following two basic facts:

1. If 0 ≼ 𝐌, then 𝜆max(𝐌⊗𝑘) = 𝜆max(𝐌)𝑘 .

2. For small 𝜖, (1 − 𝜖)𝑛 ≈ 1 − 𝑘𝜖.

These facts tell us that if 𝐌 is a positive operator whose top eigenvalue is either 1 or 1 − 𝜖, then the top
eigenvalue of𝐌⊗𝑘 is either 1 or bounded away from 1 by a constant, for 𝑘 on the order of 1/𝜖.

To apply this idea to our situation, we first have to linearly shift the Hamiltonian so that the Hamil-
tonian’s spectrum is non-negative. Specifically, we will shift the Hamiltonian by a multiple of identity to
make it positive, amplify using by taking tensor product (shown above), and then shift back:

𝐇′ def= 2(
𝕀 + 𝐇
2 )

⊗𝑘

− 𝕀. (9)

By construction 𝐇′ has operator norm ‖𝐇′‖ ≤ 1. It remains to bound the its top eigenvalue in the two
cases, and to bound its Pauli 1-norm. Let 𝜆max(𝐇) = 1 − 1/𝑎. Then,

𝜆max(𝐇′) = 2(
1 + 𝜆max(𝐇)

2 )

𝑘

− 1 = 2(1 −
1
2𝑎)

𝑘

− 1 = 2(1 −
1
2𝑎)

2𝑎⋅ 𝑘2𝑎
− 1. (10)

Well-known bounds can be applied to lower- and upper-bound the top eigenvalue 𝜆max(𝐇′).

2(1 −
𝑘
2𝑎)

− 1 ≤ 𝜆max(𝐇′) ≤ 2𝐞−
𝑘
2𝑎 − 1 (11)
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Therefore, the promise gap of 1/𝑞 − 1/𝑝 is amplified to at least

≥ 2((1 −
𝑘
2𝑝)

− 𝐞−
𝑘
2𝑞
) ≥ 𝑘(

1
2𝑞

−
1
𝑝)

(12)

This is the “absolute” energy gap, prior to normalization by the Pauli 1-norm7. Next we compute the Pauli
basis decomposition of 𝐇′. Let 𝑆 be the set of Pauli terms in 𝐻 and let 𝑚 = |𝑆|.

𝐇 = 𝐄
𝑃∈𝑆

[𝛼𝑃𝑃] (13a)

𝕀 + 𝐇
2

=
1
2
𝕀 +

1
𝑚

∑
𝑃∈𝑆

1
2
𝛼𝑃𝑃 (13b)

=
1
2(

1 +
𝛼𝐼
𝑚)𝕀 +

1
𝑚

∑
𝑃∈𝑆⧵{𝐼 }

1
2
𝛼𝑃𝑃 (13c)

‖(𝐼 + 𝐇)/2‖ ,1 ≤
1
2
+
1
2
‖𝐇‖ ,1 (13d)

‖((𝐼 + 𝐇)/2)⊗𝑘‖ ,1 ≤
1
2𝑘
(1 + ‖𝐇‖ ,1)𝑘 (13e)

‖2((𝐼 + 𝐇)/2)⊗𝑘‖ ,1 ≤
1

2𝑘−1
(1 + ‖𝐇‖ ,1)𝑘 (13f)

‖𝐇′‖ ,1 ≤ 1 + 2(
1 + ‖𝐇‖ ,1

2 )

𝑘

. (13g)

5 Open problems

Aside from the obvious open conjecture of the quantum games PCP, the following are what we believe to
be more accessible stepping stones.

1. Is there a QMA-complete family of Hamiltonians with bounded ‖𝐇‖ ,1 for which Lemma 6 can be
applied? This is an interesting question even if the Hamiltonian family does not have the 𝑋𝑋 + 𝑍𝑍
form that makes it immediately amenable to a nonlocal game reduction.

2. Towards a negative answer to the previous question, for what classes of nonlocal Hamiltonians with
‖𝐇‖ ,1 ≤ 1 can we show that finding the ground energy up to constant gap (relative to ‖𝐻 ‖) is not
QMA-hard? So far, work on approximations for Hamiltonians has focused on the local case, where
ansatzes such as product states are useful. Here we do not expect product states to serve as good
ansatzes here, but perhaps more algebraic techniques (e.g. ncSoS) will yield fruitful results. This
could be used to show that the local Hamiltonian problem is not as hard as it seems.

7For the QMA-complete Feynman-Kitaev circuit-to-Hamiltonian construction, the promise cases are constructed with 1/𝑝
as inverse exponentially small so for 𝑘 = poly(𝑛), this amplification is roughly from 1/𝑞 to 𝑒−𝑘/2𝑞 . Picking 𝑘 = 2𝑞, gives us an
amplification of 1/𝑞 to 1 − 1/𝑒 ≈ 0.63.
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3. More sophisticated gap amplification schemes have been studied [Has07, ALV12, AKLV13, AHS20,
AAG21,AN22,ABN23] that involve applying some polynomial 𝑓 to𝐇. How can we bound ‖𝑓 (𝐇)‖ ,1,
in terms of ‖𝐇‖ ,1 and properties of 𝑓 ?

4. Is there a template for a 2-prover version of Natarajan-Vidick [NV18b]? That is, assuming any
favorable conjecture in Hamiltonian complexity, can one find a two-prover succinctMIP∗ for QMA,
where the provers are efficient given copies of the ground state?
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