$\underline{\mathbf{1 . 1}}$	$\underline{\mathbf{1 . 2}}$	$\underline{\mathbf{1} .3}$	$\underline{\mathbf{1} .4}$	$\underline{\mathbf{1 . 5}}$	$\underline{\mathbf{1 . 6}}$	$\underline{\mathbf{1 . 7}}$	$\underline{\text { Total }}$
1	1	4	1	3	18	3	31

Copper Ammonia Equilibria (CODS-CT Team Round Pt. 2 \#1)

Perhaps the most famous complex of copper is the Copper (II) Ammonia complex. This system will be explored through the following 3 equilibria:

$\mathrm{Cu}^{2+}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)^{2+}$	(1) $\mathrm{K}_{\mathrm{f}}=2 \times 10^{4}$
$\mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Cu}(\mathrm{OH})^{+}+\mathrm{H}^{+}$	(2) $\mathrm{K}_{\mathrm{a}}=1 \times 10^{-5}$
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$	(3) $\mathrm{K}_{\mathrm{b}}=2 \times 10^{-5}$

Further complexation of ammonia is ignored due to the low initial concentration of NH_{3} present.
1.1 What is the pH of a 0.012 M solution of NH_{3} in water?
$\underline{1.2}$ What is the pH of a 0.01 M solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ in water?

We can simplify the final problem we hope to study by ignoring the complexation equilibria (1) and considering only acid base reactions (2-3) for now.

To 1.0 L of solution, a student adds 0.01 moles of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and 0.012 moles of NH_{3} so that the final analytical concentrations are $0.01 \mathrm{M} \mathrm{Cu}^{2+}$ and $0.012 \mathrm{M} \mathrm{NH}_{3}$. If we ignore the complexation equilibria, the pH of the solution thus prepared can be calculated to be 8.60 .
1.3 What are the concentrations of $\mathrm{Cu}^{2+}, \mathrm{Cu}(\mathrm{OH})^{+}, \mathrm{NH}_{3}$, and NH_{4}^{+}in this solution?
1.4 What is the $\mathrm{K}_{\text {eq }}$ of the reaction $\mathrm{Cu}^{2+}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Cu}(\mathrm{OH})^{+}+\mathrm{NH}_{4}^{+}$?

To 1.0 L of solution, a student adds 0.01 moles of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and 0.012 moles of NH_{3} so that the final analytical concentrations are $0.01 \mathrm{M} \mathrm{Cu}^{2+}$ and $0.012 \mathrm{M} \mathrm{NH}_{3}$. This time we will consider all 3 equilibria listed above.
1.5 Write out all equations you can construct from the given information which you will use to solve the system.
1.6 Determine the final concentrations of all 7 aqueous species (excluding $\mathrm{NO}_{3}{ }^{-}$)
1.7 State all approximations which you used (if you used any)

