

Real Options for Real Communities: Incorporating Uncertainty into Small-Scale Energy Planning

A Presentation for: ZEW Conference, 10/28/2008 "Real Options in Energy Economics"

Katherine Dykes, PhD Candidate, ESD, MIT Prof. Richard de Neufville, ESD, MIT

Bowling Green, Ohio Wind Farm

- > Project Description
- > Sources of Project Uncertainty & Opportunities for Flexibility
- > Example of a Simple Expansion Option for Community Wind
- > Survey: Accessibility of Real Options Analysis
- > Windustry Tool for Community Wind Planning: Augmentation with Real Options
- > Conclusions & Future Work

Project Description: Small-scale energy planning

- > Utilities historically dominated US energy planning with long-term contracted, large-scale, & fossil-fuel based electricity generation facilities
- > PURPA 1978 opens up regulatory framework to promote Independent Power Producers
 - Forces utilities to buy power at "avoided-cost" rate
- > Oil crisis prompts demonstration projects for grid-tied wind applications by the DOE in mid-1970's
- > Wind development in the US prevalent in California in the 1980's, stagnant through late-1990's and has picked up considerably in last 2 years (doubling cumulative capacity from 2006 to 2008) Real Options in Energy Economics, ZEW, 10/28/2008

Project Description: Community Wind Farms

- >Community Wind, a tradition in Europe, is a small but important piece of American Growth
- >While resistance to wind projects can be strong, community wind projects are initiated and supported locally
- > Community Wind in Ohio:
 - Precedent: 2003 Bowling Green project of 4 1.8 MW turbines (largest turbines west of the Rockies at the time)
 - Recent passage of Ohio RPS and ODOD renewable energy grants make wind projects attractive
 - Communities in "rust-belt" looking for job creation opportunities
 - Municipal utilities have a lot of autonomy
 Real Options in Energy Economics, ZEW, 10/28/2008

Project Description: Wind for Wapakoneta

Annual Wind Speed averages of various Ohio Test Sites, Wapakoneta outperforms all other sites even when normalized to historical trends

> Model community: Wapakoneta

- Two Year DOE Tall Tower Wind Assessment Study shows that wind speeds at Wapakoneta, Ohio are high class 2 to low class 3
- Wapakoneta is a municipal utility
- In addition, the city owns a large body of land near the test site and a major interstate that would promote ease of installation
- Finally, there is community interest from Wapakoneta officials and local businesses for such a project

Project Description: Wind in Wapakoneta

- > What are the next steps?
 - Following on the wind assessment study, other information is necessary prior to going ahead with such a largeinvestment project for the city
 - Key to this is an economic feasibility study that incorporates:
 - project costs
 - offsets in electricity costs to the community
 - Regulatory incentives
 - All of the above involve a large amount of uncertainty
 - Any thorough economic feasibility study will accurately address these uncertainties as well as include the value of various possibilities for project flexibility

- > Project Description
- > Sources of Project Uncertainty & Opportunities for Flexibility
- > Example of a Simple Expansion Option for Community Wind
- > Survey: Accessibility of Real Options Analysis
- > Windustry Tool for Community Wind Planning: Augmentation with Real Options
- > Conclusions & Future Work

Sources of Project Uncertainty: examples

> Wholesale electricity price

- Wholesale electricity sold to Wapakoneta substations from AMP-Ohio; trend in electricity prices for past several years shown below¹
- > Regulatory Incentives, currently available and subject to change year to year²:
 - State Grants up to \$150,000 for a large commercial wind project
 - Capped production incentives of \$0.01/kWh
 - \$0.019/kWh production tax-credit at federal levels
- > Installation and Maintenance Costs
 - Project Costs for Wind have been falling steadily as shown below³:

¹ <u>http://www.amp-ohio.org/pdf/AMP_Ohio_2006_Annual_Report.pdf</u>

² http://www.dsireusa.org/library/includes/map2.cfm?CurrentPageID=1&State=OH&RE=1&EE=1

³ <u>http://www.eere.energy.gov/windandhydro/windpoweringamerica/ne_economics.asp</u>

Opportunities for Flexibility

> Call Options:

- Deferral of entire project
- Expansion from small (< 5 MW) demonstration project to large-scale wind farm
- Technology upgrade: installation of smaller (~ 1 MW) turbines with planning for eventual replacement by larger (2-3 MW) turbines

> Put Options:

- Sell-off project to a larger utility
- Shutdown and sell off equipment
- > Compound Options:
 - Deferral, Expansion or Ugrade with Sell-Off or Shutdown

- > Project Description
- > Sources of Project Uncertainty & Opportunities for Flexibility
- > Example of a Simple Expansion Option for Community Wind
- > Survey: Accessibility of Real Options Analysis
- > Windustry Tool for Community Wind Planning: Augmentation with Real Options
- > Conclusions & Future Work

Example of a Simple Expansion Option for Community Wind

- > Dominant source of uncertainty of the three highlighted sources of technology cost, electricity prices and regulation:
 - Wholesale electricity price
 - Largely due to fossil fuel price volatility, especially natural gas
 - Also potential for volatility from demand-supply growth differential
 - Regulation
 - Production-tax-credit a perennial source of uncertainty in US
 - In the future, potential for regulation on CO2 emissions could also cause significant increase in electricity prices
- > Options for Wapakoneta community wind project:
 - Call option to expand (starting with small scalable demonstration) project)

- > Use a 2-stage decision tree analysis with Monte Carlo simulations to assess the option of expanding a small (3 MW) wind farm to a larger (20 MW) wind farm; includes option to expand at specified time
- > Option value created due to uncertainty in electricity prices and carbon-legislation
 - Wholesale electricity prices projected using Geometric Brownian Motion model with drift 5.07% and volatility 9.31%
 - Carbon prices based on MIT EPPA model for carbon prices based on different hypothetical cap-and-trade programs that have been proposed in the US⁵
 - Small farm higher cost per MW (certain fixed costs incurred regardless of project size)

⁵ Paltsev, S. et. al. "Assessment of US Cap and Trade Proposals," MIT Joint Program on the Science and Policy of³Global Change, Report No. 146, April 2007.

> Hypothetical Costs for a wind farm at Wapkoneta, assumptions:

- using test site wind profile
- Ignores regulatory incentives such as PTC or grants
- uses cost estimates as provided by AWEA and Windustry⁶

Pan't lage up for times ment for large scale wird tu bire farm				
Tubre#		26		
SzeTubre		750	KW	
Total MW		195	MV	
Yearly KWhprodution/ turbine		1,408,46465	k₩r	
Total Cost	\$	20,000,000,00		
Economies of State?		yes		
Mänterance Coats/MV	\$	630000	\$MV	
Tdal MänlerenceCoels	\$	1,638,000,00		
Cabonoliset		19,500.00	torsCO2e	

Model characteristics for the large 20 MW wind farm project plan

Plan2 small upfront investment for small-scale windturbine farm(scalable)				
Turbine#/installation	4			
Sizeturbine	750	kW		
Total MW	3	MW		
Yearly KWh production / turbine	1, 408,464 .65	kWhr		
Total Cost	\$ 5,700,000.00			
Economies of Scale?	no			
Maintenance Costs / MW	\$ 63,000.00	\$MW		
Total MaintenanceCosts	\$ 252,000.00			
Carbonofiset	3,000.00	tons CO2-e		

Model characteristics for the small 3 MW wind farm project plan

Project Cost Information:

⁶ http://www.awea.org/pubs/factsheets/10stwf_fs.PDF

http://www.windustry.org/your-wind-project/community-wind/community-wind-toolbox/chapter-3-project-planning-and-managements Rached T., Communicating Complexity and Informing Decision Makers, MS Thesis, Engineering Systems Division, MIT, June 2008.

Real Option Analysis: Expansion

Real Options in Energy Economics, ZEW, 10/28/2008

15

esc

- > Estimated value of option to expand from above set of simulations is ~\$1,000,000
- In typical spirit of real options, flexibility in expansion of the wind farm allows for capturing up-side potential of strict carbon legislation and high electricity prices but avoids cost if those scenarios do not occur

- > Project Description
- > Sources of Project Uncertainty & Opportunities for Flexibility
- > Example of a Simple Expansion Option for Community Wind
- > Survey: Accessibility of Real Options Analysis
- > Windustry Tool for Community Wind Planning: Augmentation with Real Options
- > Conclusions & Future Work

Survey: Accessibility of Real Options

- > Real Options can influence assessment of project value for community wind farms
- > Survey was conducted to gauge familiarity with real options tools and potential for valuation of community wind projects
- > Community Wind a small portion of overall wind development companies
- > Survey was sent to 22 known the Community Wind project managers and financial planners within companies who focus specifically on wind and renewable energy development for community projects

Survey: Accessibility of Real Options (Results)

> Results of Survey (16 respondents)

- 100% of respondents were unfamiliar with the concept of real options
- 100% of respondents felt that there were significant sources of uncertainty that would affect the financial viability of their projects
 - 12 of the 16 believed that uncertainty in policy for renewable energy could undermine a project's financial performance
 - Other significant sources considered were O&M Costs, Electricity Prices, Installation Costs and Economic Development

Survey: Accessibility of Real Options (Results)

> More on uncertainty:

- Most (13 of 16) respondents felt that they had "somewhat" addressed the sources of uncertainty in their projects;
- Specifically, respondents targeted uncertainties from O&M costs (7) and policy change (6)
 - Typically, organizations worked with groups at state and federal levels to advocate / lobby for favorable policy for renewable energy
 - With respect to O&M, contracts were designed to try and tighten margin of uncertainty upfront
 - Other factors that played a role was selection of technology (i.e. choosing 1 MW over larger turbine sizes) and spreading installation costs over a large group of investors (i.e. the Minnesota "flip-it" model)
 - Uncertainty in electricity prices not addressed by any respondent, options not utilized for addressing any uncertainty source

Survey: Accessibility of Real Options (Results)

> Consideration for flexibility in project planning:

- 12 of 16 respondents had considered flexibility for their projects:
 - 9 considered project expansion
 - 2 considered shutting-down an unprofitable project
 - 1 considered project siting and construction
 - 1 respondent referred to their continual analysis of technology, resources and financing changes as a method of incorporating flexibility into project development
- Overall, no respondents had used real options either for valuing or planning for flexibility in their projects
- Given the value that flexibility can provide for community wind projects (as demonstrated in the earlier example), worthwhile exploring how to educate community wind project developers about real options

- > Project Description
- > Sources of Project Uncertainty & Opportunities for Flexibility
- > Example of a Simple Expansion Option for Community Wind
- > Survey: Accessibility of Real Options Analysis
- > Windustry Tool for Community Wind Planning: Augmentation with Real Options
- > Conclusions & Future Work

- > Windustry is a non-profit based out of Minnesota, USA that has focused on facilitating community wind development for over a decade
- > A hallmark accomplishment of the organization has been the creation of a guide for community wind project development including a "wind project calculator" economic feasibility assessment tool⁷
- > Presents an opportunity for encouraging use of real options analysis for community wind projects

Windustry Tool for Community Wind Planning: Augmentation with Real Options

- > Windustry results assuming deterministic revenue / cost profile for wind projects:
 - Using Wapakoneta capacity factor
 - Assuming PPA near current-day electricity price (\$0.05 / kW-hr)
 - All other assumptions using deterministic values provided by Windustry tool

Project Summary		
Project Name	Test Project	
Project Size (MW)	4.5	
Turbine Model	GE 1.5MW	
Net Capacity Factor (Years 1-20)	23%	
Total kWh Produced (Years 1-20)	180,657,593	
РРА	\$0.0500	
C-BED PPA (NPV)	\$0.0000	
Green Tag Rate	\$0.0000	
Total Installed Cost	\$5,700,000	
Local Investor Contribution	\$2,000,000	
Local Investor IRR	13%	
Local Investor Return (NPV)	\$430,058	
Equity Investor Contribution		
Equity Investor IRR		
Equity Investor Return (NPV)		
O & M Rate (% of revenues)	11.1%	
Capital Cost per kWh	\$1,267	
RR (Years 1-20)	9%	
Net Present Value (Years 1-20)	\$130,058	

Windustry Tool for Community Wind Planning: **Augmentation with Real Options**

- > Augmentation of Wind Project Calculator to Incorporate Uncertainty from Electricity Prices and Policy demonstrates distribution of outcomes:
 - Using same drift (0.02) in PPA as Windustry assumes and volatility as earlier (0.09), Monte Carlo simulations

Windustry Tool for Community Wind Planning: Augmentation with Real Options

> Re-evaluation of project economic feasibility through inclusion of simple deferral option for flexibility:

	NPV 1	NPV 2
min	(1,451,556)	(1,762,495)
max	3,106,412	5,337,946
mean	248,314	593 <mark>,2</mark> 58

- > Project Description
- > Sources of Project Uncertainty & Opportunities for Flexibility
- > Example of a Simple Expansion Option for Community Wind
- > Survey: Accessibility of Real Options Analysis
- > Windustry Tool for Community Wind Planning: Augmentation with Real Options
- > Conclusions & Future Work

- > Using community wind as an exemplary small-scale community energy planning project, various sources of uncertainty and opportunities for flexibility were identified
- > Using a particular site in Ohio, one option of expansion was explored
- > Initial analysis for a Wapakoneta wind project indicate that economies of scale are significant, but that the option for expansion still provides some value to the overall project
- > Then, a survey was conducted and found that real options are not used presently for community wind projects
- > Tools were incorporated into the windustry tool set which might hopefully promote usage and understanding of real options for community wind projects
- > The analysis could be expanded to a larger toolset used for small-scale energy projects, even to residential solar

> Thank you for your time!

- > Attempt to improve valuation of small-wind farm by including a put option to shut-down the small wind farm and sell off turbines if wholesale electricity prices do not rise as expected
- > Pursue analysis using Binomial Tree Model
 - Using drift of 5.07% & volatility of 9.31%,
 - Upside factor = 1.0976
 - Downside factor = 0.9111
 - Upside probability = 0.7723
- > Perform binomial tree analysis using above probability / price values and assuming:
 - Plant can be closed at any time
 - Turbines can be sold off to cover outstanding debt
 - Potential life of project in this case shortened to 15 years

Real Option Analysis 2: Shut-down

- > NPV of projects negative without production-tax-credits or other economic subsidies
- > However, option still improves overall attractiveness of community wind project though it is not enough to cause the negative NPV project to become positive

