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Abstract: This paper proposes a simulation methodology for the evaluation of flexibility in certain 
classes of engineering systems for the purpose of design. The intended audience for this process is the 
engineering community, whose priority and goal is not the absolute valuation of the system for diversified 
investors in the market, but the relative, ordinal valuation of the alternative engineering designs from a 
flexibility perspective. The proposed methodology sacrifices some technical rigor in the options valuation 
in order to be compatible with current evaluation practices in engineering organizations. We propose a 
step process that involves simulation of the exogenous uncertainties, valuation of one design alternative 
per the organization’s practices, and finally, relative valuation of the other design alternatives and options 
based on the organization’s inferred risk aversion. We use certainty-equivalence arguments for valuation 
and avoid risk-neutral dynamics. The method is accurate for valuing plain vanilla options, but strictly 
speaking, incorrect for options on multiple assets. The method is applied to a case of alternative uses of a 
land parcel and mixed-use development, which demonstrates the design implications from using this 
approach versus a traditional, rigorous real options analysis.  

Introduction 

Engineering systems are traditionally designed to fixed specifications, even when uncertainty 

regarding the system’s development or operating environment is acknowledged and examined in post-

design sensitivity analyses. However, the idea of deliberately designing engineering systems so that they 

enable managerial flexibility is slowly gaining momentum in practice. Moreover, this flexibility is often 

conceptualized as a collection of real options, i.e., the right, but not an obligation to change, expand, 

shrink or otherwise evolve a system. Even so, however, the use of real options has not managed to 

penetrate into the practice of system design evaluation.  

There have been academic efforts recently for the optimization of engineering systems based on the 

option value they create. Applications include phased deployment of communication satellite 

constellations under demand uncertainty (Chaize et al, 2003); decisions on component commonality 
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between two aircraft of the same family (Willcox and Markish, 2004); building design under rent and 

space utilization uncertainty (Zhao and Tseng, 2004; Kalligeros and de Weck, 2004; Greden et al, 2005; 

and de Neufville et al., 2005). These applications involve essentially the valuation of the options 

associated with a particular design and the external optimization of this design.  

Some of these case studies focus on the engineering problem without attempting to provide a rigorous 

option analysis: their contribution is explicitly about how engineering systems can be designed to enable 

flexibility, and the link to the options literature is found only at a conceptual level. When a rigorous 

options valuation is attempted in engineering applications, it usually runs into theoretical errors, practical 

difficulties in application, and logical arguments that do not convince engineering audiences. In short, real 

options applications for engineering design have so far mostly been either intuitive and deficient from an 

economics perspective, or correct but simplistic and unconvincing for the engineering community. 

We postulate that the main reasons for such low penetration lie in the attempt to transfer a “pure” and 

positive economic theory to the “production floor” or engineering design. Adopting the theory requires 

understanding the assumptions behind it, which in turn, require a level of economic literacy found in very 

few engineers. Even when the assumptions are understood, they often do not apply to the situation at 

hand. When the assumptions that justify an options analysis of the flexibility in a system are reasonable, 

the application often requires conceptual leaps of faith (e.g., using the risk-free rate for discounting) and 

changes in well-established valuation practices within the organization. Experience has shown that 

improving the financial sophistication of engineering organizations has been slow and difficult. 

The audience for these applications, i.e., the engineering organization, is far more interested in a 

process for the selection of a design over another one, than a process for the calculation of the exact value 

of a system from the viewpoint of a diversified investor. To address this audience, we propose a 

compromise between a rigorous option valuation of the flexibility in a system, and the current practice of 

discounted-cash-flow analysis, simulation of the important uncertainties and sensitivity analysis of a 

system’s financial performance.  

We suggest that alternative engineering designs define operational states for the engineering 

organization. These operational states have intrinsic value (due to the cash flow they generate) as well as 

value from the managerial flexibility they enable. This flexibility can be expressed as real options to 

choose and transition to other operational states. The valuation of the initiating operational state amounts 

to the valuation of its intrinsic cash flows and these real options. In the proposed methodology, a single 

representative operational state is valued using the developing organization’s standard practices. This 

valuation implicitly provides the organization’s risk tolerance towards the uncertainty in the system’s 

performance. This risk tolerance is implicitly used for the valuation of alternative system designs 

(operational states) and options to reconfigure the system in the future (transitions between states). The 
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valuation of options and operational states is achieved using an original simulation method which builds 

on the stratified state aggregation method (Barraquand and Martineau 1995) and the Generalized Multi-

Period Option Pricing model (Arnold and Crack 2004).  

Figure 1 shows graphically the “placement” of the proposed valuation scheme along four dimensions: 

state-space modeling, uncertainty modeling, decision rules and valuation. We use Monte-Carlo simulation 

to model the state space, as it is far more appealing to the engineering community than both lattices and 

continuous-time formulations. For the same reason, we propose simulating the external uncertainties to 

the engineering system and deducing the value of the system along each simulation event; alternative 

approaches involve identifying a portfolio of securities that is believed to perfectly track the value of the 

system, or explicitly assuming the value of the system follows a Geometric Brownian Motion (e.g., see 

Copeland and Antikarov 2000). We have found that both these alternatives are not convincing to the 

engineering community or imply absurd assumptions for many technical systems. The decision rules in 

our method are calculated recursively using stratified state aggregation (Barraquand and Martineau 1995). 

An alternative for this could have been the arbitrary specification of decision rules or their 

parameterization (e.g., see Longstaff and Schwarz 2000 or Andersen 2000). Finally, discounting of future 

values is performed across alternative designs and options so that the price of risk is retained constant. We 

achieve this using the Generalized Multi-Period Option Pricing model (see Arnold and Crack 2004) and 

avoiding the need to simulate risk-neutral paths.  

 
Figure 1: “Placement” of the proposed option evaluation methodology 

 
We believe this valuation method to be a step towards bridging the “communication” gap between 

real option theorists and engineering practitioners, that has prevented the options method from reaching 

practical application. We believe that this method can enable a big improvement in engineering practice 
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with a minimum of departure from a typical organization’s evaluation culture and practices, and with a 

minimum of compromise from a theoretically correct solution.  

The paper proceeds as follows: the next section describes in more detail the process for estimating the 

relative value of alternative system designs and the algorithm for flexibility valuation. The efficiency of 

the algorithm is compared to the Barraquand & Martineau (B&M) method and a binomial lattice solution 

with Richardson extrapolation for a plain vanilla call option. Next, we discuss the theoretical 

compromises the method entails compared to a rigorous options analysis regarding the value of a flexible 

system. The final section demonstrates the application of the method for a real estate development case, 

and compares the difference in design recommendation between a rigorous analysis and this method. 

Options evaluation process 
 
The method proposed for comparing alternative designs in terms of the managerial flexibility they 

enable is shown in steps below. 

 

Step I Define one or more operational states, i.e., alternative designs of the system. An 

operational state may include reversible flexibility. Estimate free cash flows (i.e., cash 

flows from operations, less the expense necessary to sustain these operations and their 

expected growth) as a function of time, the design variables and the uncertainties for 

each operational state. The entire organization can only be in a single operational state 

at a time.  

Step II Uncertainty simulation 

 Simulate all exogenous uncertainties where learning cannot be affected by actions 

of the organization, market-traded or not. 

 Express the simulation parameters of the endogenous uncertainties (i.e., those for 

which learning can be affected by the organization) as functions of the system 

design in every operational state.  

 The uncertainties are simulated using their real stochastic processes (not risk-

neutral). This enables the user of the process to use objective and subjective 

estimates for public (market-traded) and private uncertainties alike. 

Step III Value one “representative” operational state using established valuation processes for 

each path of simulated uncertainties. The simulation algorithm explained next can be 

used for this.  

Step IV Value all other operational states using a discount rate adjusted for the relative risk 

between each operational state and the representative operational state.  
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Step V Value all timing and choice options to transition between operational states the same 

way. The value of flexibility in each operational state is the sum of the intrinsic value 

of that state and the value of its options. 

 

The process is general and can be applied to a variety of technical systems, even though it is more 

suitable for certain types of situations. As described in steps IV and V, the process requires the valuation 

of all operational states (alternative designs) as well as the possible transitions between them. 

Consequently, its usefulness is limited computationally by the number of operational states. Also, the 

process assumes that there is no strong path-dependency in the model, i.e., the cost and time lag for 

transition between operational states and the cash flows of operational states themselves are only 

functions of time, design variables and the uncertain factors.  

The next section describes the valuation method for steps IV and V in the process above. 

Evaluation algorithm 
Steps IV and V in the process above involve the valuation of operational states (alternative designs) 

and options based on the value of a representative state. This is achieved with the simulation algorithm 

described below. The algorithm is based on the original stratified state aggregation method Barraquand & 

Martineau (B&M, 1995) and the Generalized Multi-Period Option Pricing model (see Arnold and Crack 

2004). It is explained here for the option to transition to an operational state of known value.  

Suppose that the designer knows the value of a system (operational state) A for each time on each 

simulated path of uncertain factors using steps I to III (or by directly observing this price in the market, if 

possible). The question is to value the option to obtain this state. Table 1 explains the simulation 

algorithm for this.  

If the simulation in step 1 in Table 1 uses the risk-neutral process for the underlying asset then the 

algorithm is essentially identical to the Barraquand & Martineau (1995) simulation method (B&M). Then, 

the discounting of the expected future value of keeping the option alive (steps 5.1 and 5.2 in the table) 

may be done using the risk-free rate. Here however, the underlying asset (i.e., the operational state) is 

simulated using the real probabilities. This is because we assumed that this value is calculated from the 

simulated value of all the important uncertainties in the performance of the system, as estimated by the 

engineering organization.1 Therefore, the risk-free rate cannot be used for discounting the future expected 

value of the option. Assuming the organization is generally risk-averse, it should also not use the discount 

rate it used for valuing operational state A. To determine the correct discount rate for each bin of paths 

                                                 
1 The added complication may seem redundant to an economist, however, modeling risk-neutral dynamics is one of 
the most important factors for the limited penetration of real options methods in practice. 
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(steps 5.1 and 5.2), we use an approximation of the exact Generalized Multi-Period Option Pricing model 

(Arnold and Crack 2004).  

 

Table 1: Option valuation algorithm 
# ACTION  
1 Simulate K  paths for the underlying asset. 

2 For terminal time T   ( 0j = ) find the value of the option for each 
path  

3 Go one time period tδ  backwards ( 1j j= + ), and find the value 
of immediate exercise of the option for each path. 

4 Divide the K  paths into M  groups (bins) 
(if /j T tδ=  then all paths meet at their current value and 

1M = ) 
5 For each group of paths (bin):  

1. Calculate the expected value of the option one period in the 
future (at time ( 1)T j tδ− − ) as the average for the paths in 
the current bin. 

2. Discount this expected value appropriately to get the average 
present value of keeping the option alive for this group of paths  

3. Compare this with intrinsic option value for each path/group of 
paths (from step 3), and keep greater of the two.  

6 If /j T tδ<  then go to step 3, else endAt time 0, the option value 
(all paths) is the maximum of immediate exercise or the present 
value of the value of waiting. 

 
 
Suppose the organization uses an annualized, continuously-compounded discount rate AR  for 

computing the value of operational state A, AV . This rate is usually imposed to the designer, and may 

represent the weighted average cost of capital for the entire organization if operational state A is 

representative of the risks to which the organization is exposed. This means that the organization already 

knows point α  in Figure 2. The standard deviation of value Aσ  for this representative state is also known 

for each bin. Assume the following: 

1. The organization can borrow and lend money at an approximately risk-free rate fr  (annualized, 

continuously-compounded). 

2. The developer requires compensation for taking risk, and perceives risk as standard deviation of 

returns. 

3. The relationship between risk and risk premium is linear so that the price of risk is constant and 

equal to ( )/A f AR rλ σ= − , where Aσ  is the standard deviation of returns for operational state 

A in each bin. 

With these assumptions the value of the option for each bin can be estimated using the following 
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formula (proof in the appendix): 

[ ] ( )fA

f

R tt t R t t OPTonA
OPTonA A
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EV e e V
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δδ δ

δ

σ
σ

+ − −
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The formula is a theoretically correct approximation when applied between an option and the 

underlying asset, as they are perfectly correlated between them (therefore from a CAPM perspective, the 

ratio of betas for the operational state and the option is equal to the ratio of standard deviation of returns). 

Generally, it is theoretically correct when applied to infer the value of one operational state given the 

known value of another, if the two are perfectly correlated. It is theoretically incorrect when the values of 

the two operational states are not perfectly correlated. 

 

Expected return
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Figure 2: Constant price of risk 

 

Discussion (incomplete) 
 

The compromise 

o Method lumps market-traded uncertainties with private ones for all operational states (assets). This 

is contrary to Smith and Nau (1995), but agrees with Copeland and Antikarov (2000) and current 

practice. 

o Problem with getting exercise boundaries 

o Theoretical problems (see Borison 2003) 
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• For perfectly correlated assets (e.g,. underlying and option), where the underlying is market-

traded, the method will produce correct and consistent valuation (i.e., the actual value of the 

option, if it was traded).  

• For perfectly correlated assets (e.g,. underlying and option), where the underlying is not 

market-traded, will produce consistent but incorrect valuation (i.e., the value of the option if the 

underlying had been traded). This is justified by the “Market Asset Disclaimer” argument, see 

Copeland and Antikarov (2000). 

• For imperfectly correlated assets, where the reference asset is market-traded, the method will 

produce an inconsistent and incorrect valuation.  

 

The benefits 

o Communication: uses simulation exactly as it is used in engineering sensitivity analyses. 

o The simulation method is very versatile to include development time lags and weak path-

dependence. 

o In terms of valuation, the process is an improvement over the original “Market Asset Disclaimer” 

argument because 

• Process allows ad-hoc modeling of operational flexibility within each operational state (design) 

• Process does not infer log-normal price process for the system’s value, and is not limited to 

mean-variance valuation 

• Process is not limited to a single price of risk for all states of the world 

o Since the engineering organization is restricted by the model to lie in a single operational state at 

each time, and since any correlation between uncertainties is reflected in the valuation of the 

operational states, it follows that the proposed process will give a mean-variance optimal order of 

optimal designs, according to the implied risk aversion of the organization.  

 

Application: mixed-use development (incomplete) 
 

The methodology is applied to the design decisions of mixed-use real estate development. The goal of 

this case study is to demonstrate the use of the methodology and to examine if it leads to the same design 

decisions as a rigorous analysis. The emphasis is not in the actual valuation of the alternative options 

available to a developer, but the development decisions. 

The scenario is as follows: the land-owner holds the right, but not the obligation to develop the land 



  Kalligeros & de Neufville 

DRAFT 3/2/2006  page 9 of 15 

as either commercial or residential use (COM and RES) respectively within a time horizon of 2T =  

years. The total density of development is constant (e.g., 100 units), but the developer can choose any 

number of commercial or residential units for the development. The rent process ,RES COMy y  for each use 

is considered as the underlying uncertainty, following a geometric Brownian motion; the instantaneous 

income return on the properties is assumed to follow a bivariate normal distribution with volatilities 

0.2RES COMσ σ= =  and correlation 0.2ρ = . The total rent exhibits diminishing returns, as 

0.91RES COMa a
RES RES COM COM RES RES COM COMY q y q y q y q y= + = + , where ,RES COMq q  are number of residential and 

commercial units in each development plan, respectively: they are the developer’s design variables (figure 

3). The initial levels for residential and commercial rents are 1.48, 1.00RES COMy y= = .  
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Figure 3: Diminishing returns in rent 

 

The example is based on Geltner, Riddiough and Stojanovic (1996) and Childs, Riddiough and 

Triantis (1996). Geltner et al. use the value process of the alternative uses as the underlying assets, and do 

not consider the option to redevelop between uses; Childs et al model the rent process and consider this 

option. Moreover, Childs et al. show that if the development is instantaneous, then development happens 

in a single phase. Since we do not consider construction time lags in this example, we do not need to 

consider multiple development phases either. We also do not consider the re-development option. 

Classic solution 
[to be completed] 
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Solution with proposed methodology 
[to be completed] 
 

Conclusions 
This paper presents a simulation methodology for the evaluation of flexibility for the purpose of 

design. Given that the objective of this methodology is not to provide an accurate value of the option from 

the viewpoint of the diversified investor, but an ordinal, relative valuation of alternative systems for 

design purposes, we make some simplifying compromises in the theoretical rigor of our approach. The 

paper demonstrates the numerical efficiency and accuracy of the methodology by benchmarking it against 

comparable option valuation methods. We also commented on the underlying assumptions and the 

conditions under which the method yields correct results. Finally, we demonstrated the benefits of the 

methodology in a case study, where we also show the implications for design decisions of using this 

approximate method rather than the rigorous analysis.  

We hope that these simplifications will improve the engineering community’s access to the field of 

real options and how it may be applied to real systems. At the same time, these simplifications may 

contribute to the real options literature as a means to penetrate current practice. 
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Appendix A: algorithm comparison 
This appendix shows the accuracy and efficiency of the algorithm from a computational perspective. 

For demonstration purposes, we value a plain vanilla call option with the following characteristics: 

Table 2: Test call option characteristics 
number of paths
initial stock price

required expected return from stock

risk free rate

annual volatility of the stock
time increment
time horizon
number of bins

0

10000

10

8%

3%

30%

1

10

200

s

f

B

K

S

R

r

dt

T

N

σ

=

=

=

=

=

=

=

=

 
We use the proposed algorithm which we label “Kalligeros & de Neufville 2006,” and compare it to 

Barraquand and Martineau (1995). Essentially, the Barraquand and Martineau solution is a special case of 

the algorithm we present, implemented by imposing the risk-adjusted expected return for the underlying 

asset to be equal to the risk-free rate. The results from the two methods are compared to a binomial 

solution. In all runs, we find the binomial solution for two values of the time increment and extrapolate 
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the continuous-time value of the option (e.g., see Chang et al., 2002).  

For the parameters in Table 2, we drew 10,000 sample paths for the underlying asset using antithetic 

variables.  The same set of random numbers was used in both Monte-Carlo methods. The results were as 

follows.  
Algorithm American call option  

Kalligeros & de Neufville 2006 4.7046 

Barraquand and Martineau 1995 4.9879 

Binomial (Richardson extrapolation) 4.6147 

 

Next, we performed 5 analyses to explore the sensitivity of these results. The first two involved 

varying the volatility of returns for the underlying asset; the third involved varying the expected return of 

the underlying asset; the fourth examined the sensitivity of the two simulation algorithms to the number 

of simulated paths and bins; the final analysis involved varying the number of time steps. The results are 

shown in the following figures. 
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Figure 4: Option value versus volatility (constant expected return) 

 

Figure 4 shows the behavior of both simulation algorithms (again, over the same set of random 

values) over a range of volatilities. Since the expected return on the underlying asset was kept constant, 

varying the asset’s volatility essentially means we are implementing the algorithm in different economies. 

The figure shows that the discrepancy and its error increases with increasing volatility for both simulation 

methods. 
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Figure 5: Option value versus volatility (constant price of risk) 

 

Figure 5 repeats the previous analysis, but holds the price of risk constant (at the value implied by the 

base parameters, 0.1667λ = . So, a different expected return corresponds to every value of σ . 

Essentially, Figure 5 shows the performance of the three algorithms for a continuum of assets in the same 

economy. As before, both simulation methods deviate from the continuous time solution as volatility 

increases.  
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Figure 6: Option value versus expected return 

 
Figure 6 shows the performance as the expected return of the underlying asset varies. In principle, the 

value of an option is indifferent to the expected return of the underlying asset, so the Figure should show 

the value of all three methods as flat lines. Since the expected return of the asset does not affect the 
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calculation of either the binomial method or the Barraquand and Martineau algorithm, the corresponding 

results are indeed indifferent. The values of our algorithm seem to decrease as the expected return 

increases; this is a numerical drawback of the method. 

Figure 7 shows a comparison of the option value for different number of simulated paths and bins at 

each time period. In both plots, the vertical axis gives the percent error compared to the binomial solution. 

It is seen that overall, the proposed algorithm gives more accurate results than the Barraquand and 

Martineau method, that are more robust to changes in the number of bins and simulated paths. 
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Figure 7: Option value versus number of bins and paths 

 

Finally, Figure 8 shows how value varies with the number of steps for the same time horizon. (The 

binomial result is extrapolated to 0dt =  so it is not shown to vary.) Both simulation methods show the 

same pattern of oscillation around the solution that is observed with binomial methods.  
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Analysis 5: Option Value vs. dt
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Figure 8: Option value versus time increment 


