
BeeCluster: Drone Orchestration via Predictive Optimization
Songtao He

MIT CSAIL

songtao@mit.edu

Favyen Bastani

MIT CSAIL

favyen@csail.mit.edu

Arjun Balasingam

MIT CSAIL

arjunvb@csail.mit.edu

Karthik Gopalakrishna

MIT

karthikg@mit.edu

Ziwen Jiang

MIT CSAIL

ziwenj@csail.mit.edu

Mohammad Alizadeh

MIT CSAIL

alizadeh@csail.mit.edu

Hari Balakrishnan

MIT CSAIL

hari@csail.mit.edu

Michael Cafarella

MIT CSAIL

michjc@csail.mit.edu

Tim Kraska

MIT CSAIL

kraska@csail.mit.edu

Sam Madden

MIT CSAIL

madden@csail.mit.edu

ABSTRACT
The rapid development of small aerial drones has enabled numerous

drone-based applications, e.g., geographic mapping, air pollution

sensing, and search and rescue. To assist the development of these

applications, we propose BeeCluster, a drone orchestration system

that manages a fleet of drones. BeeCluster provides a virtual drone
abstraction that enables developers to express a sequence of geo-

graphical sensing tasks, and determines how to map these tasks

to the fleet efficiently. BeeCluster’s core contribution is predictive
optimization, in which an inferred model of the future tasks of the

application is used to generate an optimized flight and sensing

schedule for the drones that aims to minimize the total expected

execution time.

We built a prototype of BeeCluster and evaluated it on five real-

world case studies with drones in outdoor environments, measuring

speedups from 11.6% to 23.9%.

CCS CONCEPTS
• Computer systems organization → Robotics; Sensors and
actuators; High-level language architectures.

ACM Reference Format:
Songtao He, Favyen Bastani, Arjun Balasingam, Karthik Gopalakrishna,

Ziwen Jiang, Mohammad Alizadeh, Hari Balakrishnan, Michael Cafarella,

Tim Kraska, and Sam Madden. 2020. BeeCluster: Drone Orchestration via

Predictive Optimization. In The 18th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys ’20), June 15–19, 2020,
Toronto, ON, Canada. ACM, New York, NY, USA, 13 pages. https://doi.org/

10.1145/3386901.3388912

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7954-0/20/06. . . $15.00

https://doi.org/10.1145/3386901.3388912

1 INTRODUCTION
Rapid progress in the development of small aerial drones has en-

abled numerous aerial sensing applications, including infrastructure

and agricultural inspection [8, 18, 21, 29, 39], air pollution sens-

ing [9, 37, 44, 45], cartography and geographic mapping [26, 33],

traffic monitoring [34], disaster relief [7, 35], and search and res-

cue [16]. However, developing auto-pilot applications that control

a fleet of drones to perform complex sensing tasks is often challeng-

ing. As a result, most drones today are manually flown by individual

pilots or by simple auto-pilot applications [3, 4] that can only han-

dle static tasks, which is impractical for applications that need to

react with the environments [20], such as localizing the source of

air pollution or searching a target in an unknown environment.

To simplify multi-drone application development and deploy-

ment, we propose BeeCluster, a drone orchestration system that

manages a fleet of drones on behalf of an application. In BeeCluster,

application developers write their program for virtual drones. The
framework then determines how to schedule the drones to mini-

mize the application execution time. At the heart of BeeCluster is

predictive optimization, in which the run-time framework builds a

model to forecast future application tasks, and uses these forecasts

to optimize its route planning.

PriorWork: Prior drone orchestration platforms [27, 28, 32, 42, 50]

typically adopt a location-oriented programming model, where de-

velopers provide a set of locations and associated actions, e.g., take

photos at specific locations. The system then determines an efficient

route to visit all these locations with the available drones, and dis-

patches the drones to execute the application. A key limitation in all

these systems is that they only take into account the current set of

requests from the application for route planning. Even frameworks

that allow applications to issue new requests dynamically [32] are

myopic, and plan routes based only on the current requests at any

point in time. By contrast, predictive optimization considers both

the current requests and the application’s likely future requests in

the route planning process. In particular, many applications gener-

ate new requests once a given sensing task is complete, or cancel a

299

https://doi.org/10.1145/3386901.3388912
https://doi.org/10.1145/3386901.3388912
https://doi.org/10.1145/3386901.3388912


MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Songtao He and Favyen Bastani, et al.

1 A,B,C = initial locations
2 while True:
3 values = SenseAtLocations({A,B,C})
4 A,B,C = Update(A,B,C,values)

Figure 1: The pseudo code of an active sensing loop.

B1

A1 C1

B2

A2 C2Drone
B1

A1 C1

B2

A2 C2Drone

Best Case Worst Case

Figure 2: Possible routes in the best case and the worst case
using existing drone orchestration systems

request based on the results of a current task. BeeCluster accounts

for these likely future actions in the planning process.

The Opportunity: As an illustrative example, consider an applica-

tion with the active sensing loop shown in Figure 1. The algorithm

starts with three initial locations 𝐴, 𝐵,𝐶 . In line 3, the algorithm

collects sensor readings from these three locations. Then it updates

the three locations based on the sensor readings and proceeds to

a new iteration. This basic algorithm represents a category of it-

erative, active sensing applications, e.g., using gradient descent to

localize the source of air pollution [51]. Let 𝐴𝑛, 𝐵𝑛,𝐶𝑛 denote the

locations of 𝐴, 𝐵,𝐶 at line 3 in the 𝑛-th iteration.

Consider the scenario in Figure 2 where we wish to run this

application using one drone. When the program first reaches line

3, the orchestration system dispatches the drone to visit locations

𝐴1, 𝐵1,𝐶1. At this time, any orchestration system that only consid-

ers the current set of requests, i.e., 𝐴1, 𝐵1,𝐶1, yields two equivalent

routes: 𝐴1 → 𝐵1 → 𝐶1 or 𝐴1 → 𝐶1 → 𝐵1. However, these two

routes are not equivalent if we consider multiple iterations of the

program. If we choose the route𝐴1 → 𝐵1 → 𝐶1, then in the second

iteration, the drone needs to fly from 𝐶1 to 𝐴2 to start the new

iteration (the worst case in Figure 2). However, if we choose the

route 𝐴1 → 𝐶1 → 𝐵1, then in the second iteration, the drone only

needs to fly from 𝐵1 to 𝐴2 to start the new iteration (the best case

in Figure 2). In this example, the worst case can take 50% more

flying time compared to the best case. However, this optimization

is possible only if we consider future requests.

We find there are many drone applications that could benefit

from predictive optimization. We provide more examples in Section

2.

Challenges: Making drone orchestration systems predictive is

not trivial. On the surface, predicting future application requests

appears to require an accurate understanding of application se-

mantics and goals. A naive solution to circumvent this challenge

is to provide primitives for application developers to explicitly

declare possible future requests, or take over the route planning

entirely. However, this shifts the burden to application developers,

and largely eliminates the advantages of the drone orchestration

systems. Thus, we seek a predictive optimization method that does

not require developer assistance.

Our Approach and Contributions: Our approach is inspired by

the branch prediction in CPUs [40], where the CPU predicts the

branches and prefetches potential next instructions to speed-up

execution. These predictive optimizations happen without the appli-

cation changes. The predictive optimization technique we develop

for drone optimization works similarly.

BeeCluster has two main components, the API and the runtime.

The API provides a virtual-drone programming interface to express

awide range of complex drone applications in a compact and flexible

way.

The runtime interprets the application’s logic as a dynamic task

graph (DTG) and stores the DTG of each execution. While running,

BeeCluster uses the historical DTGs as well as the current DTG to

forecast the future behaviour of the application (task creations and

cancellations). Then, BeeCluster uses this predicted information to

minimize the expected execution time.

We have implemented BeeCluster and describe five case studies

built atop it, including road mapping, Wi-Fi mapping and hotspot

localization, and continuous object tracking. We found that the

BeeCluster API is conveniennt to use and that predictive optimiza-

tion speeds-up execution time by between 11.6% and 23.9% in these

case studies.

2 MOTIVATING EXAMPLES
In this section, we show five examples to motivate the benefit of

predictive optimizations and the API proposed in BeeCluster. Each

example represents a common application pattern.

2.1 Benefits of Predictive Optimization
Example 1: Speculative Execution. Consider the simple active

sensing loop shown in Figure 3. In each iteration, the algorithm

senses data at location 𝐴. Then, the algorithm uses the data to

compute the next location to sense data.

Now suppose we have two drones for this application. Current

systems will use only one drone on this application at any given

time because only one request is outstanding.

1 A = initial location
2 while True:
3 value = SenseAtLocation(A)
4 A = Update(A, value)

Drone 1

A1 A2 A3 A4 A5 A6Drone 2

Figure 3: Example of an active sensing loop that can be opti-
mized by speculative execution

By contrast, BeeCluster forecasts the future requests of an ap-

plication. When there are spare drones in the system, BeeCluster

dispatches drones to the locations of the predicted requests, a form

of speculative execution. Figure 3 shows the traces of the specula-
tive execution on this application with two drones. This strategy

300



BeeCluster: Drone Orchestration via Predictive Optimization MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

overlaps the flying time of one drone with sensing time of another

and thus reduces the total execution time.

We find that the code structure in Figure 3 is common in many

drone applications, such as localizing the source of air pollution

via gradients [51] and mapping trails or roads using iterative trac-

ing [11]. BeeCluster is able to apply this optimization without re-

quiring any changes to application code. We performed an evalua-

tion with a roadmapping application that maps a newly constructed

road by iteratively tracing the road, and found that this strategy

reduces the execution time by 21.3% (case study 1 in Section 5.1.1).

Example 2: Dynamic Request Cancellation. Besides the dy-
namic request generation in the active sensing examples, the op-

posite behaviour, dynamic request cancellation, is also common in

many applications. We show an example in Figure 4. The algorithm

needs to measure air pollution at two locations. However, once one

location is visited, the application may cancel the sensing request

at the other location depending on the first value.

Drone(s) Step-1: Measure air 
pollution at location A.
Step-2: If pollution is 
lower than a threshold, 
cancel Request-2

Request-1
Step-1: Measure air 
pollution at location B.
Step-2: If pollution is 
lower than a threshold, 
cancel Request-1

Request-2

Figure 4: Example of dynamic request cancellation.

The optimal strategy in this example depends on the predic-

tion of the if branch at Step-2. BeeCluster forecasts the potential

cancellation for each active request in the system. Then the sched-

uler can use this forecast information to optimize the route. Exam-

ples of applications that can benefit from this optimization include

Gaussian-process-based active information gathering [38, 46, 47]

for magnetic field, air pollution sensing, wireless signal strength

measurement, and exploration in unknown environments [14].

We evaluated an application that maps the Wi-Fi signal strength

through Gaussian process (using request cancellations), showing

a 23.8% execution time reduction with BeeCluster (case study 2 in

Section 5.1.2).

Example 3: Efficient Routing. As noted in the introduction

and shown in Figures 1 and 2, knowledge of the future task graph

allows BeeCluster to compute the optimal path that minimizes

execution time. We evaluated an application that localizes a Wi-

Fi hot-spot through gradient descent, finding that BeeCluster’s

predictive optimization approach improves performance by 11.6%

(case study 3 in Section 5.1.3).

2.2 Benefits of the BeeCluster API
Example 4: Fine-Grained Multiplexing. We find that program-

ming APIs in existing drone orchestration systems often bind a

virtual drone to a physical drone at task level. The BeeCluster API

provides a way to define the binding relationship between virtual

drones and physical drones in a precise and fine-grained way, en-

abling action-level scheduling. For example, consider a delivery task

that requires a drone to fly from A to B. In action-level scheduling,
the drone assigned to this task can also perform other tasks, e.g.,

taking a photo, along the way from A to B. BeeCluster’s API allows

developers to describe the logic in this example through a fine-

grained binding relationship definition (see Section 3.2.2), enabling

fine-granularity action-level multiplexing.

We performed an evaluation with a proof-of-concept scenario

which involves three simple applications, showing the fine-grained

multiplexing can improve the performance by 19.1% (case study 4

in Section 5.2.1).

Example 5: Continuous Operation. Consider the problem

of continuously tracking one or more moving vehicles in a city.

Because BeeCluster can predict the locations where an algorithm

needs to visit in the future, it can dispatch another drone in advance

to the location where the original drone may run out of its battery.

Then, the original drone hands off the operation to the new drone

right before it runs out of battery. Although the hand-off may incur

a short delay, it is likely that an operation such as object tracking

can still proceed normally. We demonstrate the effectiveness of

this feature in Section 5.2.2 (case study 5). Although existing drone

orchestration systems promise to provide functional virtualization

over many physical drones, the time scale of a single continuous

operation is still limited by the battery-time of a single drone.

3 DESIGN
Figure 5 provides an overview of the BeeCluster architecture. The

design of BeeCluster is driven by two goals: first, the system should

be flexible enough to accurately express a wide variety of drone

application logic, and second, the system should be able to effec-

tively optimize applications transparently, i.e., without requiring

code changes.

To achieve the first goal, we propose the BeeCluster API (Sec-

tion 3.1). The second goal is challenging for two reasons. First,

many optimization solutions require application-specific knowl-

edge that cannot be obtained easily. Second, the optimization is

often application-specific, making it challenging to develop a uni-

fied approach to optimize different applications.

To overcome these challenges, BeeCluster uses two ideas. First,

it models the application’s future behavior as a dynamic task graph

(DTG) constructed from the running application. The BeeCluster

API makes it possible to do this without application developers

needing to codify future behavior. The DTG captures all the nec-

essary information about the application. BeeCluster stores both

the DTGs from past runs and the partially constructed DTG of the

current run as profiling data for the application. Then, BeeCluster

forecasts the application’s future behaviour by matching the cur-

rent DTG with previous DTGs. We describe the details of the DTG

and the forecast method in Section 3.2.

Second, rather than providing a single optimization model for all

applications, BeeCluster adopts the instantaneous-assignment [25]
scheduling model and provides an extensible platform to support

different optimization heuristics as plugins. Here, the optimization

heuristics are used to determine the best instantaneous-assignment
of tasks to drones at any point in time. For example, one opti-

mization heuristic could prefer to always dispatch drones to their

nearest tasks, and inmulti-drone scenarios, one optimization heuris-

tic could prefer to scatter the drones over the region of interest.

Thus, BeeCluster is not a fixed collection of optimization heuris-

tics. Instead, it provides a common interface that makes it easy to

301



MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Songtao He and Favyen Bastani, et al.

BeeCluster Framework
Drone 

Application 
Program

BeeCluster 
API

Construct Dynamic 
Task Graph (DTG)

Drone Application 
Developers

Application
Profiling Data

Optimization
Heuristic 

Contributors

Optimization
Heuristic

Optimization
Heuristic

Optimization
Heuristic Plugin

Input: 
- Assignment, State
Output:
- Utility Score

Drone 
Backend
InterfaceSimulator

Utility Score

Scheduling 
Optimizer

(Find the assignment 
that maximizes the 

utility function)

Store

Replay
Hyper-Parameter

Tuning

Scheduling 
Problem

Requests

Predictions

Utility 
Function+Utility ScoreUtility ScoreSub-Utility Functions

Drone Dynamic Profiling

Physical 
Drones

Predictor

Offline

Merge

State

Figure 5: Overview of BeeCluster Drone Orchestration Framework

add new optimization heuristics as plugins. At runtime, BeeCluster

considers all possible optimization heuristics and selects the best

weighted combination of different heuristics via off-line application

replay in a simulator (Section 3.3).

3.1 Programming Model (BeeCluster API)
BeeCluster API allows developers to describe their application logic

through a DTG-based imperative programming model. It also al-

lows developers to explicitly define the precise binding relationship

between virtual drones and physical drones, e.g., some actions

must be done on one physical drone sequentially, while some other

actions can be done with multiple physical drones in parallel.

3.1.1 Basic Primitives. We show the basic primitives of the BeeClus-

ter API in Table 1. The API has two basic building blocks, actions
and tasks.

Action. An action is a basic drone operation such as taking a

photo or flying to a location. The non-blocking property of the

action primitive described in Table 1 enables action batching, allow-

ing the scheduler to consider a whole batch of the actions together,

rather than processing them one-by-one.

Task. A task contains an ordered sequence of actions and main-

tains the context of a virtual drone; when there are two consecutive

actions such that action-1 is flying to location A, and action-2 is

taking a photo, the BeeCluster runtime will update the location of

the virtual drone after action 1 and interpret the second action as

taking a photo at location A.
Developers use newTask() to create new tasks. Task creation is

non-blocking; the blocking (synchronization) only happens when

the execution result of a task is required by another statement, i.e.,

a statement that depends on the execution result of the task. In

BeeCluster, each task corresponds to an independent thread, and

the thread can be executed in parallel with other threads when

there are available drones. The task primitive allows developers to

describe independent action sequences, e.g., the application needs

to take photos at a set of locations, but the order of execution does

not matter. In this case, traveling to a location and taking a photo

would be a single task, and there would be one task for each location

in the set.

Developers can use cancelTask() to cancel tasks specified by the

task_handlers.

3.1.2 Binding Relationships. The developers can define the binding
relationship of the actions within a task. The binding relationship

provide a way to control the mapping of virtual drones to the

physical drones. BeeCluster supports four binding relationships

defined by the combinations of two flags.

SameDrone Flag (SmDrn). When the SameDrone flag is set

to be True, all the actions within the task need to be done on

one physical drone. Otherwise, the actions within the task can be

mapped to different physical drones.

Interruptible Flag (Intrp).When the Interruptible flag is set to
be False , all the actions within the task need to be done one after

another, without a large gap in time (best-effort). Otherwise, there

could be large gap in time, e.g., 5 minutes, between two consecutive

actions.

We show a code example in Figure 6 where there are three tasks

with different binding relationships. We show a possible drone

schedule in Figure 7.

Task 1. Task 1 has two actions - taking photos at location A and

C. The actions can be executed on different drones (SmDrn=False)
and the time gap between two actions is not restricted (Intrp=True).

Task 2. Task 2 is a simple package delivery example. It requires

the drone to pick up a package at location A and then drop it

at location B. These two actions (pick up and drop) need to be

executed on the same drone (SmDrn=True). However, the task can be
interrupted (Intrp=True). After the package is picked up at location

A, the drone can be scheduled to perform other actions before flying

to location B.

Task 3. Task 3 is a continuous object tracking example where

the drone is programmed to track a moving object. Each tracking

step can be executed on different drones (SmDrn=False) but the
time gap between two tracking steps should be minimized by the

302



BeeCluster: Drone Orchestration via Predictive Optimization MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

Name Description
h=act(args) Execute the action defined by args on a drone. Return an action handler h. This function call

is non-blocking but in-order - an action is executed when all its predeceased actions in the

current thread have been completed.

h=newTask(flags, func, args) Create a new task (a new thread) with the entry point as function func with arguments args.
The flags parameter defines the binding relationship (See Section 3.1.2) of the task. This function

is non-blocking; it returns a task handler h immediately after the function call.

result=h.value Retrieve the result from a handler h. This operation is blocking.
cancelTasks(task_handlers) Cancel the tasks specified by the task_handlers.

Table 1: BeeCluster API (Minimal Set)

1 def task1(): # Take two photos
2 act("flyto", loc_A)
3 p1 = act("take_photo")
4 act("flyto", loc_C)
5 p2 = act("take_photo")
6 return p1.value, p2.value # blocking

7 def task2(): # Package Delivery
8 act("flyto", loc_A)
9 act("pick_up_package")

10 act("flyto", loc_B)
11 done = act("drop_package")
12 return done.value # blocking

13 def task3(): # Continues object tracking
14 loc = initial_loc
15 while True:
16 act("flyto", loc)
17 photo = act("take_photo").value
18 loc = track_and_update(photo, loc)

19 t1=newTask(task1,SmDrn=False,Intrp=True)
20 t2=newTask(task2,SmDrn=True,Intrp=True)
21 t3=newTask(task3,SmDrn=False,Intrp=False)

Figure 6: Example of different binding relationships.

Task 1

Task 2

Task 3

Pick Up
Package At
Location A

Drop
Package At
Location B

Take 
Photo At 

Location A

Track Track Track Track Track

Take 
Photo At 

Location C

Track

Replace 
BatteryDrone 2

Drone 1

SmDrn=False
Intrp=True

SmDrn=True
Intrp=True

SmDrn=False
Intrp=False

Interruptible 

Timeline

Figure 7: Fine-granularity multiplexing in BeeCluster

system to maintain high tracking success rate; thereby, the Intrp
flag is set to False.

Through defining the binding relationship of tasks, developers

can describe the resource requirements of their application pre-

cisely. This ability to specify binding relationships makes inter-task

multiplexing possible at a fine granularity – for example, one drone

can carry out subtasks of several tasks when Intrp=True. This im-

proves utilization of the drones, as shown in case study 4 in Section

5.2.1.

3.2 Application Forecasting
BeeCluster forecasts the application’s behavior through using the

dynamic task graph (DTG) of the running application and by match-

ing the current DTG with previous historical DTGs (i.e., application

profiling data).

We show the source code of an example drone application in

Figure 8 as well as its DTG. The application iteratively tracks the

source of air pollution using a gradient descent algorithm. At each

iteration, if the air pollution is greater than a threshold, the appli-

cation takes one photo at any one of the four locations involved in

gradient computing step.

In this section, we use this example to describe the details of (1)
the structure of DTG, (2) and how we use the DTG to forecast the

future behaviors of an application.

3.2.1 Dynamic Task Graph (DTG). A dynamic task graph contains

nodes and edges. Edges (directional) in a dynamic task graph repre-

sent the dependency relationship among nodes. Nodes have two

types, task-nodes and synchronization-nodes.

A task-node corresponds to an instance of the task building block

in BeeCluster API. For example, in Figure 8, on line 14 (iteration 1),

the application creates four tasks based on the function defined at

line 3 with different input arguments. These four tasks correspond

to the first four task-nodes in the dynamic task graph on the right

side of Figure 8. Each task node contains the meta information for

the task, including the first location to visit (if it exists), as well as

the the primitives (act, newTask, cancelTasks) within the task and

its duration.

A synchronization-node is used to represent the synchronization

behavior of an application. Synchronization nodes are introduced

by the use of the h.value API call. For example, on line 15, the

execution is blocked until all the four tasks created in line 14 are

completed. In the dynamic task graph, this synchronization behav-

ior is represented as a synchronization node, i.e., the blue rectangle

node in Figure 8.

The DTG doesn’t directly represent branches, e.g., the branch

at line 16. When there is a branch, the dynamic task graph only

contains the path that the application takes. For example, in the first

two iterations, the sensing results don’t meet the branch condition

at line 16. In this case, the DTG doesn’t contain the execution path

303



MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Songtao He and Favyen Bastani, et al.

1 handles = [None,None,None,None]

2 def task1(loc): # Line 2-4 "Task1" in the DTG −→
3 act("flyto", loc)
4 return act("measure_pollution").value

5 def task2(loc, n): # Line 5-10 "Task2" in the DTG −→
6 wait_until_non_none(handles)
7 act("flyto", loc)
8 val = act("action2").value
9 cancelTasks([handles without handles[n]])

10 return val

11 loc = initial_loc, rng = [0,1,2,3]
12 for i in range(10):
13 locs = four_corners(loc, "10 meters")
14 tasks = [newTask(task1,locs[j]) for j in rng]
15 measurements = [tasks[j].value for j in rng]]
16 if avg(measurements) > threshold:
17 handles = [newTask(task2,locs[j],j) for j in rng]
18 photos = [handles[j].value for j in rng]]
19 handles = [None,None,None,None]
20 StorePhoto(photos)

21 loc = GradientDescent(locs, measurements)

Task1 @ 
locs[0]

Root

Task1 @ 
locs[1]

Task1 @ 
locs[2]

Task1 @ 
locs[3]

Task2 @ 
locs[0]

Task2 @ 
locs[1]

Task2 @ 
locs[2]

Task2 @ 
locs[3]

Synchronization
(At line 18)

Cancellation 
Links

Synchronization
(At line 15)

Task1 @ 
locs[0]

Task1 @ 
locs[1]

Task1 @ 
locs[2]

Task1 @ 
locs[3]

Synchronization
(At line 15)

Task1 @ 
locs[0]

Task1 @ 
locs[1]

Task1 @ 
locs[2]

Task1 @ 
locs[3]

Synchronization
(At line 15)

Iteration 1

Iteration 2

Iteration 3

Iteration 3
(Line 17-20)

Task 1
Line 2-4

Task 2
Line 5-10

Figure 8: Dynamic Task Graph (DTG) Example.
of line 17-20 for the first two iterations because they don’t get

executed.

BeeCluster’s runtime constructs the DTG of an running appli-

cation on the fly. The construction algorithm supports concurrent

BeeCluster API calls from different application threads, allowing

the developers to describe complicated application dependency

logic.

3.2.2 Forecasting using DTGs. BeeCluster forecasts the future be-
haviour of a running application through matching the most recent

portion (sub-graph) of the current active DTG with historical DTGs,

including (1) the current active DTGwithout its frontier nodes (leaf-

nodes) , (2) and the DTGs from past runs. Once a match is found,

we can simply use what happened next in the historical DTGs as a

forecast for what may happen next in the current application run.

Graph-Match and Forecast Algorithm. We call our forecast-

ing algorithm GMF, for Graph Match and Forecast. The GMF algo-

rithm contains two phases.

In the first phase, GMF searches for accurate sub-graph matches

through an incremental matching procedure. GMF starts with a

sub-graph containing only one node (a frontier node) in the current

DTG. This sub-graph is used as the target sub-graph for matching.

Then, GMP finds all the one-node sub-graphs in the historical DTGs

that match with this target sub-graph. All the matched one-node

sub-graphs are considered as candidate sub-graphs. Here, we say

two task-nodes matched when they are from the same logic task

but could have different input arguments.

After this, GMF starts to iteratively increase the depth of both the

target sub-graph and the candidate sub-graphs. At each iteration,

GMF removes unmatched sub-graphs in the candidate sub-graphs

from previous iteration. As the depth increases, the number of

the candidate sub-graphs decreases. This incremental matching

procedure stops when the number of the candidate sub-graphs is

below a threshold (10 in our implementation), or when the depth

of the sub-graph exceeds a threshold (10 in our implementation).

In the second phase, GMF looks into the meta information of

each task-node and ranks all the matched candidate sub-graphs

through a similarity metric. One meta information we used here is

the first location a task visited, e.g, for a task that took a photo at

location A, the first location it visited is location A.

Inspired by [48, 49], we use a rotation-and-translation-invariant

distance, between the first locations of all the task-nodes in two

matched sub-graphs as the similarity metric; given two sub-graphs,

we apply a spatial transformation that only contains rotation and

transition to one of the sub-graph so that the total distance between

the first locations of each node pairs is minimized. This minimized

distance is the rotation-and-translation-invariant distance between

two sub-graphs. It is easy to extend this similarity metric to also

consider the sensor readings, e.g., using cosine-similarity for image

embeddings for image data captured at each task-node.

Finally, GMF outputs what happened next from the top-K, i.e.,

top-10, matched sub-graphs as a forecast. Here, we apply the spatial

transformation to the predicted task-nodes so that they have the

correct locations.

3.3 Extensible Optimization Heuristics
In this subsection, we first describe the BeeCluster’s scheduling

model (Section 3.3.1), then we show how BeeCluster supports dif-

ferent optimizations as plugins in Section 3.3.2.

3.3.1 Scheduling Model. BeeCluster’s scheduling model uses in-
stantaneous assignment [25] of tasks to drones; in this model, the

scheduler only needs to decide the next request each drone needs

to handle. The scheduler takes the current states of the drones, the

current visible requests, and the forecast requests as input, and out-

puts an instantaneous assignment (a set of drone-to-request pairs).

304



BeeCluster: Drone Orchestration via Predictive Optimization MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

At high-level, the scheduler is triggered to reschedule drones when

its input is changed. In our implementation, we carefully choose

when to reschedule to avoid system overhead; in particular, we try

to batch changes to the input to eliminate frequent rescheduling.

Inside the scheduler, the scheduler searches for the best instan-

taneous assignment that maximizes the utility function. Here, the

utility function is used to evaluate the goodness of the instanta-

neous assignment. Similar to the strategy used in Google’s routing

library [6] and the drone delivery problem [17], the scheduler first

computes a valid assignment using a greedy algorithm. Then, the

scheduler starts a local search from the greedy assignment; it keeps

applying random permutations (e.g., swap the assigned tasks of

two drones) to the current assignment and update the current as-

signment toward a lower-cost assignment in each iteration. Often,

a meta-heuristic is needed in this local search phase to help escape

from local minima. Here, we use simulated annealing [41].

In BeeCluster, this utility function is a linear combination of dif-

ferent sub-utility functions. Although the global goal of BeeCluster

is to minimize the execution time of the application, we achieve

that through optimizing the instantaneous assignment at any point

in time.

Each sub-utility function implements one optimization heuristic

(we list a few below) that evaluate the goodness from one aspect.

These sub-utility functions take the current configuration (both

drones and requests) and an instantaneous assignment as input

and outputs the utility (goodness) of the input instantaneous as-

signment. Here, we list a few sub-utility functions (optimization

heuristics) as examples.

Closest Next Request Heuristic. This is the simplest greedy

heuristic. The sub-utility function outputs the negative total esti-

mated flying time of all drone-to-request pairs in the instantaneous

assignment.

Avoid Mutual Utility Heuristic.When there are two requests

A and B in an application, and if A is done, B will be cancelled, if

B is done, A will be cancelled. In this case, the system should not

dispatch two drones to A and B at the same time. We implemented

an optimization heuristic similar to the utility function in [14]

to avoid having this happen. This heuristic relies on the forecast

information provided by BeeCluster.

Avoid Zigzag Heuristic. We use this heuristic to avoid the

worst case in Figures 1,2. This optimization heuristic also relies on

the forecast information provided by BeeCluster. The sub-utility

function computes the geometric center of all forecast and visible

requests. Then, the sub-utility function causes the drones to visit

the farthest request from this center by assigning a higher utility

score to each drone-to-request pair when the request is far away

from the geometry center.

Speculative Execution Heuristic. When there are spare, idle

drones in the system, this heuristic encourages the spare drones

to fly to their closest forecast requests. This heuristic is similar to

the Closest Next Request Heuristic, but it operates only on forecast

requests.

Fairness Heuristic. This sub-utility function outputs the neg-

ative total waiting time of the involved requests in the drone-to-

request pairs of the instantaneous assignment. This heuristic in-

tends to give high priority to the requests that have long waiting

time.

3.3.2 Optimization Heuristic Plugins and Automatic Plugin Balanc-
ing. There exists many other optimization heuristics. As an exten-

sible platform, BeeCluster provides an interface for optimization

heuristic contributors so that they can easily add new optimization

heuristics as plugins into the BeeCluster platform.

When there are multiple optimization heuristics available in a

system, it is hard to figure out what combination (weights) of these

heuristics can make a specific application run faster. In BeeCluster,

wemake the hyper-parameter tuning automatic. After several initial

runs of an application, BeeCluster replays the executions of the

application using the historical DTGs in a simulator and finds the

linear weights for the different sub-utility functions (optimization

heuristics) that minimizes execution time using hyper-parameter

search [19].

In BeeCluster, we use hyperopt library [12] to search the hyper-

parameters. Hyper-parameter search techniques have been exten-

sively studied in AutoML research. Using hyper-parameter search

in our context is practical because there are fewer hyper-parameters

compared with the hyper-parameters in the AutoML problem and

the sampling cost (i.e., DTG replay) is much less than the sampling

cost (i.e., training a new model) in the AutoML problem.

4 IMPLEMENTATION
In this section, we show the implementation details of BeeCluster.

We discuss the software in Section 4.1 and Section 4.2, and the

hardware in Section 4.3.

4.1 BeeCluster Framework

BeeCluster Core
API Layer

Hardware Abstraction Layer

Python API 

Wireless Layer

Drone Hub Simulator (Level 1)

Drone Endpoint

Drone-Specific 
Driver Simulator (Level 2)

Software/Hardware Boundary

DJI Drone Simulator (Level 3)

Applications 

Centralized 

Onboard

Python

Golang

C++

Figure 9: BeeCluster Framework
BeeCluster is released as open-source (http://beecluster.csail.mit.

edu). The implementation of the BeeCluster framework comprises

≈ 15K lines of code (LoC); 80.8% in Golang for the BeeCluster core

system, 5.3% in python for the python wrapper of BeeCluster API,

and 13.9% in C++ for the drone driver. We show a diagram of the

BeeCluster component architecture in Figure 9.

Simulators. The implementation of BeeCluster involves three

simulators. The level-1 simulator is used to conduct fast application

replay for hyper-parameter search. The level-2 simulator is used

to verify the correctness of the system and the application before

305

http://beecluster.csail.mit.edu
http://beecluster.csail.mit.edu


MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Songtao He and Favyen Bastani, et al.

take-off. The level-3 simulator is DJI’s hardware simulator, which

is used to verify the correctness of the drone driver code. These

simulators boost the development speed of BeeCluster and avoid

potential failures in real-world experiments.

Drone-to-centralized controller communication protocol.
In the implementation, the drone sends a heart-beat message to

the centralized controller every 100 ms. The centralized controller

encloses the action descriptions (if any) into the return message.

Once the drone receives the return message, it performs the actions

enclosed in the return message and sends the result back to the

centralized controller together with the next heart-beat message.

Collision avoidance and conflicts resolution (CACR). We

implement a simple centralized first-come-first-serve CACR pro-

tocol in BeeCluster to avoid drone collisions and resolve conflicts.

This CACR protocol is critical for real-world drone deployments.

4.2 BeeCluster Task
BeeCluster tasks run as threads. Each task instance has two threads,

one is the main thread executing the task code, the other is a helper

thread. Each task maintains its task context. The task context con-

sists of an action queue and the status of the virtual drone (e.g.,

the location of the drone, and the id of the bound physical drone if

existed).

When the code inside a task thread calls the act() function, the
runtime system pushes the action into the action queue of the task.

The helper thread of the task keeps polling the action queue and

execute the action through communicating with the BeeCluster

server.

Failure Handling. An action may fail due to the change-of-
state of drones. For example, while a physical drone is executing

an action, its battery level drops below a critical threshold. The low

battery level than triggers the return-to-home protection mecha-

nism and marks the state of the drone as "unavailable" to the system.

In this case, the action fails.

BeeCluster handles action failures through retrying the failed

actions or calling the user-defined failure handlers. The failure

handling behavior depends on the drone binding flags of the task.

When the SmDrm flag and Intrp flag are not set to SmDrm=True,
Intrp=False at the same time. The helper thread retries the failed

action until success.

When SmDrm=True, Intrp=False, retrying the failed action may

change the semantic of the task. For example, suppose we have a

video recording task consisting of four actions, (1) fly to location

A, (2) start recording, (3) fly to location B, and (4) stop recording.

If the third action fails, we can not simply retry it alone, instead,

we have to retry the whole sequence of actions. Handling failure

in this case often involves user-defined failure handling logic. So

when SmDrm=True, Intrp=False, BeeCluster forwards the failure
to a user-defined failure handler. In the failure handler, users can

decide if they want to retry the whole task or not.

BeeCluster also supports a special user-defined failure type -

timeout. When a task times out, BeeCluster cancels the task and

calls the user-defined error handler, regardless of the binding flags

of the task.

Override Binding Relationship Flags. In BeeCluster API, the

drone binding flags are associated with each logical task rather

than each function. We made this design choice because we want

to reuse the function code, e.g., a function could be assigned with

different drone binding flags dynamically. However, we find this

design choice could be error-prone. For example, developers may

forget to set the binding flags when they create a new task that

can only run with some specific flags. To address this issue, we

introduce the setFlags() API. If a function doesn’t need to be reused,

developers can use setFlags() inside the function to override the

passed-in binding flags of a task.

4.3 Hardware Setup

Raspberry Pi 3
(Onboard Computer)

DJI N3 Flight 
Controller

DJI F450 
Drone Frame

5000 mAh 4S Battery (15+ 
mins flying time)

WiFi Antenna

Wide-Angle
Camera

(a) (b)

Figure 10: Drone Hardware Used in Evaluation

Similar to other drone orchestration system, BeeCluster is drone-

agnostic. In our prototype, we use a custom assembled drone plat-

form as our drone back-end for evaluation. We show our drone

platform in Figure 10(a). Our drone platform is based on the DJI

F450 drone frame [1]. We use DJI N3 flight controller [2] with a GPS

antenna. The flight controller is connected to an on-board Rasp-

berry Pi single-board computer [5]. Each drone is equipped with a

2dBm WiFi antenna, which enables communication (>150 meters)

between the drone and the centralized controller. Each drone is also

equipped with a wide angle camera for camera-based applications.

Drone profile. To make the simulator accurate, we profile the

dynamic (acceleration rate, de-acceleration rate and drag coefficient)

of our drones (Figure 10(b)). In our setup, the drone flies at 2 m/s

when the target is within 20 meters, otherwise, the drone flies at

10 m/s.

5 EVALUATION
In our evaluation, we seek to answer the following questions:

• What is the benefit of BeeCluster’s application-agnostic pre-

dictive optimization?

• What is the benefit of BeeCluster’s API?

• What is the overhead of BeeCluster?

To address these questions, we evaluate BeeCluster with five case

studies, consisting of four representative applications and one proof-

of-concept scenario consisting of three simple applications. We

conduct most of our experiments with real drones and real envi-

ronments. In addition, we use our level-2 simulator to conduct sim-

ulated experiments that complement our real-world experiments.

In the evaluation, we create a baseline solution that shares the

same API as BeeCluster but uses a simple greedy routing algorithm.

We use this simple baseline solution to represent other drone orches-

tration systems as most of the exiting solutions either use simple

greedy routing algorithms or don’t support dynamic tasking.

306



BeeCluster: Drone Orchestration via Predictive Optimization MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

5.1 Benefit from predictive Optimizations

Neural 
Network
(CNN)

Aerial
Image

Figure out the next location to visit
Drone 

in 
Mission

(a) Tracing Road Application Overview

(b) Real-World Experiments with One and Two Drones

One Drone

Two Drones Speculative Execution

First Iteration

First Iteration

Road SegmentationAerial Image

Figure 11: Case Study 1: Mapping a Newly Constructed Road
through Iterative Tracing

5.1.1 Case Study 1: Road Mapping. Automatically mapping new

constructed roads is an important real-world task [10, 11, 22, 30, 31],

e.g., for companies that maintain digital maps. In case study 1,

we built a drone-based mapping application with the BeeCluster

API where the drones can smartly map a newly constructed road

through iterative road tracing. We show this application in Fig-

ure 11(a). The application begins at the start of the road. In each

iteration, the application acquires a photo at the current location

and computes the road position and direction through a neural

network. Then, the application moves 6 meters along the road and

starts the next iteration.

We evaluate this application on a newly constructed trail in

a nearby park. We run the application for 25 iterations, which

covers 144 meters of the trail. We show the drone trajectories in

Figure 11(b). We highlight the positions of the trail at each iteration

using a yellow circle.

(a) (b)

Figure 12: Benefits from Speculative Execution.

Benefit: The application logic in this case study is an active

sensing loop (see Section 2.1.1) with strong sequential dependencies;

the 𝑖-th iteration depends on the execution result of the (𝑖 − 1)-st
iteration.

While the application is running, BeeCluster forecasts the loca-

tions where the application may need to visit in the future. When

there are spare drones in the system, BeeCluster dispatches the

spare drones to the forecast locations. This speculative execution

strategy overlaps the sensing time and flying time of the active

sensing loop, reducing the total execution time of the application.

To show this, we added a second drone. We show drone trajec-

tories in Figure 11(b). In the two-drone scenario, we can clearly

see that the two drones alternatively fly over each other. Here, the

curvy traces are the result of our collision avoidance and conflict

resolution protocol.

We repeat the experiments three times for both the one-drone

scenario and two-drone scenario. As shown in Figure 12(a), BeeClus-

ter’s speculative execution strategy improves the sensing task run-

time by 21.3%. Here, the baseline approach does not support specu-

lative execution, instead, it only executes the program line by line.

In fact, the benefit of the speculative execution heavily depends

on the ratio of sensing time to flying time. We simulated different

sensing time to flying time ratios for the tracing road application in

a simulator. As shown in Figure 12(b), we find speculative execution

performs the best when the ratio of sensing time to flying time is

close to 1.5, which achieves up to 50% performance improvement.

In this case study, we don’t use DTGs from previous runs; the

forecast is only based on the early portion of the active DTG, e.g.,

the first few iterations. We find this setup is sufficient because the

application is predictable and the speculative execution does not

require very accurate predictions to overlap the flying time and

sensing time.

(a) Reactive (Baseline)
 Flight TIme: 270 seconds

(b) Predictive (BeeCluster)
Flight TIme: 228 seconds 

(c) Wifi Signal Coverage Map 
(Gaussian Process)

Start

End End

Start

Wifi Hotspot

dBm

Figure 13: Case Study 2: Mapping Wifi Signal Coverage
through a Gaussian Process

5.1.2 Case Study 2: Wifi Coverage Map. In case study 2, we built an
application with the BeeCluster API to create a WiFi coverage map

of an open area. Our application adapts an efficient and popular

information gathering algorithm based on Gaussian Processes [36,

38].The algorithm first divides the region of interest into an equal

sized grid (i.e., 5 meters by 5 meters). Then, the algorithm issues

tasks (using the newTask primitive) to request aWiFi signal strength

measurement from all grid cells. When the WiFi signal strength

is measured at a grid, the algorithm updates the Gaussian Process

model (which models theWiFi signal strength field) and updates the

307



MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Songtao He and Favyen Bastani, et al.

uncertainty estimate on all other grids. If the uncertainty estimation

of a grid falls below a threshold, the measurement request in that

grid is cancelled (using the cancelTask primitive). The algorithm

stops when all the grid cells are measured or have satisfied the

uncertainty threshold.

We evaluate this application in a 50 meter by 70 meter open area.

In Figure 13(a,b), we show the center of each 5 meter by 5 meter

grid cell in green and highlight the visited grid cells in yellow. We

show the estimated WiFi coverage map in Figure 13(c).

Benefit: In this case study, BeeCluster forecasts the task can-

cellation behavior of the application. Here, we use one additional

historical DTG from a previous run in the simulator. We find the

best weights of different optimization heuristics through replaying

this DTG in a simulator. We find this simulated DTG can be trans-

ferred to our real-world environment. Then, inside the scheduler,

the Avoid Mutual Utility Heuristic (Section 3.4.1) uses the forecast

information to encourage drones to visit the grids that maximize

the expected information gain. We can clearly see the effect of

this predictive optimization heuristic in Figure 13(a,b). In the base-

line (only with reactive optimization), the drone visits grids on

the boundary of the region. In contrast, BeeCluster’s predictive

optimization strategy causes drones to visit grids that are at least

one grid away from the boundary. This is because once a grid is

visited, its neighboring grids will be cancelled with a high proba-

bility. Note that BeeCluster captures this insight without requiring

explicit input from the application, simply using the Avoid Mutual

Utility heuristic.

Figure 14: BeeCluster enables Application Agnostic predic-
tive Optimization, reducing the execution time by 23.9% on
average over five runs in case study 2

We repeat the experiments 5 times with real drones and real

environments. As shown in Figure 14, BeeCluster’s predictive op-

timization yields an 23.9% average runtime improvement in this

scenario.

5.1.3 Case Study 3: WiFi Hotspot Localization. For case study 3,

we built an application to locate the WiFi hotspot using gradient

descent. The algorithm is similar to the code shown in Figure 8 -

without the if statement from lines 16 to 20.

We evaluate this application with real drones and real environ-

ments. In the evaluation, we set the initial location of the algorithm

to be 60 meters away from the hotspot and then ran the algorithm

for ten iterations. In each iteration, the current location moves 5

meters toward the direction of the gradient. We show an example

trajectory in Figure 15(a).

(a) Experiment Environment (b) Result

WiFi 
Hotspot

Start

Local-Optimal 
But Not Global-Optimal

Global Optimal
(After Collecting Enough 
Application Information)

Figure 15: Case Study 3: WiFi Hotspot Localization

Benefit: In this case study, BeeCluster can forecast the new tasks

generated by the applications. As the four measurements in each

iteration don’t have an order, the baseline solution (reactive) may

not always pick up the best order (clockwise or counter-clockwise)

in which to perform the measurements. In contrast, BeeCluster

leverages forecasting information to always pick the best order. We

repeat the experiments 5 times. We show the average execution

time of the last 5 iterations in Figure 15(b). BeeCluster’s predictive

optimization improves the performance by 11.6% against reactive

optimization.

In this case study, we don’t use DTGs from previous run; the

forecast is only based on the early portion of the active DTG, e.g.,

the first few iterations. As shown in Figure 15(a), the drone didn’t

always follow the global optimal route in the first few iterations.

Later on, once the system collected enough application profiling

data (DTG), the drone started to always follow the global optimal

route.

5.2 Benefit from BeeCluster API

Start

A

B

C

D

E

F

Start

A

B

C

D

E

F

Execution Order 
A (Pick up package)
F (Drop package)
E (Take photo)
C (Video record start)
D (Video record stop)
B (Take photo)

Execution Order 
A (Pick up package)
B (Take photo)
C (Video record start)
D (Video record stop)
E (Take photo)
F (Drop package)

(b) Baseline Coarse-Granularity 
Multiplexing

(c) BeeCluster Fine-Granularity 
Multiplexing

(a) Scenarios

Application Task 1:
- Pick up Package at A
- Drop Package at F 

Application Task 2:
- Take two photos at 

locations B and E 
(any order)

Application Task 3:
- Record a video from 

location C to D

Figure 16: Case Study 4 Fine Granularity Multiplexing

5.2.1 Case Study 4: Fine Granularity Multiplexing. In this case

study, we built a proof-of-concept scenario to demonstrate the

benefit of BeeCluster’s precise binding relationships. We create

three fake application tasks (Figure 16(a)) with different binding

relationships. The first application task mimics the package delivery

task. It needs to pick up a package at A and drop it at F. The task

308



BeeCluster: Drone Orchestration via Predictive Optimization MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

requires the same drone to do the pickup and dropoff but the task

is interruptible. The second application task takes two photos at

two locations B and E. The two photos can be taken in any order

(implemented with newTask primitive). The third application task

record a video from location C to D. The task requires the same

drone to record and the task is not interruptible.

In the evaluation, we submit these three application tasks to the

drone orchestration system (with one drone). We fix the locations

A and F and randomly generate the other four locations to create

10 different random scenarios. In the baseline orchestration system,

we disable the precise binding definition in application task 1 but

keep the application tasks 2 and 3 the same. In this case, once the

application task 1 starts, the drone is occupied until the application

task 1 is completed.

Figure 17: BeeCluster API enables fine granularity multi-
plexing, reducing the execution time by 19.1% on average
over ten runs in case study 4

Benefit: We repeat the experiment 10 times with real drones.

We show the quantitative result in Figure 17. BeeCluster surpasses

the baseline by 19.1% in terms of execution time. This improvement

comes from fine-granularity multiplexing; as shown in Figure 16(c),

BeeCluster can multiplex application task 1 with other tasks; once

the drone picks up the package at location A, it doesn’t need to

send the package to location F immediately, instead, the drone can

still conduct other tasks along the way to location F.

Target to Track

(b) View from Drone

(a) Trajectories

Hand-Off 1

Hand-Off 2

Hand-Off 3

Hand-Off 4

Hand-Off 5

Start

End

Battery 
Replace 
Zone

Drone 2
Drone 1

Target Trace

(c) Hand-Off Overhead

Figure 18: Case Study 5: Continuous object tracking beyond
a single drone’s battery life.

5.2.2 Case Study 5: Continuous Object Tracking. For case study 5,

we built an application to continuously track a person. The duration

of the tacking task is longer than the battery-time of a single drone.

We use this case study to demonstrate the effect of the non-same
drone but uninterruptible binding relationship (see Section 3.2.2).

The application logic is similar to line 13-18 in Figure 7.

We use two real drones in this experiment. We artificially limit

the flying time of each drone to be only 60 seconds. After the

battery is used up, the drone needs to fly back home to simulate

recharging its battery (in reality the drones have about 30 minutes

of battery life, so actual battery replacement wasn’t necessary). In

the experiment, we track a moving person for 5 minutes (with 5

drone hand-offs). We show the trajectories of the two drones in

Figure 18(b).

Benefit: We demonstrate that BeeCluster can support contin-

uous operation beyond a single drone’s battery time without any

additional code - but with a small overhead; we show the average

execution times of each regular iteration and each hand-off itera-

tion in Figure 18(c). Here, the hand-off iterations are the iterations

where the hand-off happened.

5.3 BeeCluster Overhead

Figure 19: Execution Time Breakdown

Next, to study the overhead of the BeeCluster framework, we

measured the execution time of each component for case studies

1,2,3, and 5. Case study 4 is a proof-of-concept scenario, so we don’t

consider it in this measurement. In this measurement, we use only

one drone and repeat each application three times. We logged the

timestamps at the entries and exits of each components on both

the drone side and the central controller side. Then, we merged all

the logs together to create the execution time breakdown of each

components. We show this execution time breakdown for the four

applications in Figure 19.

There are six parts in the execution time breakdown. Application
time is the time spent within the application (python), including

the sleep function call. Flying time is the amount of time when

the drone is flying toward target. Driver time is the amount of

time spent inside the driver, e.g., taking a photo may take 100-200

ms. Transmission time consists of two parts: transmission (payload)
time is the time spent sending the data between the drone and

the centralized controller; transmission (sync) time is the delay

introduced by the fixed rate (synchronized) drone-to-centralized

controller communication protocol (See Section 4.1). On average,

this protocol introduces a 150 ms (100 ms + 50 ms) delay for each

action.

309



MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Songtao He and Favyen Bastani, et al.

The overhead of BeeCluster, which includes dynamic task graph

construction, application forecasting, and scheduling, is the differ-

ence between the five components described above and the total

wall-clock execution time
1
. The average system overhead of the

four applications is 2.34%, which we believe is acceptable.

Scalability For completeness, we show the scheduling time and

the forecast time with different numbers of drones and historical

DTGs in Figure 20. Here, the results are from case study 2 for

scheduling time, and from case study 3 for forecast time because

these two applications have the highest overhead in scheduling and

forecast, respectively. We use level-2 simulator to measure these

overhead.

Figure 20: Scheduling Time and Forecasting Time

6 RELATEDWORK
Work related to drone orchestration has been done in different fields,

including computer systems, robotics, and operations research. Fig-

ure 21 illustrates how BeeCluster is different from existing work.

Reliability

Iso
lat

ion

Optimization
Complexity

Platform Flexibility 

Single-purpose Applications

Existing Drone 
Orchestration 

Systems

BeeCluster

Low-level Control 

Other Orthogonal 
Dimensions 

General-Purpose
Platform

Single-Purpose
Platform

Static
Optimization

Reactive
Optimization

Predictive
Optimization

Domain-Specific
Platform

Figure 21: Positioning of BeeCluster vs Related Work

In contrast to prior drone orchestration systems such as An-

Drone [42], Voltron [32], and UAV-as-a-service [27, 28, 50], our

main contribution is developing a predictive optimization strategy,

in contrast the non-predictive nature of prior work. In addition, we

designed a novel general-purpose programming API that allows de-

velopers to describe the logic of a wide range of drone applications

in a precise way. This new API enables our predictive optimizations.

In contrast to single-purpose drone applications [9, 17, 24, 37, 38,

43], BeeCluster provides predictive optimization in a transparent

way. Unlike many single-purpose applications or algorithms, which,

if they are predictive, require application developers to provide

the information needed to make predictions, BeeCluster infers the

necessary information from the program execution and profiling

data.

1
This is because we only use one drone.

There are other important aspects in a drone orchestration sys-

tem that have been studied, including low-level drone control [13],

reliable communication protocols [15, 23], and isolation [42]. This

work is complementary and orthogonal to BeeCluster.

7 DISCUSSION
Dynamic Task Graph. In the core of BeeCluster, we choose the

dynamic task graph (DTG) as BeeCluster’s programming model

because this model can capture a wide range of applications’ logic

and provide high programming flexibility. For example, BeeCluster

API can be used in a wide range of coding structures and models

such as the conditional branch, loops, recursive functions, graph

traversal (graph search), multi-threading models, and etc.

Moreover, in the design of BeeCluster, DTG acts as the inter-

mediate representation (IR) that bridges the frontend and backend.

Using a general-propose IR can benefit future works, e.g., advance-

ments in the backend can benefit all applications without the need

of changing the application code.

Application Forecasting. BeeCluster forecasts the application
behavior in an automatic way to reduce the programming com-

plexity. However, the accuracy of the forecast could be a concern.

Although we can improve the forecast accuracy by improving the

backend of BeeCluster, an alternative design choice does exist. We

can let users express the future behavior of the application explic-

itly (e.g., using code annotation). In another word, we can trade

programming complexity for forecast accuracy. We think studying

the property of this trade-off is desired in future work.

Low-level Primitives. BeeCluster uses a set of low-level prim-

itives. For example, the maneuver of a drone (e.g., fly to a location)

and the action of a drone (e.g., take a photo) are split into two prim-

itives. We made this design choice because we want the primitives

to be indivisible, thereby reduce the complexity of the backend.

One concern about this design choice is that the backend may

not be able to use the full information of a high-level action. For

example, if a high-level action requires the drone to visit a sequence

of locations in order, the backend may only be able to see one

location at a time, therefore lose the opportunity of using the whole

sequence of locations to do optimization. However, BeeCluster

overcomes this issue thanks to the non-blocking design of the

action API (see section 3.1).

8 CONCLUSION
In this work, we described a new drone orchestration system,

BeeCluster. BeeCluster is able to take into account the future sens-

ing tasks that applications will execute when making scheduling

decisions. This is achieved through a novel programming API that

allows developers to describe the logic of a wide range of drone

applications in a precise and compact way, as well as an extensible

rule-based forecasting approach. We demonstrate the effectiveness

BeeCluster through a evaluation over five real-world case studies

with real drones in outdoor environments, demonstrating speedups

ranging from 11.6% to 23.9%.

ACKNOWLEDGMENTS
We thank the anonymous reviewers whose comments helped im-

prove this manuscript and complemented the design of BeeCluster.

310



BeeCluster: Drone Orchestration via Predictive Optimization MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

REFERENCES
[1] Dji f450 drone frame. https://www.dji.com/flame-wheel-arf.

[2] Dji n3 flight controller. https://www.dji.com/n3.

[3] Dronedeploy. https://www.dronedeploy.com.

[4] Pix4dcapture. https://www.pix4d.com/product/pix4dcapture.

[5] Raspberry pi. https://www.raspberrypi.org/.

[6] Vehicle routing problem solvers in google or-tools. https://developers.google.

com/optimization/routing/routing_options. Accessed: 2019-09-17.

[7] Adams, S. M., and Friedland, C. J. A survey of unmanned aerial vehicle (uav)

usage for imagery collection in disaster research and management. In 9th Inter-
national Workshop on Remote Sensing for Disaster Response (2011), vol. 8.

[8] Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., and Sousa,

J. Hyperspectral imaging: A review on uav-based sensors, data processing and

applications for agriculture and forestry. Remote Sensing 9, 11 (2017), 1110.
[9] Alvear, O., Zema, N. R., Natalizio, E., and Calafate, C. T. Using uav-based

systems to monitor air pollution in areas with poor accessibility. Journal of
Advanced Transportation 2017 (2017).

[10] Bastani, F., He, S., Abbar, S., Alizadeh, M., Balakrishnan, H., Chawla, S.,

and Madden, S. Machine-assisted map editing. In Proceedings of the 26th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems (2018), ACM, pp. 23–32.

[11] Bastani, F., He, S., Abbar, S., Alizadeh, M., Balakrishnan, H., Chawla, S.,

Madden, S., and DeWitt, D. Roadtracer: Automatic extraction of road networks

from aerial images. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2018), pp. 4720–4728.

[12] Bergstra, J., Yamins, D., and Cox, D. D. Hyperopt: A python library for opti-

mizing the hyperparameters of machine learning algorithms. In Proceedings of
the 12th Python in science conference (2013), Citeseer, pp. 13–20.

[13] Bregu, E., Casamassima, N., Cantoni, D., Mottola, L., and Whitehouse,

K. Reactive control of autonomous drones. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services (2016),
MobiSys ’16.

[14] Burgard, W., Moors, M., Stachniss, C., and Schneider, F. E. Coordinated

multi-robot exploration. IEEE Transactions on robotics 21, 3 (2005), 376–386.
[15] Chlestil, C., Leitgeb, E., Schmitt, N. P., Muhammad, S. S., Zettl, K., and

Rehm, W. Reliable optical wireless links within uav swarms. In 2006 international
conference on transparent optical networks (2006), vol. 4, IEEE, pp. 39–42.

[16] Doherty, P., and Rudol, P. A uav search and rescue scenario with human

body detection and geolocalization. In Australasian Joint Conference on Artificial
Intelligence (2007), Springer, pp. 1–13.

[17] Dorling, K., Heinrichs, J., Messier, G. G., andMagierowski, S. Vehicle routing

problems for drone delivery. IEEE Transactions on Systems, Man, and Cybernetics:
Systems 47, 1 (2016), 70–85.

[18] Eschmann, C., Kuo, C.-M., Kuo, C.-H., and Boller, C. Unmanned aircraft

systems for remote building inspection and monitoring. In Proceedings of the 6th
European Workshop on Structural Health Monitoring, Dresden, Germany (2012),

vol. 36.

[19] Feurer, M., andHutter, F. Hyperparameter Optimization. Springer International
Publishing, Cham, 2019, pp. 3–33.

[20] Floreano, D., and Wood, R. J. Science, technology and the future of small

autonomous drones. Nature 521, 7553 (2015), 460–466.
[21] Ham, Y., Han, K. K., Lin, J. J., and Golparvar-Fard, M. Visual monitoring

of civil infrastructure systems via camera-equipped unmanned aerial vehicles

(uavs): a review of related works. Visualization in Engineering 4, 1 (2016), 1.
[22] He, S., Bastani, F., Abbar, S., Alizadeh, M., Balakrishnan, H., Chawla, S.,

and Madden, S. RoadRunner: Improving the precision of road network inference

from gps trajectories. In ACM SIGSPATIAL (2018).

[23] Ho, D.-T., and Shimamoto, S. Highly reliable communication protocol for wsn-

uav system employing tdma and pfs scheme. In 2011 IEEE Globecom Workshops
(Gc Wkshps) (2011), IEEE, pp. 1320–1324.

[24] Julian, K. D., and Kochenderfer, M. J. Distributed wildfire surveillance with

autonomous aircraft using deep reinforcement learning. Journal of Guidance,
Control, and Dynamics (2019), 1–11.

[25] Korsah, G. A., Stentz, A., and Dias, M. B. A comprehensive taxonomy for

multi-robot task allocation. The International Journal of Robotics Research 32, 12
(2013), 1495–1512.

[26] Lin, Y., Hyyppa, J., and Jaakkola, A.Mini-uav-borne lidar for fine-scale mapping.

IEEE Geoscience and Remote Sensing Letters 8, 3 (2010), 426–430.
[27] Mahmoud, S., Mohamed, N., and Al-Jaroodi, J. Integrating uavs into the cloud

using the concept of the web of things. Journal of Robotics 2015 (2015), 10.
[28] Mahmoud, S. Y. M., andMohamed, N. Toward a cloud platform for uav resources

and services. In 2015 IEEE Fourth Symposium on Network Cloud Computing and
Applications (NCCA) (2015), IEEE, pp. 23–30.

[29] Máthé, K., and Buşoniu, L. Vision and control for uavs: A survey of general

methods and of inexpensive platforms for infrastructure inspection. Sensors 15, 7
(2015), 14887–14916.

[30] Máttyus, G., Luo, W., and Urtasun, R. Deeproadmapper: Extracting road

topology from aerial images. In Proceedings of the IEEE International Conference
on Computer Vision (2017), pp. 3438–3446.

[31] Máttyus, G., Wang, S., Fidler, S., and Urtasun, R. Hd maps: Fine-grained road

segmentation by parsing ground and aerial images. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2016), pp. 3611–3619.

[32] Mottola, L., Moretta, M., Whitehouse, K., and Ghezzi, C. Team-level pro-

gramming of drone sensor networks. In Proceedings of the 12th ACM Conference
on Embedded Network Sensor Systems (2014), ACM, pp. 177–190.

[33] Nex, F., and Remondino, F. Uav for 3d mapping applications: a review. Applied
geomatics 6, 1 (2014), 1–15.

[34] Puri, A. A survey of unmanned aerial vehicles (uav) for traffic surveillance.

Department of computer science and engineering, University of South Florida (2005),
1–29.

[35] Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah,

M., and Rinner, B. Networked uavs as aerial sensor network for disaster man-

agement applications. e & i Elektrotechnik und Informationstechnik 127, 3 (2010),
56–63.

[36] Rasmussen, C. E. Gaussian processes in machine learning. In Summer School on
Machine Learning (2003), Springer.

[37] Rossi, M., Brunelli, D., Adami, A., Lorenzelli, L., Menna, F., and Remondino,

F. Gas-drone: Portable gas sensing system on uavs for gas leakage localization.

In SENSORS, 2014 IEEE (2014), IEEE, pp. 1431–1434.

[38] Ruiz, A. V., Angermann, M., Wieser, I., Frassl, M., and Mueller, J. Efficient

multi-agent exploration with gaussian processes. In Australasian Conference on
Robotics and Automation (ACRA) (2014).

[39] Saari, H., Pellikka, I., Pesonen, L., Tuominen, S., Heikkilä, J., Holmlund, C.,

Mäkynen, J., Ojala, K., and Antila, T. Unmanned aerial vehicle (uav) operated

spectral camera system for forest and agriculture applications. In Remote Sensing
for Agriculture, Ecosystems, and Hydrology XIII (2011), vol. 8174, International
Society for Optics and Photonics, p. 81740H.

[40] Smith, J. E. A study of branch prediction strategies. In Proceedings of the 8th
annual symposium on Computer Architecture (1981), IEEE Computer Society Press,

pp. 135–148.

[41] Van Laarhoven, P. J., and Aarts, E. H. Simulated annealing. In Simulated
annealing: Theory and applications. Springer, 1987, pp. 7–15.

[42] Van’t Hof, A., and Nieh, J. Androne: Virtual drone computing in the cloud. In

Proceedings of the Fourteenth EuroSys Conference 2019 (2019), ACM, p. 6.

[43] Vasisht, D., Kapetanovic, Z., Won, J.-h., Jin, X., Chandra, R., Kapoor, A.,

Sinha, S. N., Sudarshan, M., and Stratman, S. Farmbeats: An iot platform

for data-driven agriculture. In Proceedings of the 14th USENIX Conference on
Networked Systems Design and Implementation (2017).

[44] Villa, T., Gonzalez, F., Miljievic, B., Ristovski, Z., and Morawska, L. An

overview of small unmanned aerial vehicles for air quality measurements: Present

applications and future prospectives. Sensors 16, 7 (2016), 1072.
[45] Villa, T., Salimi, F., Morton, K., Morawska, L., and Gonzalez, F. Development

and validation of a uav based system for air pollution measurements. Sensors 16,
12 (2016), 2202.

[46] Viseras, A., Shutin, D., and Merino, L. Online information gathering using

sampling-based planners and gps: an information theoretic approach. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017),
IEEE, pp. 123–130.

[47] Viseras, A., Wiedemann, T., Manss, C., Magel, L., Mueller, J., Shutin, D.,

and Merino, L. Decentralized multi-agent exploration with online-learning

of gaussian processes. In 2016 IEEE International Conference on Robotics and
Automation (ICRA) (2016), IEEE, pp. 4222–4229.

[48] Vlachos, M., Gunopulos, D., and Das, G. Rotation invariant distance measures

for trajectories. In Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining (2004), ACM, pp. 707–712.

[49] Werman, M., and Weinshall, D. Similarity and affine invariant distances be-

tween 2d point sets. IEEE Transactions on Pattern Analysis andMachine Intelligence
17, 8 (1995), 810–814.

[50] Yapp, J., Seker, R., and Babiceanu, R. Uav as a service: Enabling on-demand

access and on-the-fly re-tasking of multi-tenant uavs using cloud services. In

2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC) (2016), IEEE,
pp. 1–8.

[51] Yungaicela-Naula, N. M., Zhang, Y., Garza-Castañon, L. E., and Minchala,

L. I. Uav-based air pollutant source localization using gradient and probabilistic

methods. In 2018 International Conference on Unmanned Aircraft Systems (ICUAS)
(2018), IEEE, pp. 702–707.

311

https://www.dji.com/flame-wheel-arf
https://www.dji.com/n3
https://www.dronedeploy.com
https://www.pix4d.com/product/pix4dcapture
https://www.raspberrypi.org/
https://developers.google.com/optimization/routing/routing_options
https://developers.google.com/optimization/routing/routing_options

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Benefits of Predictive Optimization
	2.2 Benefits of the BeeCluster API

	3 Design
	3.1 Programming Model (BeeCluster API)
	3.2 Application Forecasting
	3.3 Extensible Optimization Heuristics

	4 Implementation
	4.1 BeeCluster Framework
	4.2 BeeCluster Task
	4.3 Hardware Setup

	5 Evaluation
	5.1 Benefit from predictive Optimizations
	5.2 Benefit from BeeCluster API
	5.3 BeeCluster Overhead

	6 Related Work
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

