Detecting if LTE is the Bottleneck with BurstTracker

Arjun Balasingam, Manu Bansal, Rakesh Misra, Kanthi Nagaraj, Rahul Tandra, Sachin Katti, Aaron Schulman

UC San Diego

My video quality is only 360p (1.5 Mbps). **The cellular downlink must be slow.**

My video quality is only 360p (1.5 Mbps). **The cellular downlink must be slow.**

My video quality is only 360p (1.5 Mbps). **The cellular downlink must be slow.**

But a speed test says the downlink is **10 Mbps**. **What's going on?!**

We can not conclusively determine if the cellular downlink is the bottleneck.

Where is the bottleneck?

Network

slow server code?

Where is the bottleneck?

Network

App Server

slow server code?

Where is the bottleneck?

App Server

slow server code?

Core Cellular Network throttling at middlebox? Where is the bottleneck?

Radio Access Network

congestion?

App Server

slow server code?

Core Cellular Network

Where is the bottleneck?

App Server

slow server code?

Where is the bottleneck? verizon slow app code? **Core Cellular** Network **Radio Access** throttling at middlebox? Network congestion?

A Developer's Perspective of Network Bottlenecks

A Developer's Perspective of Network Bottlenecks

 Odenes

If empty, traffic bottlenecked **on the way** to the base station.

Queues

Radio (wireless) Link

Base Station

If empty, traffic bottlenecked on the way to the base station.

Queues

If nonempty, bottleneck is *at base station*.

Radio (wireless) Link

The cleal Metric

Providers know the status of the queues; but no one else does. **BurstTracker estimates this metric at the client.**

Providers know the status of the queues; but no one else does. BurstTracker estimates this metric at the client.

User

User

Resources scheduled to purple user in this millisecond.

User

User

User

Block (RB) Resource

User

User

User

Block (RB) Resource

User

User

Purple user not given all resources; its queue has drained out.

- Likely 1
- **Begin**
 - (D) End

A user only needs to know their resource allocation to infer their queue status.

Block (RB) Resource

Burst

Begin (\triangleright)

End

A user only needs to know their resource allocation to infer their queue status.

1 Mbps over 1 min Cumulative Probability 0.22 - 0.20 - 50 0

Resources allocated in each time slot

Provider: Verizon

)

100

Provider: Verizon

Resources allocated in each time slot

Resources allocated in each time slot

Slow transfer was aggregated into bursts that used most of the resources.

Provider: Verizon

Resources allocated in each time slot

Slow transfer was aggregated into bursts that used most of the resources.

Provider: Verizon

Slow transfer was aggregated into bursts that used most of the resources.

Provider: Verizon

Is BurstTracker Accurate?

Application	BurstTracker Median Error (%
File Download	7.2
Video Streaming	6.9

Experiment Setup

- 100 runs of each workload
- Network conditions ~ 2–12.5 Mbps

Partnered with Tier-1 provider to get ground-truth queue status measurements.

S Burst Tracker Accurate?

Application	BurstTracker Median Error (%
File Download	7.2
Video Streaming	6.9

BurstTracker achieves a median error of 7% for different classes of mobile apps.

Experiment Setup

- 100 runs of each workload
- Network conditions ~ 2–12.5 Mbps

Partnered with Tier-1 provider to get ground-truth queue status measurements.

Case Study: Video Streaming

We found that, surprisingly, the LTE downlink was not the bottleneck.

100	150	200
time (s)		

Case Study: Video Streaming

We found that, surprisingly, the LTE downlink was not the bottleneck.

200 time (s)

1 Video Segment at the Client

Resource Allocation Trace for a Single Video Segment

1 Video Segment at the Client

Resource Allocation Trace for a Single Video Segment

1 Video Segment at the Client

Resource Allocation Trace for a Single Video Segment

BurstTracker indicates that it might be TCP Slow-Start.

Slow-Start Restart at the Middlebox

- Only HTTP and HTTPS traffic used middlebox.
- Nonstandard port (7777) bypasses middlebox.

Slow-Start Restart at the Middlebox

- Only HTTP and HTTPS traffic used middlebox.
- Nonstandard port (7777) bypasses middlebox.

Slow-Start Restart at the Middlebox

- Only HTTP and HTTPS traffic uses middlebox.
- Nonstandard port (7777) bypasses middlebox.

Split-TCP proxies were forcing Slow-Start restart.

- Tool to determine if cellular downlink is the bottleneck
- Showed that we can infer base station queue status from resource allocation
- Discovered that carrier's middlebox was bottleneck for video streaming

github.com/arjunvb/bursttracker

