
Application-Aware
Scheduling Architectures for Mobile Systems

by

Arjun Balasingam
B.S., Stanford University (2018)

S.M., Massachusetts Institute of Technology (2021)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2024

© 2024 Arjun Balasingam. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license
to exercise any and all rights under copyright, including to reproduce, preserve, distribute
and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Arjun Balasingam
Department of Electrical Engineering and Computer Science
January 26, 2024

Certified by: Hari Balakrishnan
Fujitsu Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Studies

2

Application-Aware Scheduling Architectures for Mobile Systems
by

Arjun Balasingam

Submitted to the Department of Electrical Engineering and Computer Science
on January 26, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Abstract

Architects of mobile systems have long optimized schedulers for platform-level objectives,
such as system throughput or operating cost. However, these objectives could be at odds
with performance indicators that applications or users of the platform might care about. This
thesis proposes two-tiered architectures to realize app-aware resource allocation policies for
mobile systems. The first level decomposes app-level objectives into platform-level objectives
over scheduling rounds. The second level leverages classical schedulers, designed for platform
objectives, as building blocks to guide the optimizer toward app-level objectives. We apply
this design paradigm to build resource allocation systems and algorithms in two domains:
mobility platforms and cellular networks.

Mobius allocates tasks from different customers to vehicles in mobility platforms, which are
used for food and package delivery, ridesharing, and mobile sensing. Over rounds, Mobius
invokes vehicle routing solvers that maximize task completion throughput to compute
schedules that are fair to different customers using the platform. On a trace of Lyft rides in
New York City, Mobius computes max-min fair online schedules involving 200 vehicles and
over 16,000 tasks, while achieving only 10% less throughput than a classical vehicle routing
solver.

Zipper is a radio resource scheduler that fulfills throughput and latency service-level
agreements for individual apps connected to a cellular network. Zipper bundles apps into
network slices, and leverages classical schedulers that maximize base station throughput to
compute resource schedules for each slice that comply with each app’s requirements. On a
typical workload consisting of video streaming, conferencing, IoT, and virtual reality apps,
Zipper reduces tail throughput and latency violations, measured as a ratio of violation of
the app’s request, by 9×, compared to traditional base station schedulers.

Thesis supervisor: Hari Balakrishnan
Title: Fujitsu Professor of Electrical Engineering and Computer Science

4

To my parents, Esha and Pratheep.

6

Acknowledgments

Graduate school has been the most intellectually-rewarding few years of my life, and I owe

much of the credit to my advisor, Hari Balakrishnan. He created the space for me to explore an

exceptionally broad range of topics over the last five and a half years. Besides the two projects

discussed in this dissertation, we worked on drone computing and sensing, on improving bicy-

cle safety with LiDAR, and on keypoint tracking in videos. I have had a blast working with

him, and resonate deeply with his philosophy of applications motivating research problems.

Hari has taught me how to communicate complex research ideas clearly and succinctly. More-

over, he has been an incredibly supportive mentor to me, both professionally and personally.

I am fortunate to have also worked closely with the other members of my thesis com-

mittee. Mohammad Alizadeh has been a phenomenal co-advisor. I have learned so much

from him about how to be a better researcher. He has a knack for explaining complex and

messy systems with simplicity and elegance. Mohammad has also been extremely patient

with me, and given thoughtful and constructive feedback in every one of our meetings. I am

privileged to have had Victor Bahl also mentor me through much of my graduate studies,

beginning with my first internship at Microsoft in the summer of 2020. Despite having a

busy day job, Victor has been incredibly generous with his time to me. I am grateful to him

for creating an opportunity for me to see firsthand how to translate cutting-edge industry

research to product. Radhika Mittal was my very first collaborator when I came to MIT.

We worked together on drone computing, which at the time was a research area that was

new to both of us. She helped me conceive and formalize the idea of fairness in mobility

7

platforms, which eventually formed the basis for Mobius.

I consider myself lucky to have had a great support system throughout my career as

a student researcher. I am grateful to Saman Amarasinghe, Frans Kaashoek, and Devavrat

Shah1 for their advice over the years. My undergraduate mentors, Sachin Katti and Aaron

Schulman, encouraged me to pursue a doctorate, and introduced me to the mobile networking

community, which has been my research home since 2016. They trusted me to lead my

own project as an undergrad, and I believe that this early experience prepared me well for

graduate school. Many thanks, also, to Manu Bansal, Sam Joseph, and Rakesh Misra for

their friendship and advice ever since we first met at Stanford 8 years ago.

I have had many fantastic collaborators throughout graduate school: Mohammad Al-

izadeh, Venkat Arun, Paramvir Bahl, Hamsa Balakrishnan, Hari Balakrishnan, Favyen

Bastani, Michael Cafarella, Joseph Chandler, Karthik Gopalakrishnan, Songtao He, Ziwen

Jiang, Manikanta Kotaru, Tim Kraska, Chenning Li, Sam Madden, Radhika Mittal, Ahmed

Saeed, and Zhoutong Zhang. I am especially grateful to Karthik and to Mani, who persevered

with me through the thick of the Mobius and Zipper projects, respectively. Zhoutong gener-

ously brought me up to speed on keypoint tracking techniques being developed by computer

vision researchers. I am also fortunate to have had the opportunity to mentor some junior

students during my time at MIT; notably, the MicroTel and DriveTrack projects would not

have been possible without Joe’s tireless efforts debugging PyTorch and JAX training code.

Thanks to everyone in the Networks and Mobile Systems group and to my officemates

in 32-G982, past and present: Venkat Arun, Frank Cangialosi, Inho Cho, Manya Ghobadi,

Prateesh Goyal, Pouya Hamadanian, Songtao He, Pantea Karimi, Mehrdad Khani, Moein

Khazraee, Sunghyun Kim, Chenning Li, Charlie Liu, James Lynch, Hongzi Mao, Radhika

Mittal, Akshay Narayan, Arash Nasr-Esfahany, Vikram Nathan, Parimarjan Negi, Kimia

Noorbakhsh, Amy Ousterhout, Seo Jin Park, Sudarsanan Rajasekaran, Ahmed Saeed,

Harsha Sharma, Vibhaa Sivaraman, Will Sussman, Shaileshh Venkatakrishnan, Frank Wang,
1Thanks to Frans and Devavrat for many thrilling squash matches!

8

Lei Yang, Mingran Yang, and Zhizhen Zhong. I will look back fondly on our group events,

including hikes, rock climbing sessions, impromptu ping-pong games, and virtual game nights.

My first winter in Boston was miserable. But the city has slowly grown on me over the

last few years, and I will deeply miss living here. Thanks to my friends for a memorable

time in Boston: Yamin Arefeen, Jialin Ding, Siddhartha Jayanti, Akshay Narayan, Sarath

Pattathil, Aniruddh Raghu, Nalini Singh, Vibhaa Sivaraman, Abhin Shah, Sohil Shah, Kush

Tiwary, and Kapil Vaidya. I will cherish the many squash matches, badminton games, soccer

scrimmages, (bitterly cold!) winter morning runs, fall foliage hikes, and Tosci’s & New City

ice cream trips that we have enjoyed over these last five and a half years.

I owe an immense debt of gratitude to my family. My sister, Ramya Balasingam, and

brother, Akhilesh Balasingam, have made my frequent trips home worth it, always finding

ways to keep my mind off of research. I spent 18 months of the pandemic back home in

California, and my two siblings made that extended stay at home enjoyable. My parents, Esha

and Pratheep Balasingam, have been my two biggest cheerleaders. Since I was young, they

encouraged me to be fearless and curious, and pushed me to dream big. They have always

made education a priority for me and my siblings. I cannot thank them enough for all of their

sacrifices and for their unconditional support over the years. I dedicate this thesis to them.

9

10

Previously Published Material

Chapter 3 revises a paper published at ACM MobiSys 2021 [10]:

Arjun Balasingam, Karthik Gopalakrishnan, Radhika Mittal, Venkat Arun,

Ahmed Saeed, Mohammad Alizadeh, Hamsa Balakrishnan, and Hari Balakr-

ishnan. Throughput-fairness tradeoffs in mobility platforms. In Proceedings of

the 19th Annual International Conference on Mobile Systems, Applications, and

Services, MobiSys ’21, page 363–375, New York, NY, USA, 2021. Association

for Computing Machinery

Chapter 4 revises a paper that will appear at USENIX NSDI 2024 [12]:

Arjun Balasingam, Manikanta Kotaru, and Paramvir Bahl. Application-level

service assurance with 5G RAN slicing. In Proceedings of the 21st USENIX

Symposium on Networked Systems Design and Implementation, NSDI 2024,

Santa Clara, CA, USA, April 16-18, 2024. USENIX Association, 2024

11

12

Contents

Acknowledgments 7

List of Figures 17

List of Tables 23

1 Introduction 25

1.1 Strawman: End-to-End Optimization . 27

1.2 Application-Aware Scheduling Architectures 27

1.2.1 Customer-Level Fairness in Mobility Platforms 29

1.2.2 Application-Level Service Assurance in Cellular Networks 30

1.3 Organization of this Thesis . 31

2 Background and Related Work 33

2.1 Hierarchical Scheduling . 33

2.2 Scheduling in Mobility Platforms . 34

2.3 Service Assurance in Cellular Networks . 35

3 Customer-Level Fairness in Mobility Platforms 39

3.1 Problem Setup . 43

3.2 Overview . 45

3.3 Balancing Throughput and Fairness . 47

13

3.3.1 Scheduling on the Convex Boundary 48

3.3.2 Scheduling in Dynamic Environments 50

3.3.3 Visualizing Routes Scheduled by Mobius 51

3.4 Mobius Scheduling Algorithm . 51

3.4.1 Finding Support Allocations . 52

3.4.2 Scheduling Over Rounds . 55

3.4.3 Optimality of Mobius . 56

3.4.4 Implementation . 58

3.5 Generalizing to α-Fairness . 59

3.6 Real-World Evaluation . 61

3.6.1 Online Trace-Driven Emulation . 61

3.6.2 Case Study: Lyft Ridesharing in Manhattan 63

3.6.3 Case Study: Shared Aerial Sensing Platform 69

3.7 Conclusion . 74

4 Application-Level Service Assurance with 5G RAN Slicing 77

4.1 Problem Setup and Challenges . 80

4.1.1 Problem Formulation . 81

4.1.2 Challenge: State Space Complexity 83

4.1.3 Challenge: Determining RAN Resource Availability 84

4.2 Design . 86

4.2.1 Model Predictive Control . 86

4.2.2 Tuning Slice Bandwidths Efficiently 89

4.2.3 Forecasting RAN Resource Availability 92

4.3 Implementation . 95

4.4 Evaluation . 97

4.4.1 Evaluation Setup . 98

4.4.2 End-to-end Evaluation . 99

14

4.4.3 SLA Compliance . 100

4.4.4 Forecasting RAN Resource Availability 106

4.4.5 Microbenchmarks . 109

4.5 Discussion . 110

4.6 Conclusion . 111

5 Conclusion 113

5.1 Summary . 113

5.2 Future Work . 114

A Mobius Appendix 117

A.1 Searching for α-Fair Allocation . 118

A.2 Mobius Algorithm . 119

A.3 Optimality of Mobius . 120

A.3.1 Mobius is Optimal in a Round . 120

A.3.2 Mobius Converges to the Target Throughput 122

A.4 Greedy Heuristic to Maximize Uα . 125

A.5 Runtime of Mobius . 127

A.6 Microbenchmarks . 128

A.6.1 Robustness to Spatial Demand . 128

A.6.2 Expressive Schedules with α . 130

A.6.3 Timescale of Fairness . 131

A.6.4 Geometry of the Convex Boundary 132

A.6.5 Varying the Number of Vehicles . 133

A.6.6 A Case with Three Customers . 134

B Zipper Appendix 137

B.1 Allocating Slice Bandwidth in Zipper . 137

B.1.1 Forecasting the Wireless Channel with an RNN 137

15

B.1.2 Monotonicity of Throughput and Latency 138

B.1.3 Algorithm . 138

B.2 Estimating Resource Availability in Zipper 138

B.2.1 DNN Architecture . 138

References 141

16

List of Figures

1-1 This thesis proposes a two-leveled architecture for app-aware scheduling prob-

lems in mobile systems, where the higher-layer algorithm guides a blackbox

lower-layer platform scheduler to fulfill app-level objectives. 28

3-1 An example with two customers, two vehicles, and a 6-minute planning hori-

zon. Mobius computes a schedule that (i) achieves a similar total throughput

to that of the max throughput schedule, and (ii) preserves the customer-level

fairness achieved by the round-robin and dedicated schedules. 43

3-2 Imposing fairness at short timescales (e.g., one round trip) degrades through-

put. Executing Options 1 and 2 provides fairness at longer timescales and

leads to greater total throughput. 45

3-3 In each round, Mobius uses a VRP solver to compute a schedule that maxi-

mizes a weighted sum of throughputs, and automatically adjusts the weights

across rounds to improve fairness. 46

3-4 Visualizing feasible allocations of throughput for a small problem with two

customers and two vehicles. Allocations on the convex boundary trade

short-term fairness for throughput. The convex boundary becomes denser

over time, making the target allocation achievable. 47

17

3-5 The difference in spatial density of tasks leads to short-term unfairness

(Rounds 1 and 3). Mobius compensates for this by directing more resources

to the underserved customer (Round 2). 51

3-6 Using a blackbox VRP solver as a building block, Mobius runs an iterative

search algorithm to find the support allocations. 54

3-7 Mobius (a) finds the support allocations nearest the target allocation in each

round, and (b) converges to the target allocation. 56

3-8 Mobius can tune its allocation to deliver proportional fairness (α=1) and

max-min fairness (approximated with α=100). 60

3-9 Maps of zones (customers) and demand in Manhattan, indicating skews in

both spatial coverage and volume of ride requests. 64

3-10 Long-term throughputs for zones in Manhattan after 13 hours. A good

scheduler should have a stacked plot with large evenly-sized blocks, and a

map with bright (high throughput) and homogeneous (fair) colors across zones. 66

3-11 Time series of long-term throughputs for two zones for different replanning

horizons. Frequent replanning ensures fairness (equal throughputs) at shorter

timescales. 67

3-12 Distributions of rider wait times for two zones. Even though Mobius com-

promises some throughput for fairness, it delivers similar wait times as the

max throughput scheduler. 68

3-13 Summary of aerial sensing applications, which span a variety of spatial

demand and reactive/continuous sensing preferences. We collected ground

truth data for each of these applications using real drones, and created traces

to evaluate Mobius. 68

3-14 Map of tasks for 5 aerial sensing apps, spanning a 1 square mile area in

Cambridge, MA. Mobius replans every 5 minutes, in order to incorporate

new requests. Each drone returns to recharge every 15 minutes. 70

18

3-15 Long-term throughputs achieved over 90 minutes. Mobius achieves high

throughput and best shares it amongst the apps. 72

3-16 Percentage of tasks completed per app. Mobius fulfills nearly all requests

for the Traffic and Parking apps, before allocating “excess” vehicle time to

the more backlogged apps. 73

3-17 Discounting long-term throughput allows Mobius to gradually respond to the

sudden presence of the transient Roof app, instead of dedicating all drones to it. 74

4-1 Apps express their connectivity requirements in terms of SLAs, and the

operator provisions slice bandwidths to fulfill all SLAs. 79

4-2 Zipper can efficiently manage an expressive and comprehensive state space

to deliver SLAs for each app in each slice. 81

4-3 Translating an app’s SLAs directly to required slice bandwidth can ignore

schedules with greater spectral efficiency. 84

4-4 Zipper provisions connectivity by dynamically optimizing network slice band-

width and resource allocation to meet app-level SLAs. 86

4-5 Zipper uses model predictive control (MPC) to compute slice bandwidths

that comply with all app SLAs. With MPC, Zipper decouples prediction

from control to manage the state space. 86

4-6 Zipper is resilient to modest ∼2 dB error in forecasting SNR. Its MPC

framework supports different channel forecasters. While both have small

median errors, the RNN model outperforms EWMA. 87

4-7 Exposing more bandwidth to a slice reduces packet latency. 90

4-8 Zipper builds a family of DNNs that forecasts bandwidth distributions for

slices consisting of different MAC schedulers and apps with different demand

patterns. 92

4-9 We implement Zipper atop a production-class 5G network. 95

19

4-10 Zipper tunes the bandwidth allocated to a slice serving a mobile OnePlus

phone running 17 Mbps iPerf flow. 100

4-11 Tail throughput penalties for varying load. Apps scheduled by Zipper ex-

perience 95th percentile penalties close to 0%. 102

4-12 Tail latency penalties for varying base station loads. Apps scheduled by

Zipper have low 95th and 99th percentile penalties. 103

4-13 Throughput for 75 apps + 20 best effort apps. Zipper meets the SLAs

reliably, and allocates excess capacity to best effort. 104

4-14 Zipper’s performance is invariant to the number of slices. 106

4-15 Both the conditional and DNN-based resource estimation methods achieve

bounded (and low) penalties. 107

4-16 Zipper’s DNN resource estimator achieves a higher admit rate and utilization

by squeezing in apps with lighter demand. 108

4-17 Runtime of Zipper and NVS. Even though Zipper involves more computation

than NVS, it is still practical for large workloads. 109

A-1 Proof setup for Lemma 7. The face BE is the same as in Fig. 3-7 124

A-2 Comparing customer throughputs and platform throughput achieved by Mo-

bius and other schemes. Customer tasks stream in according to a static task

arrival model. Mobius consistently outperforms other schemes by striking

a balance between throughput and fairness. 128

A-3 Snapshot of per-round schedules computed by Mobius (for 3 rounds) and

other policies. Mobius compensates for short-term unfairness by switching

between schedules on the convex hull over rounds. Other schemes suffer

from persistent bias or low throughput. 129

20

A-4 Mobius converges to the fair allocation of throughputs regardless of the

timescale of fairness. Scheduling in shorter rounds converges faster to the

fair allocation of rates, but longer round durations lead to schedules with

greater platform throughput. 131

A-5 Convex boundaries computed by Mobius for the different maps shown in Fig.

A-2a. The shape of the convex boundary describes the inherent tradeoff

between fairness and high throughput. 132

A-6 Long-term per-customer rates computed by Mobius on Map D in Fig. A-2a,

for different provisioning of vehicles. 133

A-7 Mobius vs. dedicating vehicles for example with 3 customers. Mobius con-

verges to a fair allocation of rates for customers, when the assumption on

static task arrival is relaxed. 134

B-1 Architecture of RNN model to forecast wireless channel. 137

21

22

List of Tables

1-1 This thesis applies the insight of hierarchical scheduling to build resource

allocation systems and algorithms in two application domains. 29

4-9 Apps, SLAs, and frequencies selected for experiments. 98

A-1 Performance of Mobius on different input sizes. 127

23

24

Chapter 1

Introduction

Mobile systems form the fabric for the hyper-connected society in which we live today. We

interface with our smartphones for routine services, such as remote meetings, online shop-

ping, and telehealth checkups. Moreover, many physical devices, including security cameras,

sensors, virtual reality headsets, and automobiles now connect to the Internet. Operators can

remotely schedule vehicle fleets and robots powering food delivery, ridesharing, and mobile

sensing applications. Over the last decade, mobile systems have become indispensable to

our daily lives, even supporting mission-critical services, such as emergency response, mobile

health, and secure financial transactions.

A vital component of any mobile system is its resource allocation policy, which typically

answers the following question: how should the system share its resources among its users?

Resources are usually scarce, forcing the operator to make important tradeoffs. For exam-

ple, a mobile network operator like Verizon must allocate wireless bandwidth—the scarce

resource—to different users subscribing to its network. Similarly, Uber Eats must allocate

restaurant delivery tasks to vehicles, with fuel being the scarce resource. In each of these

systems, the operator must decide how to allocate the scarce resource among its users in

a given time period, while fulfilling the platform’s operating goals.

An operator of a mobile system selects what resource allocation policy to deploy. Tradi-

25

tionally, these policies have optimized platform-level objectives. For instance, a base station

operator would try to maximize total throughput or profit [74, 115], or minimize total cost

or energy consumed. The operator of a mobility platform might fulfill tasks that require

the least travel time or use up the least vehicle fuel [4, 54, 113]. These objectives directly

address capital and operational expenditures, which matter most to system operators.

However, the users or applications of these mobile systems may not care about platform-

level objectives—these metrics have little bearing on a given user’s performance. For instance,

a cloud gaming app may want low latency, a FaceTime call may want low jitter, a virtual

reality (VR) application may want high bandwidth and low latency, and an internet-of-things

(IoT) sensor needs low power consumption. Similarly, a traffic analysis app running on a

shared drone computing platform may need fresh and timely video measurements of road

segments to maintain up-to-date speed estimates. A restaurant like McDonald’s may want

a certain number of orders fulfilled by Uber Eats, and would not be satisfied if the platform

instead decided to prioritize deliveries from Starbucks.

The challenge is that app-level objectives are often at odds with platform-level objectives.

For instance, a base station operator might find that serving a bandwidth-hungry file transfer

more resources than a lightweight IoT download keeps the link more occupied and leads to

more profit. Uber Eats might conclude that fulfilling more Starbucks orders at the expense of

McDonald’s orders will allow it complete more deliveries for the same amount of vehicle fuel

and earn more revenue. Fulfill app-level objectives requires trading off platform efficiency.

The performance and reliability of individual apps has only grown in importance, as we

have begun relying on mobile systems for mission-critical services, especially during and after

the COVID-19 pandemic. For instance, delivering food and medical supplies can often be time

sensitive. Cellular networks, similarly, are critical infrastructure for telemedicine and autonon-

mous vehicles, where unpredictable throughput and latency can have drastic consequences.

Moreover, mobile systems, in particular, suffer from variable and dynamic environments.

For instance, base stations schedule resources in the presence of dynamic wireless channel

26

conditions, which affect the throughput and latency that end users might experience. Mo-

bility platforms must account for traffic conditions, refueling constraints, and weather, when

computing schedules for vehicle fleets. Computing resource schedules under these kinds of

variability becomes more challenging when the objectives capture more fine-grained app-level

performance metrics, as opposed to aggregate platform-level metrics.

1.1 Strawman: End-to-End Optimization

A natural approach to realize app-level objectives when allocating resources in mobile

systems is to develop new end-to-end heuristics that allocate system resources to directly

fulfill the requirements at hand. However, tailoring heuristics for specific objectives is tedious.

Moreover, new heuristics lose the performance guarantees that come with well-studied

platform-level scheduling algorithms.

Recently, reinforcement learning (RL) has grown in popularity for combinatorial opti-

mization problems with new or different objective functions. Given a definition of the state

space and the objective function expressed in terms of state variables, an RL agent can learn

a suitable policy that best maximizes the objective function, by interacting with a simulated

environment. The RL framework can adapt to new objective functions, making it attractive

for scheduling problems with a variety of potential app-level objectives. However, training

agents for these objectives is computationally expensive and the resulting policies generalize

poorly, especially without a model of the environment, which is often hard to obtain.

1.2 Application-Aware Scheduling Architectures

This thesis introduces a two-layer scheduling paradigm to realize app-level resource allocation

policies, illustrated in Fig. 1-1. The higher-layer algorithm determines the set of inputs

into a platform-level scheduler that approximately maps to the desired app-level metrics.

Across rounds, this algorithm refines these inputs to guide platform scheduler to realize

27

Translate application-level objectives
to platform-level objectives over rounds.

Platform-level
scheduler

Platform-level
scheduler

Platform-level
scheduler

⚙ ⚙Tweak inputs
to scheduler

…

Figure 1-1: This thesis proposes a two-leveled architecture for app-aware scheduling
problems in mobile systems, where the higher-layer algorithm guides a blackbox lower-layer
platform scheduler to fulfill app-level objectives.

the app-level metrics. Our insight is that a higher-layer algorithm that guides a lower-layer

unmodified platform scheduler strikes the right balance between app-level objectives and

the overall efficiency of the system.

This modular architecture has multiple benefits. First, it narrows the scope of the

resource allocation problem from an end-to-end behemoth to a narrow interface between

app-level and platform-level objectives. Second, it allows operators to repurpose platform

schedulers without modifying them. With this approach, operators can borrow the perfor-

mance guarantees that come with well-studied platform schedulers, and do not to design

new heuristics that capture the scheduling intricacies that are unique to a domain.

We leverage this insight to design app-aware scheduling systems and algorithms for two

distinct domains: customer fairness in mobility platforms and app-level service assurance in

cellular networks. Table 1-1 summarizes how each system fits into this paradigm. Between

these two case studies, we also show that this hierarchical design structure generalizes to two

different flavors of optimization: one that uses a single solver to realize all app-level objectives,

and another that uses several instances of a solver to realize all app-level objectives.

28

Mobius (Chapter 3) Zipper (Chapter 4)
Domain Mobility platforms 5G wireless
Objective Customer fairness Throughput/latency SLAs
Platform scheduler Vehicle routing solver Resource block scheduler
Search algorithm Find customer-fair vehicle

schedule by iteratively invok-
ing solver for different combi-
nations of task weights

Bundle apps into bandwidth
slices and find SLA-compliant
schedule and bandwidth allo-
cation for each slice by itera-
tively invoking solver for dif-
ferent input bandwidths

Structure Single global solver One solver per slice

Table 1-1: This thesis applies the insight of hierarchical scheduling to build resource
allocation systems and algorithms in two application domains.

1.2.1 Customer-Level Fairness in Mobility Platforms

Mobility platforms power applications like food and package delivery, ridesharing, and mobile

sensing. We study the problem of allocating tasks from different customers (e.g., restaurants

in a food delivery service or sensing apps in a drones-as-a-service deployment) to vehicles

in these mobility platform. Ideally, a mobility platform should allocate tasks to vehicles and

schedule them in order to optimize both throughput and fairness across customers. However,

existing approaches to scheduling in this domain ignore fairness.

We introduce Mobius, a new scheduling system for mobility platforms built using a hier-

archical design paradigm. Mobius uses guided optimization to achieve both high throughput

and fairness across customers. Mobius divides the scheduling horizon into rounds, and pro-

duces the feasible set of allocations for that round using a standard throughput-maximizing

vehicle routing solver [113]. Then, by dynamically tweaking weights into the optimizer,

Mobius guides it toward a solution that is not feasible in the set for one round but can be

achieved over multiple rounds.

Mobius supports spatiotemporally diverse and dynamic customer demands. It provides a

principled method to navigate inherent tradeoffs between fairness and throughput caused by

shared mobility. Our evaluation demonstrates these properties, along with the versatility and

29

scalability of Mobius, using traces gathered from ridesharing and aerial sensing applications.

Our ridesharing case study shows that Mobius can schedule more than 16,000 tasks across

40 customers and 200 vehicles in an online manner.

1.2.2 Application-Level Service Assurance in Cellular Networks

5G promises to serve a wide variety of apps, such as mixed reality, cloud gaming, video

conferencing, and cloud robotics, all of which require predictable network connectivity

(e.g., throughput and latency). Ideally, a network operator should be able configure a

network’s resource allocation policy to cater to the specific connectivity requirements of each

subscribing application. Typical base station schedulers optimize for coarse metrics, such as

for the aggregate throughput at the base station or for the aggregate throughput achieved

by a bundle of applications. However, none of these methods ensure adequate performance

for each application connected to the network.

We introduce Zipper, a novel scheduling system for Radio Access Networks (RANs)

that provides assurances of application-level throughput and latency. Zipper bundles apps

into “network slices”, a standards-compliant abstraction. Its high-layer scheduling algorithm

dynamically assigns enough bandwidth to each slice so that each app meets its performance

requirements. Each slice then uses standard throughput-maximizing resource block sched-

ulers [74, 115] to allocate resources to apps in a slice. To select the bandwidths, Zipper casts

the problem as a model predictive controller, explicitly modeling the network dynamics of

each user. It then uses an efficient algorithm to compute slice bandwidth allocations that meet

each app’s requirements, invoking standard base station schedulers through an iterative search.

To assist operators with interfacing admission control policies, Zipper exposes a primitive that

estimates if there is bandwidth available to accommodate an incoming app’s requirements.

We implemented Zipper on a production-class 5G virtual RAN testbed integrated with

hooks to control slice bandwidth, and evaluated it on real workloads, including video

conferencing and virtual reality apps. On a representative RAN workload, our real-time

30

implementation supports up to 200 apps and over 70 slices on a 100 MHz channel. Relative to

a slice-level service assurance system, Zipper reduces tail throughput and latency violations,

measured as a ratio of violation of the app’s request, by 9×.

1.3 Organization of this Thesis

Chapter 2 provides background on hierarchical scheduling and discusses related work on

resource allocation in mobility platforms and in cellular networks. Chapter 3 describes Mobius,

a scheduler that provides customer-level fairness in mobility platforms. Chapter 4 presents

Zipper, a 5G RAN slicing system that provides application-level service assurance. We build

both systems with the unified insight that we can design app-aware resource allocation

algorithms by decomposing the problem into smaller queries of a platform-level scheduler.

Chapter 5 summarizes the contributions for this thesis and outlines directions for future work.

31

32

Chapter 2

Background and Related Work

2.1 Hierarchical Scheduling

Hierarchical scheduling is a popular strategy to prioritize tasks in different resource allocation

settings, such as in real-time operating systems [119], multilevel queue scheduling [93],

deadline-based scheduling [109], thread prioritization [71], and job scheduling in batch

processing pipelines [128]. The two-layer structure, with a higher-layer global scheduler and

a lower-layer task scheduler, is similar to the one proposed in this thesis. However, the global

scheduler determines which app to serve and for how long [82], and the task scheduler decides

how to allocate the system’s resources among the app’s tasks for the assigned time window.

However, the optimization objective in many of these prior methods relate to timing

constraints. Both levels of the hierarchy have focused on decomposing time at different

granularities, with the higher layer deciding time per app and the lower layer deciding time

per task. In this thesis, we consider scheduling problems where the lower-layer platform

scheduler optimizes a different objective from the higher-layer scheduler. For instance,

Mobius (Chapter 3) guides a platform scheduler that maximizes task throughput to compute

customer-fair schedules. Similarly, Zipper (Chapter 4) guides a platform scheduler that

maximizes slice throughput to compute app SLA-compliant schedules.

33

Moreover, while this thesis also proposes running unmodified task scheduler at the

lower layer, the interface between the higher-layer scheduler and the lower-layer (platform)

scheduler is different. To realize app-level objectives, the systems in this thesis conduct

an iterative search over different input parameters to the platform scheduler to guide the

optimizer toward app-level metrics. The contribution of this thesis is a hierarchical scheduling

paradigm that leverages lower-level schedulers built for platform objectives to realize different

app-centric objectives.

2.2 Scheduling in Mobility Platforms

Shared mobility and sensing platforms

Ridesharing platforms rely on different flavors of the VRP; these systems have typically been

interested in maximizing profit (i.e., throughput) [4, 22], minimizing the size of the fleet [118],

and planning in an online fashion [16]. Similarly, there has been a large amount of recent

work on drones-as-a-service platforms, which have primarily addressed challenges surrounding

data acquisition [117], multi-tenancy and security [60], and programming interfaces [59, 90].

All of these systems use a throughput-maximizing algorithm under the hood. Mobius is

motivated by the advent of customer-centric mobility platforms in a variety of domains, where

guarantees on QoS to customers are paramount to the viability [116] of these services [88].

Vehicle routing problem

The VRP has been extensively studied by the Operations Research community [113]. Many

variants of the problem have been considered, ranging from the budget-constrained VRP [8],

capacitated VRP [54], VRP with time windows [44], predictive routing under stochastic

demands [17, 59], etc. Prior work has extended the VRP to consider multiple objectives,

such as minimizing the variance in vehicle travel time or tasks completed by each vehicle [70].

These load balancing objectives, however, do not consider customer-level fairness, which is

34

the focus of Mobius. Moreover, Mobius abstracts out fairness from the underlying vehicle

scheduling problem, making its techniques complementary to the large body of work on the

VRP and its variants.

Fair resource allocation in computer systems

Our approach to formalizing throughput and fairness in mobile task fulfillment is inspired

by α-fair bandwidth allocation in computer networks [74, 92]. However, as noted earlier in

this chapter, mobility platforms introduce new challenges around attributing cost to serve

customers, that do not arise when addressing fairness in switch scheduling [38], congestion

control [73], and multi-resource compute environments [53]. Mobius develops a novel set

of techniques to address these challenges.

2.3 Service Assurance in Cellular Networks

RAN slicing

While a static allocation of PRBs to slices provides traffic isolation and simplifies radio

resource management [106], it does not guarantee reliable slice performance, since throughput

and latency vary with dynamic wireless channel conditions. Orion [48] and SCOPE [18]

are slicing-capable RAN virtualization frameworks, and implement existing slice bandwidth

schedulers like Network Virtualization Substrate (NVS) [76]. NVS, designed originally

for WiMAX, allocates PRBs among slices to deliver a target aggregate slice throughput,

assuming invariant Modulation and Coding Scheme (MCS) conditions. However, RAN

operators adjust MCS according to time-varying channel conditions. Slice-level service

assurance is also the primary focus of many other RAN slicing proposals [7, 29, 34, 80, 103].

RadioSaber [30], a recent RAN slicing system, allocates PRBs to slices in a channel-aware

manner, by extending NVS to query each slice’s Medium Access Control (MAC) scheduler

and find the PRBs that are best-suited for each user’s channels. RadioSaber is comple-

35

mentary to Zipper: it focuses on slice-level throughput assurance for enterprise slices, while

Zipper is designed for app-level SLAs. Future work includes incorporating RadioSaber’s

techniques for channel-aware PRB allocation into Zipper.

LACO [130] proposes a reinforcement learning-based framework to provide latency guar-

antees in multi-tenancy environments by minimizing the number of bits missing the specified

latency tolerance. By contrast, this paper presents a novel framework that tailors radio

resource schedules for applications SLAs such as throughput and latency in the presence

of dynamic wireless channel conditions.

Prior work [97] recognizes that slice-level assurance does not guarantee consistent per-

formance for all users due to varying channel qualities within a slice, and evaluates under

the context of a toy setting of airplane WiFi. Zipper’s innovation lies in its app-level service

assurance approach and end-to-end RAN slicing system. Zipper system goes beyond offline

simulations, and (a) evaluates realistic 5G workloads on a production-class system with com-

mercial UE and emulation, (b) enables customizable slice schedulers, and (c) demonstrates

how to interface with admission controllers.

Admission control

Admission control proposals for RAN slicing cover traffic prediction [107], load balancing [24],

pricing [96, 114], and game-theoretic formulations [25]. Zipper does not propose a new

method for admission control; instead, we recognize that, to use Zipper on production

networks, operators need to know if Zipper’s slice controller has resources to accommodate

the SLAs of an incoming app. Typical approaches to assess resource availability [56, 75]

are not compatible with Zipper’s app-level formulation; we elaborate in §4.1.3. Recent 5G

network slicing proposals [30, 48, 130] do not address how to estimate resource availability,

which is vital for operators to use these systems in practice.

36

RAN virtualization

Virtual RANs serve multiple logical RANs from the same physical hardware. They have

garnered significant attention [35, 40, 121], with a number of proposals across different

compute platforms, including CPUs [40, 51, 112, 123], DSPs [13] and GPUs [94]. Zipper

leverages this body of work to dynamically allocate RAN resources among different virtual

resources and expose them to the network slices.

Scheduling

Efficient RAN utilization is a key principle of mobile network design [57, 62]. Canonical

algorithms, such as proportionally-fair [115], round-robin, and priority-based [129] schedulers,

only consider aggregate throughput and fairness.

37

38

Chapter 3

Customer-Level

Fairness in Mobility Platforms

The past decade has seen the rapid proliferation of mobility platforms that use a fleet of

mobile vehicles to provide different services. Popular examples include package delivery

(UPS, DHL, FedEx, Amazon), food delivery (DoorDash, Grubhub, Uber Eats), and rideshare

services (Uber, Lyft). In addition, new types of mobility platforms are emerging, such as

drones-as-a-service platforms [47, 60, 84, 124] for deploying different sensing applications

on a fleet of drones.

In these mobility platforms, the vehicle fleet of cars, vans, bikes, or drones is a shared

infrastructure. The platform serves multiple customers, with each customer requiring a set of

tasks to be completed. For instance, each restaurant subscribing to DoorDash is a customer,

with several food delivery orders (or tasks) in a city. Similarly, an atmospheric chemist

and a traffic analyst might subscribe to a drones-as-a-service platform, each with their own

sensing applications to collect air quality measurements and traffic videos, respectively, at

several locations in the same urban area. Multiplexing tasks from different customers on the

same vehicles can increase the efficiency of mobility platforms because vehicles can amortize

their travel time by completing co-located tasks (belonging to either the same or different

39

customers) in the same trip.

We study the problem of scheduling spatially distributed tasks from multiple customers

on a shared fleet of vehicles. This problem involves (i) assigning tasks to vehicles and

(ii) determining the order in which each vehicle must complete its assigned tasks. The

constraints are that each vehicle has bounded resources (fuel or battery). While several

variants of this scheduling problem have been studied, the objective has typically been to

complete as many tasks as possible in bounded time, or to maximize aggregate throughput

(task completion rate) [54, 113].

We identify a second—equally important—scheduling requirement, which has emerged

in today’s customer-centric mobility platforms: fairness of customer throughput to ensure

that tasks from different customers are fulfilled at similar rates.1 For example, in food

delivery, the platform should serve restaurants equitably, even if it means spending time

or resources on restaurants with patrons far from the current location of the vehicles. A

ridesharing platform should ensure that riders from different neighborhoods are served

equitably, which ridesharing platforms today do not handle well, a phenomenon known as

“destination discrimination” [88, 116, 131].

We seek an online scheduler for mobility platforms that achieves both high throughput

and fairness. A standard approach to achieving these goals is to track the resource usage

and work done on behalf of different users in a fine-grained way and equalize resource

consumption across users. Such fine-grained accounting and attribution is difficult with

shared mobility: the resource used is a moving vehicle traveling toward its next task, but

making that trip has a knock-on benefit, not only for the next task served, but for subsequent

ones as well. However, the benefit of a specific trip is not equal across the subsequent tasks.

Although it may be possible to develop a fair scheduler that achieves high throughput using

fine-grained accounting and attribution, it is likely to be complex.

We turn, instead, to an approach that has been used in both societal and computing
1The method we develop also applies to weighted fairness.

40

systems: optimization, which may be viewed as a search through a set of feasible schedules

to maximize a utility function. In our case, we can establish such a function, optimize it

using both the task assignment and path selection, and then route vehicles accordingly.

In a typical mobility problem, the planning time frame for optimization could be between

30 minutes and several hours, involving hundreds of vehicles, dozens of customers, and tens

of thousands of tasks. The scale of this problem pushes the limits of state-of-the-art vehicle

routing solvers [16]. Moreover, fairness objectives lead to nonlinear utility functions, which

make the optimization much more challenging. As a benchmark, optimizing the routes for

3 vehicles and 17 tasks over 1 hour, using the CPLEX solver [65] with a nonlinear objective

function, takes over 10 hours [89].

To address these problems, a natural approach is to divide the desired time duration

into shorter rounds, and then run the utility optimization. When we do this, something

interesting emerges in mobility settings: the space of feasible solutions—each solution being

an achievable set of rates for the customers—often collapses into a rather small and dis-

turbingly suboptimal set! These feasible solutions are either fair but with dismal throughput,

or with excellent throughput but starving several customers.

A simple example helps see why this happens. Consider a map with three areas, A1, A2,

A3, each distant from the others. There are several tasks in each area: in A1, all the tasks

are for customer C1; in A2, all the tasks are for customer C2, and in A3, all the tasks are

for two other customers, C3 and C4. Suppose that there are two vehicles. Over a duration

of a few minutes, we could either have the two vehicles focus on only two areas, achieving

high throughput but ignoring the third area and reducing fairness, or, we could have them

move between areas after each task to ensure fairness, but waste a lot of time traveling,

degrading throughput. It is not possible here to achieve both throughput and fairness over

a short timescale. Yet, over a long time duration, we can swap vehicles between regions to

amortize the movement costs. This shows that planning over a longer timescale permits

feasible schedules that are better than what a shorter timescale would permit.

41

Our contribution, Mobius, divides the desired time duration into rounds, and produces

the feasible set of allocations for that round using a standard optimizer. Mobius guides the

optimizer toward a solution that is not in the feasible set for one round but can be achieved

over multiple rounds. This guiding is done by aiming for an objective that maximizes a

weighted linear sum of customer rates in each round. The weights are adjusted dynamically

based on the long-term rates achieved for each customer thus far. The result is a practical

system that achieves high throughput and fairness over multiple rounds. This approach of

achieving long-term fairness by setting appropriate weights across rounds allows us to use

off-the-shelf solvers for the weighted Vehicle Routing Problem (VRP) for path planning in

each round. Importantly, this design allows Mobius to optimize for fairness in the context

of any VRP formulation, making this work complementary to the vast body of prior work

on vehicle routing algorithms [4, 8, 17, 54].

Scheduling over multiple rounds also allows Mobius to handle tasks that arrive dynam-

ically or expire before being done. Moreover, Mobius supports a tunable level of fairness

modeled by α-fair utility functions [74], which generalize the familiar notions of max-min

and proportional fairness.

We have implemented Mobius and evaluated it via extensive trace-driven emulation

experiments in two real-world settings: (i) a ridesharing service, based on real Lyft ride

request data gathered over a day, ensuring fair QoS to different neighborhoods in Manhattan;

and (ii) urban sensing using drones for measuring traffic congestion, parking lot occupancy,

cellular throughput, and air quality. We find that:

1. Relative to a scheduler that maximizes only throughput, Mobius compromises only

10% of platform throughput in order to enforce max-min fairness.

2. Compared to dedicating vehicles to customers, Mobius improves vehicle utilization

by 30-50% by intelligently sharing vehicles amongst customers.

3. Mobius can compute fair online schedules at a city scale, involving 40 customers, 200

vehicles, and over 16,000 tasks.

42

Cust. 1 28 tasks 4 tasks 15 tasks 21 tasks
Cust. 2 13 tasks 4 tasks 13 tasks 19 tasks
Total 41 tasks 8 tasks 28 tasks 40 tasks

MobiusMax Throughput

Cust. 1 28 tasks 4 tasks 15 tasks 21 tasks

Cust. 2 13 tasks 4 tasks 13 tasks 19 tasks

Total 41 tasks 8 tasks 28 tasks 40 tasks

MobiusMax Throughput

Figure 3-1: An example with two customers, two vehicles, and a 6-minute planning horizon.
Mobius computes a schedule that (i) achieves a similar total throughput to that of the
max throughput schedule, and (ii) preserves the customer-level fairness achieved by the
round-robin and dedicated schedules.

3.1 Problem Setup

Every customer subscribing to a mobility platform submits several requests over time. Each

request specifies a task (e.g., gather sensor data or deliver package) and a corresponding

location. The platform schedules trips for each vehicle over multiple rounds. It takes into

account any changes in a customer’s requirements (in the form of new task requests or

expiration of older unfulfilled tasks) at the beginning of each round. We say that a customer

has a backlog if they have more tasks than can be completed by all available resources within

the allocated time. For simplicity of exposition, we assume each customer is backlogged

(our evaluation in §3.6 relaxes this assumption).

Let K be the set of customers, and Tk(τ) be the set of tasks requested by customer k

during a scheduling round τ . We denote xk(τ) as the throughput achieved for customer k

in scheduling round τ , i.e., the total number of tasks in Tk(τ) that are fulfilled divided by

the round duration.

We denote xk(t) as the long-term throughput for each customer k, after t scheduling

rounds, i.e., xk(t)= 1
t

∑t
τ=1xk(τ) if rounds are of equal duration. A good scheduling algorithm

should achieve the following objectives:

• Platform Throughput. Maximize the total long-term throughput after round t, i.e.,∑
k∈Kxk(t).

43

• Customer Fairness. For any two customers k1,k2∈K with backlogged tasks, ensure

xk1(t)=xk2(t).

Equalizing long-term per-customer throughputs xk(t) provides a desirable measure of fairness

for many mobility platforms: higher per-customer throughputs correlate with other perfor-

mance metrics, such as lower task latency and higher revenue. Our evaluation (§3.6) quantifies

the impact of optimizing for a fair allocation of throughputs on other platform-specific

quality-of-service metrics.

Prior algorithms for scheduling tasks on a shared fleet of vehicles have focused on the

VRP, i.e., only considered maximizing platform throughput [54, 113]. Achieving per-customer

fairness introduces three new challenges:

Challenge #1: Attributing vehicle time to customers

Vehicle time and capacity are scarce. Consider the example in Fig. 3-1, with two customers

and two vehicles; customer 1 has two densely-packed clusters of tasks, while customer 2 has

two dispersed clusters of tasks. We show schedules and tasks fulfilled by Mobius and three

other policies: (i) maximizing throughput, (ii) dedicating a vehicle per customer, and (iii)

alternating round-robin between customer tasks. Notice that, to the left of the depot (center

of the map), customer 2’s tasks can be picked up on the way to customer 1’s tasks. Thus,

multiplexing both customers’ tasks on the same vehicle is more desirable than dedicating a

vehicle per customer, because it amortizes resources to serve both customers. However, shar-

ing vehicles amongst customers complicates our ability to reason about fairness, because the

travel time between the tasks of different customers cannot be attributed easily to each one.

Challenge #2: Timescale of fairness

Fig. 3-2 shows two customers and one vehicle that must return home to refuel. A high-

throughput schedule would dedicate the vehicle to one of the customers. By contrast, a fair

schedule would require the vehicle to round-robin customer tasks, achieving low throughput

44

⨁ ⨁ ⨁

Max Tput [Option 1] Max Tput [Option 2] Fair Tput

Customer 1 Customer 2 ⨁ Depot

Figure 3-2: Imposing fairness at short timescales (e.g., one round trip) degrades throughput.
Executing Options 1 and 2 provides fairness at longer timescales and leads to greater total
throughput.

due to travel. Over a longer time duration, however, we can execute two max-throughput

schedules (Options 1 and 2) to achieve both fairness and high throughput.

Challenge #3: Spatiotemporal diversity of tasks

In Fig. 3-1, the two customers’ tasks have different spatial densities. The high-throughput

schedule favors customer 1. A max-min fair schedule should, by contrast, ensure that

customer 2 gets its fair share of the throughput, even if it comes at the cost of higher travel

time and lower platform throughput. Striking the right balance between fairly serving a

customer with more dispersed tasks and reducing extra travel time is a non-trivial problem.

Customer tasks may also vary with time. For example, a food delivery service might

receive new requests from restaurants, or an atmospheric scientist may want to update

sensing locations that they submitted to a drone service provider based on prior observations.

The mobility platform must handle the dynamic arrival and expiration of tasks.

3.2 Overview

Any resource-constrained system exhibits an inherent tradeoff between throughput and

fairness. In the best case, the most fair schedule would also have the highest throughput;

however, due to the challenges described in §3.1, it is impossible to realize this goal in many

mobility settings. Mobius instead strives for customer fairness with the best possible platform

throughput; its approach is to trade some short-term fairness for a boost in throughput,

45

Customers VehiclesMobius

+

Historical
Throughput

Weight
Search

& Update

submit tasks
& constraints

receive
feedback &

update

execute
schedule

completed tasks

candidate
schedules

vehicle
health

modular input

Cust. 1

Cust. 2

Cust. 3

VRP
Solver

Figure 3-3: In each round, Mobius uses a VRP solver to compute a schedule that maximizes
a weighted sum of throughputs, and automatically adjusts the weights across rounds to
improve fairness.

while improving fairness over a longer timescale.

In each round τ , Mobius uses a VRP solver to maximize a weighted sum of customer

throughputs xk(τ).2 Mobius sets the weights in each round to find a high throughput sched-

ule that is approximately fair in that round. By accounting for the long-term throughputs

xk(t) delivered to each customer k in prior rounds, it is able to equalize xk(t) over multiple

rounds. We formalize this notion of balancing high throughput with fairness in §3.3. Mobius

uses an iterative search algorithm requiring multiple invocations of a VRP solver to find

a schedule that strikes the appropriate balance.

Our approach of trading off short-term fairness for throughput and longer-term fairness

raises a natural question: why not directly schedule over a longer time horizon, rather than

dividing the scheduling problem into rounds? Scheduling in rounds is desirable for several rea-

sons: (i) their duration can correlate with the fuel or battery constraints of the vehicles, (ii) it

provides a target timescale at which Mobius strives to provide fairness, (iii) shorter timescales

make the NP-hard VRP problem more tractable to solve, and (iv) it enables Mobius to adapt

to temporal variations in customer demand that are captured at the beginning of each round.

Fig. 3-3 shows the architecture of Mobius. In each round, customers update their task
2We formally define the VRP in §3.4.

46

Start Cust. 1 Cust. 2

(a) Map. Two vehicles start at ⊕.

A

C
B

Target
Allocation

D
E

(b) Feasible throughputs in 1 round.

Round 3 Round 4

Round 1 Round 2

0 2 4 6 8 10 0 2 4 6 8 10

0
2
4
6

0
2
4
6

Cust. 1 Tput (tasks/round)C
us

t.
2

T
pu

t (
ta

sk
s/

ro
un

d)

(c) Feasible throughputs over 4 rounds.

0

10

20

30

40

0 10 20 30 40 50

Cust 1 Tput (tasks/round)

C
us

t 2
 T

pu
t (

ta
sk

s/
ro

un
d) Avg Target Tput Mobius

(d) Convex boundary dynamics.

Figure 3-4: Visualizing feasible allocations of throughput for a small problem with two
customers and two vehicles. Allocations on the convex boundary trade short-term fairness for
throughput. The convex boundary becomes denser over time, making the target allocation
achievable.

requests. Mobius then computes the best weights, generates a schedule, and dispatches the

vehicles. At the end of the round, Mobius updates each customer’s throughput, xk(t), and

uses this information to select weights in the next round.

3.3 Balancing Throughput and Fairness

We now provide the intuition behind our approach for balancing throughput and fairness

using the example shown in Fig. 3-4. There are two customers, each requesting tasks from

distributions shown on the map in Fig. 3-4a. We have two vehicles, each starting at ⊕. For

simplicity, in §3.3.1, we consider planning schedules in 10-minute rounds, where the vehicles

47

return to their start locations after 10 minutes. We renew all tasks at the beginning of each

round trip. Then, in §3.3.2, we explain how Mobius generalizes to dynamic settings where

customer tasks change with time, and vehicles do not need to return to their starting locations.

3.3.1 Scheduling on the Convex Boundary

Feasible allocations

We first consider the set of schedules that are feasible within the time constraint. Fig. 3-4b

shows the tradeoff between throughput and fairness amongst these feasible schedules. Each

dot represents an allocation produced by a feasible schedule; the coordinates of the dot

indicate the throughputs of the respective customers. We generate the schedules by solving

the VRP for each possible subset of customer tasks.3 We also indicate the y=x line (dotted

gray), which corresponds to fair allocations that give equal throughput to each customer. Note

that in this example both vehicles can more easily service Customer 1. Hence, an allocation

that maximizes total throughput without regard to fairness (labeled C) favors Customer 1.

Pareto frontier of feasible allocations

The Pareto frontier over all feasible allocations is denoted by the dashed orange line, con-

taining A, B, C, D, and E. If an allocation on the Pareto Frontier achieves throughputs of

x1 and x2 for Customers 1 and 2 respectively, there exists no feasible allocation (x̂1,x̂2) such

that x̂1>x1 and x̂2>x2. The allocation that maximizes total throughput will always lie on

the Pareto frontier. An allocation on the Pareto frontier is strictly superior, and therefore

more desirable than other feasible allocations. So which allocation on the Pareto frontier do

we pick? A strictly fair allocation lies at the point where the Pareto frontier intersects the

y=x line (labeled B in Fig. 3-4b). However, allocation B has low total throughput, because

the vehicles spend a significant part of the 10 minutes traveling between task clusters.
3The VRP is NP-hard (§3.4), but because the input size is small for this example, we use Gurobi [58] to

compute optimal schedules.

48

Convex boundary of the Pareto frontier

To capture the subset of allocations that do not significantly compromise throughput, we

use the convex boundary of all feasible allocations, denoted by the turquoise line in Fig. 3-4b.

The convex boundary is the smallest polygon around the feasible set such that no vertex

bends inward [19], and the corner points are the vertices determining this polygon. The

target allocation is the point where the y=x lines intersects the boundary (shown in red).

It has high throughput and is fair, but it may not be feasible (as in this example). Is it still

possible to achieve the target throughput in such cases?

Scheduling over multiple rounds

Our key insight is that it is possible to achieve the target allocation over multiple rounds of

scheduling by selecting different feasible allocations on the convex boundary in each round.

In a given round, Mobius chooses the feasible allocation on the convex boundary that best

achieves our fairness criteria. In our example, it chooses allocation A in its first round.

By choosing allocation A over allocation B (which achieves equal throughput), Mobius

compromises on short-term fairness for a boost in throughput. However, as we discuss next,

it compensates for this choice in subsequent rounds. Notice that if Mobius instead chooses

B, it would not be able to recover from the resulting loss in throughput.

As we compute a 10-minute schedule for each round, the set of feasible allocations expands;

this allows Mobius to compensate for any prior deviation in fairness. Fig. 3-4c illustrates how

the feasible set evolves over several 10-minute rounds of planning. The feasible allocations

(denoted by gray dots) possible after round T are derived from the cumulative set of tasks com-

pleted in T rounds. Notice that over the four rounds, the set of feasible allocations becomes

denser, and the Pareto frontier approaches the convex boundary. Thus, the target allocation

(i.e., the allocation on the convex boundary that coincides with the y=x line) becomes feasible.

In summary, the key insights driving the design of Mobius are: (i) the convex boundary

describes a set of allocations that trade off short-term fairness for a boost in throughput, and

49

(ii) the Pareto frontier approaches the convex boundary over multiple rounds of planning,

making it possible to correct for unfairness over a slightly longer timescale.

3.3.2 Scheduling in Dynamic Environments

In practice, environments are more dynamic: customer tasks may not recur at the same

locations, and vehicles need not return to their start locations regularly. Thus, the convex

boundary may not be identical in each round. However, in practice, because (i) vehicles

move continuously over space and (ii) customer tasks tend to observe spatial locality, the

convex boundary does not change drastically over time.

To illustrate this, we extend the example in Fig. 3-4, by creating a map with the same

densities as in Fig. 3-4a, but with 50 tasks per customer. To simulate dynamics, we create

a new task for each customer every 3 minutes at a location chosen uniformly at random

within a bounding box. We still consider two vehicles starting at the same location (i.e.,

in the middle of customer 1’s cluster) and plan in 10-minute rounds. We eliminate the

return-to-home constraint. In order to adapt to the customers’ changing tasks, we compute

new 10-minute schedules every 1 minute (i.e., 10-minute rounds slide in time by 1 minute).

We run this simulation for 60 minutes.

In order to understand how these dynamics impact the convex boundary as we plan

iteratively, we show in Fig. 3-4d the convex boundary of 10-minute schedules at each

1-minute replanning interval. Notice that the convex boundaries hover around a narrow

band, indicating that we can still track the target throughput reliably. The red square marks

the value of the average target throughput across all 50 convex boundaries; we also mark

the throughput achieved by Mobius’s scheduling algorithm (§3.4).

In addition to the convex boundary remaining relatively stable from one timestep to

the next, this method of replanning at much quicker intervals (e.g., 1 minute) than the

round duration (e.g., 10 minutes) makes Mobius resilient to uncertainty in the environment.4

4§3.6 further evaluates the effectiveness of Mobius’s algorithm for dynamic, real-world customer demand.

50

Mobius, Snapshot 1 Mobius, Snapshot 2 Mobius, Snapshot 3

Max Throughput Round Robin Dedicated Vehicles

Cust. 1 Cust. 2 Vehicle 1 Vehicle 2

Mobius, Round 1 Mobius, Round 2 Mobius, Round 3

Cust. 1 Cust. 2 Vehicle 1 Vehicle 2

Mobius, Snapshot 1 Mobius, Snapshot 2 Mobius, Snapshot 3

Max Throughput Round Robin Dedicated Vehicles

Cust. 1 Cust. 2 Vehicle 1 Vehicle 2

Figure 3-5: The difference in spatial density of tasks leads to short-term unfairness (Rounds
1 and 3). Mobius compensates for this by directing more resources to the underserved
customer (Round 2).

For instance, Mobius can react to streaming requests in a punctual manner, and can also

incorporate requests that are unfulfilled due to unexpected delays (e.g., road traffic or wind).

Moreover, since Mobius uses a VRP solver as a building block to compute its schedule (§3.2),

it can also leverage algorithms that solve the stochastic VRP [17], where requests arrive and

disappear probabilistically.

3.3.3 Visualizing Routes Scheduled by Mobius

To illustrate how Mobius converges to fair per-customer allocations without significantly

degrading platform throughput, in Fig. 3-5 we show 3 consecutive 10-minute round schedules

computed by Mobius, for the dynamic example in Fig. 3-4d. In Rounds 1 and 3, we observe

that Mobius decides to dedicate one vehicle to each customer in order to give them both

sufficiently high throughput; here, customer 2 receives lower throughput because its tasks are

more dispersed. However, in Round 2, Mobius compensates for this short-term unfairness by

scheduling an additional vehicle to customer 2, while also collecting a few tasks for customer

1 in the outbound trip.

3.4 Mobius Scheduling Algorithm

Based on the insights in §3.3, we design Mobius to compute a schedule on the convex

boundary in each round, such that the long-term throughputs xk(t) approach the target

51

allocation. Mobius works in two steps:

1. In each round, Mobius finds the support allocations, which we define as the corner

points on the convex boundary of the current round, near the target allocation (§3.4.1).

For example, in Fig. 3-4b, Mobius would find support allocations A and C.

2. Amongst the support allocations found in step (1), Mobius selects the one that steers

the long-term throughputs xk(t) toward the target allocation (§3.4.2).

In this section, we present Mobius in the context of strict fairness (i.e., xk(t) must lie along

the y=x line). §3.4.3 provides a theoretical analysis of Mobius’s optimality under simpli-

fying assumptions, and §3.4.4 describes our implementation. In §3.5, we extend Mobius’s

formulation to work with a class of fairness objectives.

3.4.1 Finding Support Allocations

Since the convex boundary of the Pareto frontier is equivalent to the convex boundary of the

feasible set of schedules, a naive way to find the support allocations is to compute the Pareto

frontier, take its convex boundary, and then identify the support allocations near the target

allocation. However, computing the Pareto frontier is computationally expensive because

it requires invoking an NP-hard solver an exponential number of times in the number of

tasks. Mobius uses a VRP solver as a building block to find a subset of the corner points

of the convex boundary around the target allocation.

The VRP involves computing a path Pv for each vehicle v, defined as an ordered list of

tasks from the set of all tasks {Tk(τ) |k∈K}, such that the time to complete Pv does not

exceed the total time budget B for a round. VRP solvers maximize the platform throughput

without regard to fairness.

We capture different priorities amongst customer tasks by assigning a weight wk to each

customer k’s tasks. Let x∈R|K| represent a throughput vector, where xk is the throughput for

customer k, and let w∈R|K| represent a weight vector, with a weight wk for each customer k.5

5x and w vary with each round τ . We drop the round index τ whenever there is no ambiguity about the

52

The weighted VRP seeks to maximize the total weighted throughput of the system, where

each task is allowed a weight. We can describe this as a mixed-integer linear program:

argmax
Pv,∀v∈V

∑
k∈K

wkxk = argmax
Pv,∀v∈V

w⊺x (3.1)

s.t. c(Pv)≤B ∀v∈V (3.2)

Pv is a valid path ∀v∈V, (3.3)

where c(·) specifies the time to complete a path. Equation (3.2) enforces that, for each

vehicle, the time to execute the selected path does not exceed the budget. Equation (3.3)

captures constraints that are specific to the vehicles (e.g., if vehicles must return to home at

the end of each round) and customers (e.g., if tasks are only valid during specific windows

during the scheduling horizon). The weighted VRP (also called the prize-collecting VRP)

is NP-hard, but there are several known algorithms with optimality bounds [8, 113].

Using weights to find the corner points

We can adjust the weight vector w in order to capture a bias toward a particular customer;

w describes a direction in the customer throughput space, reflecting that bias. Fig. 3-6a

visualizes w in a 2-D customer throughput space. A solver optimizing for Equation (3.1)

searches for the schedule with the highest throughput in the direction of w [20], thus requiring

the schedule to lie on the convex boundary. For example, w1=(1,0) finds the schedule on

the convex boundary that prioritizes customer 1 (i.e., along the x-axis), and w2=(0,1) finds

a schedule that prioritizes customer 2 (i.e., along the y-axis).

Searching on the convex boundary

Recall that, for strict fairness, the target allocation is the point where the y=x line intersects

the convex boundary for the current round (§3.3). At the start of the search, Mobius does not

current round.

53

𝑤"𝑥" + 𝑤%𝑥% = 𝑐

𝒘 = 𝑤",𝑤%

Cust. 1 Tput []𝑥"

C
us

t.
2

Tp
ut

[
]𝑥 % Equation for face 𝐴𝐵:

A

B

(a) Computing w for a face.

A D

C

B

Corner Pts =
{A,D,C,B}

(b) Finding support allocations.

Figure 3-6: Using a blackbox VRP solver as a building block, Mobius runs an iterative
search algorithm to find the support allocations.

yet know the convex boundary, so it cannot know the target allocation. To find allocations

on the convex boundary, Mobius employs an iterative search algorithm, analogous to binary

search; in each stage, it tries to find a new allocation on the convex boundary in the direction

of the y=x line. Mobius begins the search with allocations along the customer axes. For

two customers, it begins with weights w1 and w2 above, which gives two allocations on

the convex boundary. In each stage of the search, Mobius computes a new weight vector,

using allocations found on the convex boundary in the previous stage, in order to find a

new allocation on the convex boundary. It terminates when no new allocation can be found.

By searching in the right direction, Mobius only needs to compute a subset of corner points

on the convex boundary.

To better illustrate the algorithm, consider the example in Fig. 3-6b, with 2 customers.

Mobius starts the search by looking at the two extreme points on the customer 1 (x1)

and customer 2 (x2) axes, which correspond to prioritizing all vehicles for either customer.

So in stage 1, Mobius computes these schedules, using the weight vectors w1=(1,0) and

w2=(0,1), which give the allocations A and B, respectively, in Fig. 3-6b. After stage 1,

{A,B} is the current set of corner points determining the convex boundary.

In the next stage, Mobius computes a new weight w to continue the search in the

direction normal to AB (Fig. 3-6a). Let the equation for the face AB be w1x1+w2x2=c,

where w1, w2, and c can be derived using the known solutions on the line, A and B. So, by

54

invoking the VRP solver (Equation (3.1)) with w=(w1,w2), we try to find a schedule on the

convex boundary, with the highest throughput in the direction normal to AB. Let x̂1 and x̂2

be the throughputs for the schedule computed with weight w. If (x̂1,x̂2) lies above this line,

i.e., w1x̂1+w2x̂2>c, then the point (x̂1,x̂2) is a valid extension to the convex boundary. In

this example, Mobius finds a new allocation C; so, the new set of corner points is {A,C,B}.

Notice that this extension in stage 2 creates two new faces on the convex boundary, AC

and CB. But, the y=x line only passes through AC. So, in stage 3, Mobius continues the

search, extending AC by the computing the weights as described above (normal to AC),

and discovers a new allocation D. Finally, Mobius tries to extend the face DC because it

intersects the y=x line. It finds no valid extension, and so, it terminates its search on the

face DC, and returns the support allocations D and C.

Generalizing to more customers

Mobius computes a weight for each customer k∈K, i.e., w∈R|K|. Faces on the convex

boundary become |K|-dimensional hyperplanes, described by the equation
∑

k∈Kwkxk=c.

Mobius solves for w using the |K| allocations that define each face, and finds |K| support

allocations at the end of the search. Recall from the example in §3.4.1 that each stage

produced 2 new faces and that Mobius only continued the search by extending 1 face. With

|K| customers, even with |K| new faces after each stage, Mobius only invokes the VRP

solver once to continue the search. A naive algorithm, by contrast, would require |K| calls

to the VRP solver in each stage. Thus Mobius scales easily with more customers by pruning

the search space efficiently.

3.4.2 Scheduling Over Rounds

In each round, Mobius finds |K| support allocations, which determine the face of the convex

boundary that contains the target allocation. It then selects a support allocation among these

|K| such that the per-customer long-term throughputs xk(t) approach the target throughput.

55

A
B

Cust. 1 Tput

C
us

t.
2

Tp
ut

C

D
Corner Pts
Current Stage

Extensible
Region of !"

Extensible
Region of #!

E

(a) Extensible region of face BC.

Support allocations
Face with steady-state

B

E

B1E1

B2E1

B1E2

BnEm = tput after
n B’s and m E’s

Round 2
Round 3

Target allocation

(b) Throughputs in each round.

Figure 3-7: Mobius (a) finds the support allocations nearest the target allocation in each
round, and (b) converges to the target allocation.

By tracking xk(t) over many rounds, Mobius can select allocations that compensate for any

unwanted bias introduced to some customer in a prior round.

Mathematically, to choose a schedule in round t, Mobius considers the effect of each

support allocation x(t) on the average throughput x(t+1). The average throughput is

defined for each customer k as xk(t+1)=γtxk(t)+(1−γt)xk(t), where γt=1/(t+1). Mobius

chooses x(t) such that x(t+1) is closest to the y=x line (in Euclidean distance).

3.4.3 Optimality of Mobius

Mobius is optimal in a round

We can prove that Mobius finds the support allocations nearest the target throughput (in

Euclidean distance). We illustrate this through the example in Fig. 3-7a, where the corner

points of the convex boundary are {A,D,B,E,C}, and B is closest to the target allocation. In

the previous stage, Mobius discovered B, and it needs to pick one face to continue the search.

The shaded yellow regions indicate the extensible regions of the two candidate faces AB and

BC. The extensible region of a face describes the space of allocations that can be obtained by

searching with the weight vector that defines that face, while maintaining a convex boundary

(§3.4.1). Since Mobius finds a new allocation on the convex boundary in every stage of the

search, no allocation can exist outside these regions; otherwise, the resulting set of discovered

56

allocations would no longer be convex. Thus, the best face for Mobius to continue the

search is indeed BC, because its extensible region is the only one that may contain a better

allocation closer to the y=x line. App. A.3.1 includes a formal proof that the optimal support

allocation (i.e., the allocation closest to the line y=x) is unique and that Mobius finds it.

Optimality over multiple rounds

Under a static task arrival model, we can show that the schedules computed by Mobius

achieve throughputs that are optimal at the end of every round, i.e., the achieved throughput

has the minimum distance possible to the target allocation after each round. This model

assumes the convex boundary remains the same across rounds. One way to realize this is to

require (i) the vehicles return to their starting locations at the end of each round, and (ii) all

tasks are renewed at the beginning of each round. We make these simplifying assumptions

only for ease of analysis; our evaluation in §3.6 does not use them.

We describe an intuition for this result below. 6 Per the static task arrival model, the con-

vex boundary is the same in each subsequent round; therefore, Mobius finds the same support

allocations in every round. By taking into account the long-term per-customer rates, xk(t),

Mobius oscillates between these support allocations in each round at the right frequency, such

that xk(t)∀k∈K converges to the target allocation over multiple rounds. We illustrate this

in Fig. 3-7b, which shows the support allocations B and E. The face BE contains the target

allocation, denoted by the star. Because Mobius oscillates between B and E, the allocation

(x1(t),x2(t)) must lie along BE. Mobius chooses B in the first round because its throughput is

closer than E to the target allocation. In the second round, it chooses E, moving the average

throughput to B1E1. In the third round, Mobius chooses B, moving the average throughput

to B2E1. Notice that if it had instead chosen E in the third round, the average throughput

would be B1E2, which is further away from the target throughput. Thus, this myopic choice

between B and E results in the closest solution to the target allocation after any number of
6See App. A.3.2 for a formal proof.

57

rounds. Additionally, notice that the length of the jump (e.g., from B to B1E1 and from B1E1

to B2E1) decreases in each round; therefore, Mobius converges to the target throughput.

3.4.4 Implementation

We implement the core Mobius scheduling system in 2,300 lines of Go.7 It plugs directly

with external VRP solvers implemented in Python or C++ [58, 98]. Mobius exposes a

simple, versatile interface to customers, which we call an interest map. An interest map

consists of a list of desired tasks, where each task includes a geographical location, the

time to complete the task once the vehicle has reached the location, and a task deadline

(if applicable). In each round, Mobius gathers and merges interest maps from all customers,

before computing a schedule. At the end of each round, it informs the customers of the tasks

that have been completed, and customers can submit updated interest maps. Interest maps

serve as an abstraction for Mobius to ingest and aggregate customer requests; however, the

merged interest map is directly compatible with standard weighted VRP formulations [8, 44]

without modification. Thus, Mobius acts as an interface between customers and vehicles,

using a VRP solver as a primitive in its scheduling framework (Fig. 3-3).

Bootstrapping VRP solvers

Since the VRP is NP-hard [113], solvers resort to heuristics to optimize Equation (3.1). In

practice, we find that state-of-the-art solvers do not compute optimal solutions; however,

we can aid these solvers with initial schedules that the heuristics can improve upon. We

warm-start the VRP solvers with initial schedules generated by the following policies: (i)

maximizing throughput, (ii) dedicating vehicles (assuming a sufficient number of vehicles),

and (iii) a greedy heuristic that maximizes our utility function (§3.5). 8 At the beginning of

each round, Mobius builds a suite of warm start solutions. Then, prior to invoking the VRP

solver with some weight vector w, Mobius chooses the initial schedule from its warm start
7github.com/mobius-scheduler/mobius
8App. A.4 describes this heuristic in detail.

58

github.com/mobius-scheduler/mobius

suite with the highest weighted throughput (i.e., objective of Equation (3.1)). Mobius also

caches the schedules found from all invocations to the VRP solver (§3.4.1), to use for warm

start throughout the round. Mobius parallelizes all independent calls to the VRP solver

(e.g., when computing warm start schedules and when generating |K| schedules to initialize

the search along the convex boundary).

3.5 Generalizing to α-Fairness

The fairness objective we have considered so far aims to provide all customers with the same

long-term throughput (maximizing the minimum throughput). However, an operator of a

mobility platform may be willing to slightly relax their preference for fairness for a boost in

throughput. To navigate throughput-fairness tradeoffs, we can generalize Mobius’s algorithm

(§3.4) to optimize for a general class of fairness objectives. We use the α-parametrized family

of utility functions Uα, developed originally to characterize fairness in computer networks [74]:

Uα(y)=
∑
k∈K

yk
1−α

1−α
, (3.4)

where y∈R|K| and yk is the throughput of customer k (either short-term xk or long-term xk).

Uα captures a general class of concave utility functions, where α∈R≥0 controls the degree

of fairness. For instance, when α=0, the utility simplifies to the throughput-maximizing

objective defined in Equation 3.1 (assuming all customers have the same weight). By con-

trast, when α→∞, the objective becomes maximizing the minimum customer’s throughput

(i.e., max-min fairness). α= 19 corresponds to proportional fairness, where the sum of

log-throughputs of all customers is maximized; this ensures that no individual customer’s

throughput is completely starved.
9Uα is not defined at α=1, so we take the limit as α→1.

59

Mobius (Prop. Fair) Mobius (alpha=3) Mobius (Max−Min)

Max Throughput Round Robin Dedicated Vehicles

0 20 40 60 0 20 40 60 0 20 40 60

0
2
4
6
8

0
2
4
6
8

Time (mins)

Lo
ng

−
te

rm
 T

hr
ou

gh
pu

t
(t

as
ks

/m
in

)

Customer 1 Customer 2 Total

Figure 3-8: Mobius can tune its allocation to deliver proportional fairness (α=1) and
max-min fairness (approximated with α=100).

Generalizing Mobius’s search algorithm

When Mobius generalizes to α-fairness, the target allocation is no longer simply the point

on the convex boundary that intersects the y = x line. The target allocation is instead

the allocation on the convex boundary with the greatest utility Uα. When searching the

convex boundary in each round, Mobius determines which candidate face contains the target

throughput by using Lagrange Multipliers to find the point along the face 10 with the greatest

utility. Once it finds each support allocation x, Mobius incorporates the historical throughput

x to select the schedule with greatest cumulative utility Uα(γtx(t+1)+(1−γt)x(t)), where

γt is as defined in §3.4.2.

An example

Fig. 3-8 shows a time-series chart of long-term customer and platform throughputs for the

example described in §3.3.2. By adapting to different schedules on the convex boundary,

Mobius converges to a fair allocation of rates without degrading total throughput. α allows

Mobius to compute expressive schedules; for instance, α = 1 strives to maximize total
10App. A.1 shows how to find the face containing the target throughput.

60

throughput without starving either customer. Additionally, Mobius (max-min)11 converges

to a fair allocation of long-term throughputs within 20 minutes.

3.6 Real-World Evaluation

We evaluate Mobius using trace-driven emulation (§3.6.1) in two real-world mobility plat-

forms. In §3.6.2, we apply Mobius to Lyft ridesharing in Manhattan and demonstrate that

it scales to large online problems. In §3.6.3, we deploy Mobius on a shared aerial sensing

system, involving multiple apps with diverse spatiotemporal preferences. Our evaluation

focuses on answering the following questions:

• How does Mobius compare to traditional approaches in online scheduling for large-scale

mobility problems?

• How robust is Mobius in the presence of dynamic spatiotemporal demand from

customers?

• How can we tune Mobius’s timescale of fairness?

• What other benefits does Mobius provide to customers, beyond optimizing per-customer

throughputs?

3.6.1 Online Trace-Driven Emulation

We implement a trace-driven emulation framework to compare Mobius against other schedul-

ing schemes, under the same real-world environment. This framework replays timestamped

traces of requests submitted by each customer, by streaming tasks to the scheduler as they

arrive, and sending task results back to the customer.
11Mobius approximates max-min fairness (α→∞) with α=100.

61

Capturing environment dynamics and uncertainty

To emulate dynamic customer demand, our emulation framework streams tasks according

to the timestamps in the trace—so Mobius has no visibility into future tasks. To emulate

uncertainty in customer demand, we cancel tasks that are not scheduled in 10 minutes.

Additionally, the case studies in §3.6.2 and §3.6.3 consider scenarios where at least one

customer is backlogged (defined in §3.1). If no customers are backlogged, then the platform

can fulfill all tasks within the planning horizon, and the resulting schedule would have

maximal throughput and fairness. Thus, the problems are only interesting when at least

one customer is backlogged; Mobius is effective and required only in such situations.

Backend VRP solver

We use the Google OR-Tools package [98] as our backend weighted VRP solver (Equa-

tion (3.1)). OR-Tools is a popular package for solving combinatorial optimization problems,

and supports a variety of VRP constraints, including budget, capacity, pickup/dropoff, and

time windows. Our case studies involve VRPs with different sets of constraints. We run

our experiments on an Amazon EC2 c5.9xlarge instance with 36 CPUs.

Baselines

In our experiments, we evaluate Mobius’s throughput and fairness against two baseline routing

algorithms: (i) a max throughput scheduler, and (ii) dedicated vehicles. The max throughput

scheduler simply runs the backend VRP solver on the same input of customer tasks fed

into Mobius for a round. This solution provides a benchmark on the platform capacity, and

quantifies the maximum achievable total throughput. We compute the “dedicated vehicles”

schedule by first distributing the vehicles evenly among all customers,12 and then invoking

the max throughput scheduler once for each customer. This solution provides a benchmark

schedule that divides vehicle time equally among all customers. As shown in §3.1, round-robin
12Dedicating vehicles is most suitable when the number of vehicles is a multiple of the number of customers.

62

scheduling achieves very low throughput; hence we omit it from the results in this section.

To the best of our knowledge, Mobius is the first algorithm that explicitly optimizes

for customer fairness in mobility platforms. We considered evaluating Mobius by running

a scheduler that optimizes throughput and fairness over a longer timescale using a mixed-

integer linear program solver (e.g., Gurobi [58] or CPLEX [65]); however, this is not feasible

in practice, because (i) customer demands arrive in a streaming fashion, and (ii) these solvers

do not scale beyond tens of tasks [89]. Thus, we believe the baselines described above offer

reasonable comparisons for Mobius.

Microbenchmarks

In addition to the real-world case studies (§3.6.2-§3.6.3), we also evaluate Mobius on

microbenchmarks created from synthetic customer demand, including scenarios where

Mobius is optimal (under the static task arrival model, §3.4.3). We compare Mobius

against max throughput, dedicating vehicles, and round robin, and show, through controlled

experiments, that (i) it provides provably good throughput and fairness for a variety of

spatial demand patterns, (ii) it scales for different numbers of vehicles, (iii) it controls its

timescale of fairness, and (iv) it can tune its fairness parameter α. We also report the runtime

of Mobius in various environments. We include these results in App. A.5 and App. A.6.

3.6.2 Case Study: Lyft Ridesharing in Manhattan

Motivated by the issue of “destination discrimination” [88, 116, 131] discussed at the begin-

ning of this chapter, we consider a ridesharing service that receives requests from different

neighborhoods (customers) in a large metro area. Some neighborhoods are easier to travel

to than others, and rider demand out of a neighborhood can vary with the time of day.

We show that Mobius can guarantee a fair quality-of-service (in terms of max-min fair

task fulfillment) to all neighborhoods throughout the course of a day, without significantly

compromising throughput. We also show that, although it optimizes for an equal allocation

63

Ride
Demand

Zones

Central
Park

Financial
District

Chinatown
U

pp
er

M
id

to
w

n
Lo

w
er N

S

E W

N
um

ber of R
ide R

equests

100

60

40

30

20

Figure 3-9: Maps of zones (customers) and demand in Manhattan, indicating skews in
both spatial coverage and volume of ride requests.

of throughputs, Mobius does not degrade other quality-of-experience metrics, such as rider

wait times. We further demonstrate that Mobius is a scalable online platform that generates

schedules for a large city-scale problem.

Ridesharing demand

We use a 13-hour trace of 16,817 timestamped Lyft ride requests, published by the New York

City Taxi and Limousine Commission, involving 40 neighborhoods (zones) in Manhattan

over the course of a day [33]. Each request consists of a pickup and a dropoff zone, and

we seek to provide pickups from all zones equitably. The map in Fig. 3-9 (left) demarcates

the customer zones.

Fig. 3-9 (right) illustrates the scale of this scheduling problem. It visualizes traffic on the

top 1,000 (out of 3,300) pickup-dropoff pairs; the color of each arrow indicates the volume of

ride requests for that pickup-dropoff location. Notice that both the distance of rides and the

volume of requests originating from zones vary vastly throughout the island. A significant

fraction of requests arrive into and depart from Lower Manhattan. Some zones in Upper

Manhattan have as few as 15 unique outbound trajectories, while other zones have hundreds.

Moreover, ridesharing demand varies significantly with the time of day. For instance, a

busy zone near Midtown Manhattan sees the load vary from around 200 to 600 requests/hour,

and a quiet zone near Central Park experiences a minimum load of 3 requests/hour and

64

peak load of 24 requests/hour. Notice that the dynamic range of demand throughout the

13 hours also varies across zones.

Experiment setup

This ridesharing problem maps to the capacitated pickup/delivery VRP formulation [44].

It computes schedules that maximize the total number of completed rides, such that (i)

a ride’s pickup and dropoff are completed on the same vehicle, and (ii) each vehicle is

completing at most one ride request at any point in time. We configure the solver to

retrieve real-time traffic-aware travel time estimates from the Google Maps API [55], and

we constrain OR-Tools to report a solution within 3 minutes.

We use the trace described above in our emulation framework (§3.6.1). We compute

schedules for a fleet of 200 vehicles.13 In order to ensure that the schedules are not myopic, we

plan our routes with 45-minute horizons; however, to reduce rider wait times, we recompute

the schedule every 10 minutes, while ensuring that we honor any requests that we have

already committed to in the schedule. We assume that riders cancel requests that are not

incorporated into a schedule within 10 minutes of the request time.

Fairness with high vehicle utilization

Since Mobius plans continuously, having several allocations on the convex boundary at

its disposal, we expect it to converge to a fair allocation of rates, despite the skew in

demand. Fig. 3-10 shows the long-term throughputs achieved for each zone by different

scheduling algorithms, after 13 hours. The color of each zone in the map indicates that

zone’s throughput. Bright colors correspond to high throughput, and a homogeneous mix

of colors indicates a fair allocation. Beneath the maps, we also stack the zone throughputs

to indicate how each scheduler divides up the total platform throughput across the zones;

ideally we would like large, evenly-sized blocks.
13The number of vehicles does not matter, since we compare Mobius to the platform capacity (from the

max throughput scheduler).

65

Dedicated

Max Tput

Mobius

0 500 1000
Long−term Throughput (rides/hr)

1

25

50
75

100
150
250

Zone Throughput (rides/hr)

Dedicated
Vehicles

Mobius
(Max-Min)

Max
Throughput

Dedicated
Max Tput

Mobius

0 500 1000
Long−term Throughput (rides/hr)

Each block
= 1 zone

Figure 3-10: Long-term throughputs for zones in Manhattan after 13 hours. A good
scheduler should have a stacked plot with large evenly-sized blocks, and a map with bright
(high throughput) and homogeneous (fair) colors across zones.

The max throughput scheduler divides the platform throughput most unevenly across

zones. In particular, we see that while it serves nearly 200 rides/hour out of the Financial

District (Lower Manhattan), it virtually starves zones near Central Park. From the demand

map (Fig. 3-9), notice that (i) a majority of rides originate from Lower Manhattan, and (ii)

most of these trips are destined for neighboring zones. Thus, the best policy to maximize

the total number of trips completed is to stay in Lower Manhattan, which is what the max

throughput scheduler does.

The bar chart indicates that dedicating 5 vehicles to each zone results in 40% lower

platform throughput than the max throughput scheduler. This is because a heterogeneous

demand across zones cannot be effectively satisfied by an equal division of resources (vehicles).

Nevertheless, Fig. 3-10 shows that this scheduler shares the platform throughput most evenly

across zones. The division of per-zone throughputs is not perfectly even, in spite of dedicating

an equal number of vehicles, because (i) ride requests from different zones can have different

trip lengths, and (ii) some zones have inherently low demand and do not backlog the system,

66

Replan every 10 min Replan every 15 min

0 5 10 0 5 10
0

10
20
30

Time (hours)Lo
ng
−t

er
m

 T
pu

t
(ri

de
s/

ho
ur

)

Kipps Bay Lenox Hill

Kipps
Bay

Lenox
Hill

Figure 3-11: Time series of long-term throughputs for two zones for different replanning
horizons. Frequent replanning ensures fairness (equal throughputs) at shorter timescales.

leaving some vehicles idle.

By contrast, Mobius strikes the best balance between throughput and fairness. It achieves

roughly equal zone throughputs, while compromising only 10% of the maximum platform

throughput. Compared to dedicating vehicles, we see, from the map, that Mobius achieves

higher throughput for most zones by identifying an incentive to chain requests from different

zones. For example, Mobius combines two requests from different zones into the same trip,

when the dropoff of the first request is close to the pickup of the second request. While

this helps improve efficiency, Mobius also prioritizes pickups from zones with a historically

low throughput to ensure fairness across zones. This ridesharing simulation reveals that

it is possible to achieve a fair allocation of rates in a practical setting without significantly

degrading platform throughput.

Controlling the timescale of fairness

Mobius’s replanning interval controls the timescale over which it is fair. The more often that

Mobius replans, the more up-to-date its record of long-term customer throughputs; Mobius

can then adapt to short-term unfairness quickly by finding a more suitable schedule on the

convex boundary. Recall that when replanning frequently, the convex boundary does not

change drastically between scheduling intervals (§3.3.2), if the spatial distribution of tasks do

not change rapidly with time. So, in practice, we do not expect to deviate far from the ideal

target throughput. Fig. 3-11 shows the long-term throughputs achieved for two zones, for

67

Bloomingdale District
(Quiet)

Midtown Center
(Busy)

0 10 20 30 40 0 10 20 30 40
0.00
0.25
0.50
0.75
1.00

Wait Time (mins)C
um

. P
ro

ba
bi

lit
y

Mobius Max Tput Dedicated

Bloomingdale

Midtown
Center

Figure 3-12: Distributions of rider wait times for two zones. Even though Mobius compro-
mises some throughput for fairness, it delivers similar wait times as the max throughput
scheduler.

Traffic Parking Air Quality iPerf Roof

Measure average vehicle speed. Count occupied spots in parking lot. Map air quality of plume (AQI). Profile cellular connectivity. Image residential roofs.

• 11 continuous monitoring tasks (10 sec/task)
• Prioritizes tasks with high variance in speed

• 3 recurring tasks (60 sec/task)
• Tasks renew after 10 mins

• 50 one-time tasks (20 sec/task)
• Prioritizes using Gaussian Process model

• 100 cyclic monitoring tasks (10 sec/task)
• Renews all tasks after each cycle

• 60 one-time tasks (20 sec/task)
• No prioritization among tasks

TCP
Tput

(Mbps)
12 parked cars

PM 2.5 sensor

M
easured PM

 2.5

5.6 m/s
5.2 m/s

7.2 m/s

Figure 3-13: Summary of aerial sensing applications, which span a variety of spatial demand
and reactive/continuous sensing preferences. We collected ground truth data for each of
these applications using real drones, and created traces to evaluate Mobius.

replanning timescales of 10 minutes and 15 minutes. Mobius equalizes throughputs better

when it replans more frequently.

Rider wait times

Platform operators prefer high throughput schedules because they translate directly to high

revenue; low throughput would lead to more cancelled rides. While Fig. 3-10 demonstrates

that Mobius is fair without degrading throughput, we would like to know if optimizing for

fairness impacts rider wait time (i.e., the time between requesting a ride and being picked up).

Fig. 3-12 compares the distributions of rider wait times for rides originating from

Bloomingdale District (a quiet neighborhood west of Central Park) and from Midtown

Center (a busy district near Times Square). We compute wait times are only for fulfilled

tasks. Notice that in both zones—with two very different demand patterns—the distribution

68

of wait times for Mobius is comparable to that of the max throughput scheduler.

We observe that the wait times in the quiet zone are slightly higher for Mobius (average

of 17 minutes, compared with 15 minutes for max throughput). This is because the wait

times for Mobius are computed for significantly more tasks (Mobius fulfills 66.7% more ride

requests than does max throughput). The schedule that dedicates vehicles sees higher wait

times than Mobius, especially when rides originate from a busy zone (e.g., Midtown Center),

since vehicles would be idle until they return to their assigned zone to pick up a new rider.

Scalability

This case study demonstrates that Mobius is practical at an urban scale. In fact, when schedul-

ing its fleet of taxis, New York City’s Yellow Cab restricts its scheduling region to Manhattan

and organizes its requests according to approximately 40 taxi zones [16, 32]. In our exper-

iments, the backend VRP solver (i.e., max throughput scheduler) computes each 45-minute

schedule in 3 minutes (capped by the timeout). We observe that Mobius takes 5-6 minutes;

Mobius sees a speedup by (i) parallelizing calls to the VRP solver and (ii) warm-starting the

VRP solver with initial schedules (§3.4.4). These optimizations help Mobius easily scale to

tens of thousands of tasks. We believe we can further improve the speed by leveraging paral-

lelism in the backend VRP solver [111] (OR-Tools does not expose a multi-threaded solver).

3.6.3 Case Study: Shared Aerial Sensing Platform

The recent proliferation of commodity drones has generated an increased interest in the

development of aerial sensing and data collection applications [3, 6, 39, 46, 85, 86], as well as

general-purpose drone orchestration platforms [59, 90, 99]. An emerging mobility platform is

a drones-as-a-service system [47, 60, 84, 117, 124], where developers submit apps to a platform

that deploys these app tasks on a shared fleet of drones. App (customer) semantics in a drone

sensing platform can show significant heterogeneity in both space and time. To ensure a

satisfactory QoS for all applications, a scheduler must not only efficiently multiplex tasks from

69

Recharge
Traffic
Parking
iPerf
Air Quality
Roof

Figure 3-14: Map of tasks for 5 aerial sensing apps, spanning a 1 square mile area in
Cambridge, MA. Mobius replans every 5 minutes, in order to incorporate new requests.
Each drone returns to recharge every 15 minutes.

different applications in each flight (typically constrained to 20 minutes due to the battery

life [41]), but also share task completion throughput equitably across apps. Since apps can be

reactive (i.e., sensing preferences change as apps receive measured data), Mobius must addi-

tionally provide a sustained rate-of-progress to each app, as opposed to “bursty” throughput.

Sensing apps

We implement 5 popular urban sensing apps to evaluate Mobius in this drones-as-a-service

context, summarized in Fig. 3-13. Fig. 3-14 depicts the locations for the sensing tasks

submitted by each app. We describe each app below:

• The Traffic app continuously monitors road traffic congestion over 11 contiguous

segments of road in an urban area. To measure average vehicle speed, it collects

10-second video clips at each road segment, detects all cars using YOLOv3 [104], and

tracks the trajectory [21] of each vehicle. After gathering multiple initial samples at

all 11 locations, the app prioritizes the locations with the highest variance in speed,

in order to collapse uncertainty in its overall estimates of road congestion.

• The Parking app counts parked cars at 3 sites, by monitoring each lot for 1 minute;

to maintain fresh estimates of counts, this app renews these 3 tasks after 10 minutes.

70

• The Air Quality app measures PM2.5 concentration around a plume [1], submitting

a candidate list of 100 one-time sampling locations. This app is also reactive; on

receiving a measurement, it updates a Gaussian Process model [102] and cancels any

unfulfilled tasks with high predicted accuracy.

• The iPerf app builds a map of cellular coverage in the air, by profiling through-

put at 100 spatially-dispersed locations. It renews all tasks after each cycle of 100

measurements is complete.

• The Roof app submits 60 one-time tasks to image roofs over a residential area.

Notice that these apps collectively have a variety of spatiotemporal characteristics. For

instance, the Traffic app changes its requests with time, based on the uncertainty in speed

estimates and the freshness in measurements. By contrast, the Air Quality app changes

its requests with space, using a statistical model to collapse uncertainty in a task based on

nearby measurements. The iPerf app has no temporal preferences, and instead functions

as a “free-riding” app that gathers quick measurements over a large area.

Ground-truth data collection

To run our drones-as-a-service platform on real-world sensor data, which is critical to the

performance of the reactive and continuous monitoring apps, we separately gather 90 minutes

of ground-truth data for each app, using real drones. This gives us a trace of timestamped

measurement values of each app. We then use our trace-driven emulation framework

(§3.6.1) to evaluate different scheduling algorithms. Fig. 3-13 shows highlights from our

data collection. For example, to collect ground-truth for the Traffic app, we instrument 6

DJI Mavic Pros [41] to continuously gather video and track cars over the 11 measurement

locations (Fig. 3-14) for 90 minutes. Similarly, for the iPerf and Air Quality apps, we

program a DJI F450 drone [42] equipped with an LTE dongle and a PM2.5 sensor [1] to

gather measurements at their respective measurement locations. We instrument our drone

to communicate its location, battery status, and measurement data to a dashboard hosted

71

Mobius
(Max−Min)

Mobius
(Prop. Fair)

Max
Throughput

Dedicated
Drones

0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75
0
3
6
9

12

Time (min)Lo
ng

−
te

rm
 T

pu
t

(t
as

ks
/m

in
)

Roof iPerf Air Quality Traffic Parking

Figure 3-15: Long-term throughputs achieved over 90 minutes. Mobius achieves high
throughput and best shares it amongst the apps.

on an EC2 instance, from which we observe the drone’s progress on our laptop.

Experiment setup

We configure our backend solver to estimate travel time as the Euclidean distance between

the sensing tasks plus the sensing time for the destination task. In order to be sufficiently

reactive to the Traffic and Air Quality apps, we schedule in 5-minute rounds, and require

that the drones return to recharge their batteries every 15 minutes. We run our trace-driven

emulation framework with 5 drones. Additionally, we configure the Roof app to join the

system after 30 minutes.

High throughput, high fairness

To understand how Mobius divides the platform throughput, we show the long-term through-

put for each app over 90 minutes in Fig. 3-15. Mobius (max-min) achieves 55% more

throughput than dedicating drones and only 15% less throughput than maximizing through-

put. Mobius with a proportional fairness objective similarly outperforms max throughput and

dedicated vehicles in navigating the throughput-fairness tradeoff. Note that the throughputs

of the Air Quality and Roof apps decay with time, after their one-time tasks are fulfilled.

Because these apps have variable demand (e.g., 100 tasks for iPerf and 3 tasks for

Parking), studying throughput is not sufficient. Hence, we plot the tasks completed as a

72

0
25
50
75

100

Mobius
(Max−Min)

Mobius
(Prop. Fair)

Max
Throughput

Dedicated
Drones

Ta
sk

s
C

om
pl

et
ed

 (
%

) iPerf Air Quality Roof Traffic Parking

Figure 3-16: Percentage of tasks completed per app. Mobius fulfills nearly all requests for
the Traffic and Parking apps, before allocating “excess” vehicle time to the more backlogged
apps.

fraction of demand for each app in Fig. 3-16. Notice that, under Mobius, even the most

starved app (iPerf) completes nearly 34% of its tasks; by contrast, max throughput and

dedicated drones deliver worst-case task completions of 30% and 13%, respectively. Even

though dedicating drones guarantees equal drone time for each app, it is extremely unfair

toward apps with higher demand or more spatially-distributed tasks.

Impacts of sensing and travel times

Fig. 3-14 would suggest that the Air Quality and Roof tasks are easier to service, since

their tasks are more spatially concentrated; however, their tasks take 20 seconds each

(Fig. 3-13). The max throughput scheduler understands this tradeoff in terms of maximizing

throughput, and thus prioritizes the iPerf app, since its 10-second tasks (Fig. 3-13) are cheap

to complete. By contrast, Mobius additionally understands how to navigate this tradeoff in

terms of fairness; for instance, it forgoes some iPerf tasks to complete more 20-second AQI

measurements.

Reliable rate-of-progress

In enforcing either proportional or max-min fairness, Mobius does not starve any app, at any

instant of time. Indeed, Fig. 3-15 indicates that Mobius delivers a reliable rate-of-progress

to the Air Quality app, gradually giving it roughly 3 tasks/min over the first 20 minutes.

By contrast, the max throughput scheduler is more “bursty”, and only services this app after

73

No Discount

0
10
20
30
40

25 50 75
Time (min)

Ta
sk

s

Discount No Discount

Figure 3-17: Discounting long-term throughput allows Mobius to gradually respond to the
sudden presence of the transient Roof app, instead of dedicating all drones to it.

20 minutes. As a result, we find that, with Mobius, the root-mean-square error (RMSE)

of the Gaussian Process model for the air quality drops more rapidly.

Catering to transient apps

Recall that the Roof app joins the platform after 30 minutes. Fig. 3-15 indicates that Mobius

rapidly adapts to this change in demand with a spike in throughput for the Roof app at the

cost of lower throughput for the iPerf and Air Quality apps. Notice that this spike in Mobius’s

schedule is larger in magnitude than the one in the max throughput schedule. This is because

Mobius realizes that, when the Roof app joins, it has no accumulated throughput, while

other apps have amassed higher throughput from living in the system for longer. Fig. 3-17

(right) plots the routes for all 5 drones during minutes 30-35; all drones immediately flock

to the Roof app. With Mobius, an operator can choose to respond to the arrival of new

apps by discounting throughput accumulated in prior rounds. Fig. 3-17 (left) shows how

Mobius can control the Roof app’s rate of task fulfillment, with a discount factor of 0.1.

3.7 Conclusion

We developed Mobius, a scheduling system that can deliver both high throughput and fair-

ness in shared mobility platforms. Mobius uses the insight that, when operating over rounds,

scheduling on the convex boundary of feasible allocations, as opposed to the Pareto frontier,

74

provably improves on fairness with time. We showed that Mobius can handle a variety of

spatial and temporal demand distributions, and that it consistently outperforms baselines

that aim to maximize throughput or achieve fairness at smaller timescales. Additionally,

through real-world ridesharing and aerial sensing case studies, we demonstrated that Mobius

is versatile and scalable.

There are several opportunities for extending the capabilities of Mobius. First, Mobius

assumes that customers are not adversarial. Developing strategyproof mechanisms that

incentivize truthful reporting of tasks by customers is an open problem. Second, we design

Mobius to only balance customer throughputs. We believe the optimization techniques we

developed (§3.4) can be extended to support other platform objectives, such as task latency,

vehicle revenue, and driver fairness. Finally, incorporating predictive scheduling, where the

platform can strategically position vehicles in anticipation of future tasks, is an interesting

direction for future work, as it can further increase platform throughput.

75

76

Chapter 4

Application-Level

Service Assurance with 5G RAN Slicing

A rapidly growing number of mobile applications—such as mixed reality, cloud gaming, video

conferencing, and cloud robotics—require predictable network connectivity (i.e., throughput

and latency). The 3GPP specifications for 5G Radio Access Networks (RANs) recognized this

requirement for next-generation mobile apps and introduced network slicing [37], a virtualiza-

tion primitive that allows an operator to run multiple differentiated virtual networks, called

slices, atop a single physical network. A slice can support a set of users or a set of applications

with similar connectivity requirements. It can span multiple network domains, including the

radio access network (RAN) [30, 48, 76], core [81, 125], transport [108] and fronthaul [23].

Operators can distribute resources, like physical resource blocks (PRBs) in the RAN, amongst

the slices to provide differentiated connectivity. RAN slicing is of particular interest for service

assurance [28] since the last-mile wireless link is often the bottleneck for mobile apps [9, 14].

Existing approaches [18, 30, 48, 76, 130] allocate PRBs to different slices to guarantee

slice-level service assurance, e.g., through service-level agreements (SLAs) for total slice

throughput. However, in order to realize the vision of network slicing, where apps achieve

the network performance that they require, the service assurance should be provided at

77

application-level. Existing approaches fall short of enabling operators to provide this im-

portant capability. Slice-level service assurance does not guarantee throughput and latency

to each app in the slice, since different users in the same slice can experience wildly different

channel conditions, as we explain in §4.1. We need app-level service assurance in order to

meet the requirements of each app within a slice. However, two key challenges arise when

optimizing for app-level service assurance:

Challenge #1: Search space complexity

Prior approaches [18, 48, 76, 130] provide slice-level service assurance by tracking a state space

consisting of aggregate slice-level statistics, including the average channel quality of all users

in a slice, the observed slice throughput, etc. To extend these slice-level methods to support

app-level requirements, one could potentially expand the state space to track the channel

quality, the observed throughput, and the observed latency experienced by each app in a slice,

essentially treating each app as a slice for the purposes of service assurance. However, the

resulting state space, consisting of all possible values that the tracked variables can take, grows

exponentially in the number of apps, rather than the number of slices. Further, the control

policy involves searching through this state space to determine an allocation of PRBs to slices

that complies with the SLA constraints. This results in an intractable optimization problem

for practical deployments, where each slice accommodates tens to hundreds of apps (§4.1.2).

Challenge #2: Determining resource availability

To compute slice bandwidth allocations within the total available bandwidth, operators

typically run admission controllers that admit or reject incoming apps according to a policy

that depends on slice monetization preferences, fairness constraints, and other objectives.

Algorithms for admission control have been studied widely [24, 25, 96, 114] and are not the

focus of this paper. However, operators need a way to determine if the RAN has resources to

accommodate the SLAs of an incoming app, in addition to the apps already admitted. We

78

Su
bc
ar
rie
rs

Time

Radio Resources

Communication
Service Provider

Apps
Each app requests SLAs

(e.g., min throughput,
max latency)

Realized throughputs
and latencies

Allocate subcarriers (bandwidth)
to slices to meet app SLAs

2 slices

Figure 4-1: Apps express their connectivity requirements in terms of SLAs, and the operator
provisions slice bandwidths to fulfill all SLAs.

cannot adapt prior approaches [56, 68, 75], which compute required PRBs to support slice-

level SLAs, because the state-space complexity precludes treating each app as a slice (§4.1.3).

This paper presents Zipper, a real-time RAN slicing system that dynamically allocates

PRBs (i.e., bandwidth) to network slices to ensure app-level throughput and latency SLAs

for every app in every slice.1 As illustrated in Fig. 4-1, under this model, apps express their

network requirements to the operator in the form of SLAs, i.e., minimum throughput and

maximum latency. The operator then fulfills these SLAs over the shared wireless medium

by computing and allocating the PRBs required by each slice. This paradigm of operators

provisioning connectivity, so that each app meets its desired network requirements, is similar

to the familiar model of cloud computing—where the developer requests a combination

of compute, memory, and I/O bandwidth for a particular workload, and the cloud service

provider finds the right allocation of resources to reliably deliver the desired performance.

Zipper addresses the challenges in enabling app-level service assurance via three contri-

butions:

• To manage the search space complexity, we decouple the network model and the control pol-

icy by formulating SLA-compliant PRB allocation as a model predictive control (MPC)

problem. Zipper uses standalone predictors to forecast each of the tracked state space vari-

ables, such as the wireless channel experienced by each app. It then feeds these predictions

into a control algorithm that computes a sequence of future bandwidths for each slice based
1We focus on app-level, but our solution also generalizes to the user-level.

79

on the predicted state. Our insight is that Zipper does not need to enumerate different

future states within the state space, by using the well-known MPC framework (§4.2.1).

• We propose an efficient control algorithm to allocate PRBs (i.e., bandwidth) amongst

the slices. Zipper efficiently prunes the search space of possible PRB allocations using the

insight that app throughput and latency vary monotonically with the number of PRBs

(§4.2.2).

• We forecast RAN resource availability, guided by the following question: for an

incoming appA, does the RAN have enough PRBs to admitA, given the other apps already

admitted? Naively applying Zipper’s bandwidth estimation algorithm for a distribution of

possible channel conditions experienced by the app resulted in prohibitive estimation times.

We instead design a family of deep neural networks (DNNs) to predict the distribution of

required PRBs. We train these neural networks on simulations of Zipper’s control algorithm

offline and then apply them to predict the resource availability in real time (§4.2.3).

We design an O-RAN-compatible [64] architecture to realize these algorithmic concepts

(Fig. 4-4). We have implemented Zipper atop a production-class end-to-end 5G vRAN

platform, implementing hooks [49] across different modules in vRAN Distributed Unit (DU)

to control slice bandwidth dynamically without compromising real-time performance (§4.3).

On a typical RAN workload consisting of video streaming, conferencing, IoT, and virtual

reality apps, our real-time system can support up to 200 apps and over 70 slices on a 100

MHz channel. We find that Zipper outperforms prior schedulers and slicing frameworks

(§4.4); relative to a slice-level service assurance scheduler [76], Zipper reduces SLA violations,

measured as a ratio of the violation of the app’s request, by 9×.

4.1 Problem Setup and Challenges

In this section, we formalize the optimization problem of providing app-level throughput

and latency assurance, and illustrate, through a toy example, the challenges in computing

80

Slice A
VR rendering x 2

8 Mbps, 60 ms

Slice B
File sync x 1
20 Mbps, 250 ms

0

10

20

30

0 10 20 30 40
Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

App 1 (Slice A) App 2 (Slice A)

ZipperNVS

0

5

10

15

20

0 10 20 30 40
Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

App 1 (Slice A) App 2 (Slice A)

10

100

1000

10000

0 10 20 30 40
Time (s)

La
te

nc
y

(m
s)

App 1 (Slice A) App 2 (Slice A)

10

30

100

0 10 20 30 40
Time (s)

La
te

nc
y

(m
s)

App 1 (Slice A) App 2 (Slice A)

Zipper NVS

0 10 20 30 40 0 10 20 30 40
0.0

2.5

5.0

7.5

10.0

Time (s)

Ba
nd

w
id

th
 (M

H
z)

−5
0
5

10
15

0 10 20 30 40
Time (s)

SN
R

 (d
B)

App 1 (Slice A) App 2 (Slice A) App 3 (Slice B)

Figure 4-2: Zipper can efficiently manage an expressive and comprehensive state space to
deliver SLAs for each app in each slice.

slice bandwidth allocations efficiently.

4.1.1 Problem Formulation

Zipper allocates slice bandwidths to meet app-level throughput and latency SLAs, while

(i) each app’s wireless channel quality fluctuates and (ii) apps join and leave the network

asynchronously. We assume that the operator configures its RAN with a set of slices,

catering to different traffic types (e.g., cloud gaming, video streaming, etc.) and to different

enterprise policies (e.g., separate slices for Zoom and Microsoft Teams sessions). The operator

configures each each slice with a particular MAC scheduler, which is responsible for allocating

PRBs to apps in each slice. Fig. 4-2 illustrates a RAN serving two slices: slice A for VR

remote rendering and slice B for video downloads (e.g., video editing).

Formalizing SLAs

We assume that each app selects a slice, based on its specific throughput and latency require-

ments.2 For example, in Fig. 4-2, the two VR apps each require a minimum throughput

of 8 Mbps and a worst-case latency of 60 ms, while the file sync app requests a minimum

throughput of 20 Mbps and a worst-case latency of 250 ms. Let xSLAa and dSLAa denote the

throughput and latency SLAs for an app a.

Let x̄a(t) be the average throughput over a moving window of Tw slots. App a requires
2Alternatively, the slice controller can automatically match the app to a slice already catering to apps

with similar connectivity requirements. We leave app-to-slice matching to future work.

81

that x̄a(t) ≥ xSLAa . Similarly, let d̄a(t) be the average latency over Tw. When app a expresses

a latency SLA, it requires that the average latency da(t)≤dSLAa .

Formalizing slice bandwidth allocation

We formalize the optimization problem to compute SLA-compliant schedules. Since there

can be multiple valid allocations that satisfy the SLAs, we choose the one that minimizes

the total bandwidth:

argmin
Ss(t),Bs(t)∀s∈S ∀t

∑
t

∑
s∈S

Bs(t) (4.1)

s.t.
∑
s∈S

Bs(t)≤B ∀t (4.2)

xa(t)≥xSLAa ∀a∈As ∀s∈S ∀t (4.3)

da(t)≤dSLAa ∀a∈As ∀s∈S ∀t, (4.4)

where B is the total bandwidth available at the base station, S is the set of network slices,

and As(t) is the set of apps subscribed to slice s∈S at time t. Bs(t) denotes the bandwidth

allocated to slice s in scheduling round t. Ss is the MAC schedule for slice s.

At each timestep t, Zipper must select Bs(t) for each slice s∈S such that the throughput

and latency SLAs for all apps a ∈As(t) are satisfied, as captured by the constraints in

Equation (4.3) and Equation (4.4) respectively. Equation (4.2) ensures that the sum of slice

bandwidths does not exceed the bandwidth available at the base station. The objective in

Equation (4.1) states that Zipper must find the sequence of slice schedules and corresponding

bandwidths that minimizes the overall spectral utilization.

This approach differs from previous approaches that compute the minimum bandwidth re-

quired by each slice to satisfy slice-level SLAs, such as average slice throughput. For example,

Fig. 4-2 visualizes the results achieved by NVS [76], a widely-used slice-level service assurance

system [18, 36, 48], for our toy example with two slices. Notice that NVS is not able to meet

82

the throughput for App 1, and instead overcompensates for App 2. However, directly extend-

ing slice-level service assurance approaches to satisfy app-level SLAs explodes the state space.

Sometimes, the network could be at capacity, and the formulation in Equation (4.1)-

Equation (4.4) will not have a valid solution. To make the problem tractable, we can relax

the constrains in Equation (4.3) and Equation (4.4) into two penalty functions that quantify

how far—if at all—an app deviates from its throughput and latency SLAs:

fa
x(t)=

∣∣min
(
xa(t)−xSLAa ,0

)
/xSLAa

∣∣ (4.5)

fa
d (t)=

∣∣min
(
dSLAa −da(t),0

)
/dSLAa

∣∣ (4.6)

fa
x(t) in Equation (4.5) is nonzero only when the throughput is less than the SLA and

measures the deviation as a fraction of the SLA. Similarly, fa
d (t) measures the deviation as

a fraction of agreed-upon latency SLA, if that SLA is violated. So, we modify the objective

of Zipper (Equation (4.1)) to include a term that minimizes these penalties. In practice,

penalties will remain to close to 0 most of the time, since operators admit/reject incoming

apps by determining whether the RAN has sufficient capacity.

4.1.2 Challenge: State Space Complexity

Prior methods [76, 130] monitor aggregate state variables like average slice throughput [76],

average channel quality across all users, and average latency across all users [130], to deliver

service assurance at the slice level. The search space for such state vectors grows exponentially

with the number of slices. Fig. 4-2 shows that considering a slice level state space could yield

poor app performance. While the slice-level method meets the overall slice throughput SLAs,

it violates App 1’s SLA because App 1 has an inferior channel quality to that of App 2.

We could expand the state space by considering app-level characteristics, e.g., average

measured app throughput, average measured app latency, channel quality of each user,

etc. We could then extend slice-level service assurance approaches to meet app-level SLAs,

83

treating each app as an individual slice for the sake of service assurance. However, the

state space grows exponentially with the number of apps, rather than with the number of

slices. The number of apps served by each slice in a base station could range from tens

to hundreds, resulting in an intractable state space to deliver real-time performance. For

example, LACO [130] trains an agent using reinforcement learning to learn a policy that

selects slice bandwidths. If we adapt that architecture to a fine-grained state space, the

training complexity explodes, since the agent needs to explore a more expansive search space.

4.1.3 Challenge: Determining RAN Resource Availability

Apps 1, 2

Time Slot

R
Bs

throughput: 1 RB/slot
latency: 5 slots

App 3

Before App 3 ZipperSLA translation

+ App 3 Time Slot

R
Bs

Time Slot

R
Bs

Extra BW!

Figure 4-3: Translating an app’s SLAs directly to required slice bandwidth can ignore
schedules with greater spectral efficiency.

Recall that the slice controller’s bandwidth allocations Bs cannot exceed the total avail-

able bandwidth B. As load at the RAN increases, it becomes more challenging to fulfill

all SLAs under this bandwidth constraint. As a result, operators typically run admission

controllers on top of their slicing systems, only admitting apps that can receive the requested

SLAs. Admission control policies can depend on a variety of objectives, such as slice

monetization preferences, operational costs, fairness, energy constraints, etc. Admission

control for network slicing has received significant attention over the years [24, 25, 96, 114],

and is not the focus of this paper. However, in order to interface the slice controller with a

particular policy, we need a mechanism [96] that answers the following question: for a given

contract duration, can the RAN fulfill the SLAs for an incoming app without compromising

on commitments made to existing apps?

NVS adds a buffer to each slice [76] to absorb errors that operators make in admitting

84

apps that it cannot support. However, a constant buffer can underutilize the spectrum.

Prior work [68] injects the incoming app into a separate “best effort slice” and observes

whether it achieves its SLAs to determine if the RAN has resources in the desired slice to

accommodate this app. However, performance in the “best effort” slice may not faithfully

represent performance in the target slice. A more analytical approach [56, 75] is to translate

the SLAs for the incoming app into a measure of resource blocks required to support that

app in the desired slice via an analytical model or a lookup table that maps SLAs to a PRB

requirement. These methods can waste spectrum.

Consider the example in Fig. 4-3, where a slice in the RAN initially serves Apps 1 and

2. We show the resource block schedule for these two apps; notice that the RAN allocates 4

RBs of bandwidth to the slice. Our goal is to determine how much bandwidth is required to

accommodate App 3, who has a throughput SLA of 1 RB/slot and a latency SLA of 5 slots.

Simply translating the 1 RB/slot throughput SLA for App 3 to RB overhead, would lead

us to allocate an extra RB of bandwidth to the slice. Zipper, by contrast, accommodates

App 3—along with Apps 1 and 2—without adding any more bandwidth.

SLAs are two-dimensional (i.e., throughput and latency), and a slice could have an

arbitrarily complex PRB scheduler, whose behavior depends on additional factors, such as

the status of app queues at the base station and changing MCS in response to the wireless

channel. It is therefore challenging to map SLAs to a PRB differential via an analytical model.

We need a primitive to determine RAN resource availability for an incoming app that

generalizes to MAC schedulers and apps with different demand patterns. Recent RAN

slicing systems [30, 48] do not address how to interface their slice controllers with operators’

admission control policies. Since the RAN is often the bottleneck link [9, 14], it is often

oversubscribed. Thus, slicing systems are unusable in practice without a mechanism to

estimate resource availability and an accompanying admission control policy.

85

Slice n

…

Slice 1

PHY

Slice 1

MAC

… Merge
I/Q

File
Sync
Video
Conf

IoT

VR
V2X

app
SLAs

Slice n

slice s bandwidth allocation: BsSlice Manager

Bandwidth
Optimizer

Channel
Forecaster

Admission
Controller

SNR
estimates

SNR
est

§5.2

§5.3

§5.4
§5.5Channel

Forecaster
meas.
SNR

Figure 4-4: Zipper provisions connectivity by dynamically optimizing network slice band-
width and resource allocation to meet app-level SLAs.

4.2 Design

In this section, we describe how we design Zipper, illustrated in Fig. 4-4 to enable app-level

service assurance. Zipper consists of a model predictive control (MPC) framework to manage

the search space complexity (§4.2.1), uses an efficient algorithm to compute slice bandwidth

allocations within this MPC formulation (§4.2.2), and exposes a primitive to help operators

forecast RAN resource availability (§4.2.3).

Traffic
demand

Wireless
channel

Model Optimizer
BW

binary
search

predictions

slice BW
actions

MAC
scheduler

measured SNR

System

measured throughput and latency

State
Track history

Figure 4-5: Zipper uses model predictive control (MPC) to compute slice bandwidths that
comply with all app SLAs. With MPC, Zipper decouples prediction from control to manage
the state space.

4.2.1 Model Predictive Control

MPC [50] is a framework to solve sequential decision making problems over a moving

look-ahead horizon. It decouples a controller, which solves a classical optimization problem,

from a predictor, which explicitly models uncertainty in the environment. MPC has proven

86

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Tput Penalty (%)

C
um

. P
ro

ba
bi

lit
y 0 dB 2 dB 5 dB 10 dB 20 dB

0.00

0.25

0.50

0.75

1.00

0 50 100
Latency Penalty (%)

C
um

. P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Tput Penalty (%)

C
um

. P
ro

ba
bi

lit
y

Constant SNR
prediction error

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Tput Penalty (%)

C
um

. P
ro

ba
bi

lit
y 0 dB 2 dB 5 dB 10 dB 20 dB

0.00

0.25

0.50

0.75

1.00

0 50 100
Latency Penalty (%)

C
um

. P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Tput Penalty (%)

C
um

. P
ro

ba
bi

lit
y

Constant SNR
prediction error

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Tput Penalty (%)

C
um

. P
ro

ba
bi

lit
y 0 dB 2 dB 5 dB 10 dB 20 dB

0.00

0.25

0.50

0.75

1.00

0 50 100
Latency Penalty (%)

C
um

. P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Tput Penalty (%)

C
um

. P
ro

ba
bi

lit
y

Constant SNR
prediction error

(a) Resilience to SNR error.

−10

−5

0

5

10

0 30 60 90 120

Prediction Timestep (ms)

P
re

d.
 E

rr
or

 (
dB

) RNN EWMA

(b) SNR prediction error.

Figure 4-6: Zipper is resilient to modest∼2 dB error in forecasting SNR. Its MPC framework
supports different channel forecasters. While both have small median errors, the RNN model
outperforms EWMA.

practical in a number of real-world control problems, including in adaptive bitrate selection

for video streaming [122, 127] and in robotics [120].

Fig. 4-5 illustrates how Zipper applies MPC to solve the optimization problem formulated

in Equations 4.1-4.4. The state space consists of (i) the average throughput and average

latency experienced by each app over the past Tw slots, (ii) the average signal-to-noise ratio

(SNR) of each user over Tw as a measure of the channel quality, and (iii) the incoming data

traffic. The action space consists of a bandwidth allocation Bs for each slice s. Independent

forecasters predict how each of the state space variables evolves over a short term planning

horizon. The controller uses these predictions to determine the bandwidth schedule Bs(t)

for each slice.

MPC allows us to use network models to explicitly predict the future states over the

short term, and thus avoid searching over different future states within the state space. We

describe predictive models for each of the state space variables ahead.

Forecasting the wireless channel

Zipper supports different channel predictors that forecast how each app’s wireless channel (i.e.,

87

SNR)3 will evolve over the near term. Forecasting the wireless channel is a well-researched

and fundamentally challenging problem [69, 79, 83, 91]. We acknowledge this in our design,

and do not aim for a perfect predictor. Instead, we quantify a desirable performance for our

bandwidth allocation task, and then propose methods that meet that target.

To understand the impact of SNR prediction error on Zipper’s ability to meet SLAs, we

run a simple experiment,4 involving a 40 MHz channel and 10 video conferencing apps (i.e.,

2 Mbps min throughput, 150 ms max latency), split across 2 slices. We randomly assign

each user a 30-second SNR trace gathered on a production 5G network. To understand the

effect of prediction error in the worst case, we introduce a dummy predictor that simply

returns the ground truth SNR value added to some constant prediction error. Fig. 4-6a

visualizes the results as CDFs of the throughput and latency penalties (fa
x(t) and fa

x(t) in

Equation (4.5) and Equation (4.6) respectively) for different prediction errors. As expected,

larger prediction errors lead to higher penalties. However, notice that a small (but not

insignificant) error of 2 dB has a modest impact on penalty.

We also observe that the MAC scheduler uses the SNR forecast to determine what MCS

to assign an app. The 3GPP standards define 32 MCS values [66], and MAC schedulers

use a lookup table to map measured channel quality to MCS [72]. We find that this table is

quantized in 2 dB steps, so a prediction error of under 2 dB may still yield the correct MCS.

To forecast each user’s channel, we train a sequence-to-sequence Recurrent Neural Net-

work (RNN) [105], which uses an input sequence of SNR measurements over the last 1 second

to predict a sequence of SNR measurements over the next 150 milliseconds. App. B.1.1 de-

scribes the architecture of this RNN. We train this model using a dataset of SNR traces [101]

collected over a commercial network at scale. We evaluate the accuracy of this RNN on

a holdout set from the same bank of traces. Fig. 4-6b shows the prediction error (relative

to the ground truth) at different points over the 150 ms prediction horizon. Each boxplot
3For simplicity, we forecast SNR as an aggregate quantity over all subcarriers in a given time slot.

However, Zipper can support richer predictors and schedulers [30] predict SNR at a subcarrier granularity.
4We evaluate Zipper more extensively against an Oracle policy in §3.6.

88

shows a distribution of error over all traces in our holdout set. We compare the accuracy

of our RNN against a simpler predictor that tracks the SNR with an exponentially-weighted

moving average (EWMA). Both predictors have a suitable median performance, which

falls within our target of ∼2 dB error. However, the RNN has a more consistently tight

distribution. Moreover, as we describe below, prediction errors at later timesteps are less

consequential, since Zipper recomputes fresh allocations at a fine granularity.

Although we use this RNN model in our implementation, it is not a contribution; Zipper

could use any other predictor—including the EWMA filter—with comparable error.

Other state space variables

Zipper tracks the average throughput and latency, xa(t) and da(t) respectively, experienced

by each app in the past Tw time slots. Since Zipper only tracks historical averages, there

is no need for prediction. We assume that the traffic demand for each app follows the

throughput SLA requested by the app. If the traffic demand from an app is higher than

the agreed upon throughput SLA, Zipper only ensures that it fulfills the negotiated SLAs.

Tuning slice bandwidths using more detailed traffic demand predictions is part of future

work.

4.2.2 Tuning Slice Bandwidths Efficiently

Given the state space, defined as each app’s SNR, average throughput, average latency, and

traffic demand, the slice manager must find the most spectrally-efficient slice bandwidth

allocation that satisfies the SLAs, as we formalize in §4.1.1.

One approach to is to analytically derive a function that maps SLAs to a valid slice band-

width. However, this is challenging, since the expected throughput and latency of any given

app depends not only that app’s channel quality and queue status at the base station, but also

on the characteristics of the other apps contending for the same radio resources in the slice.

89

App 1

R
es

ou
rc

e
Bl

oc
ks

Time Slots Time Slots

R
es

ou
rc

e
Bl

oc
ks

3 slots/packet
1 slot/packet

App 2

Add BW

Packets in queue:

Figure 4-7: Exposing more bandwidth to a slice reduces packet latency.

Monotonicity

Our insight is that both app throughput and app latency are monotonic functions of slice

bandwidth. Fig. 4-7 illustrates this monotonicity property for latency with an example.

Consider two apps (green and orange) with different packet sizes, and a round-robin MAC

scheduler. We define latency as the difference between the times at which (i) the first byte of

a packet arrives at the base station and (ii) the last byte of a packet is sent over the air. The

diagram on the left visualizes a round-robin schedule for a slice with 4 resource blocks. Notice

that the green app’s packet is spread across multiple slots, and since the MAC is round-robin,

the packet’s latency is at least 3 slots. By contrast, when the bandwidth is 6 resource

blocks (diagram on the right), the packet latency is just 1 slot. Thus, per-packet latency

is a monotonically-decreasing function of slice bandwidth. Similarly, the app throughput

increases monotonically with slice bandwidth. App. B.1.2 elaborates on this property.

Because app throughput and latency vary monotonically with slice bandwidth, there

exists a minimum bandwidth Bs for s∈S that satisfies all SLAs. Therefore, a solution that

minimizes Equation (4.1) is one that minimizes the individual slice bandwidths, and Zipper

can optimize each slice independently.

Computing bandwidths

Zipper treats slice MAC schedulers as a blackbox; the search algorithm does not need to

know the scheduling logic. Instead Zipper uses each slice’s scheduler as a building block to

find the smallest bandwidth that satisfies the SLAs of all apps in the slice. In each time

90

interval t, Zipper computes Bs(t) using an iterative algorithm that simulates the MAC

scheduler for different candidate bandwidths B̃s. Zipper queries the MAC scheduler for

each B̃s. Zipper supplies the MAC scheduler with (i) all outstanding packets in each app’s

queue, and (ii) a forecast of each app’s channel quality over the scheduling horizon (§4.2.1).

Zipper evaluates the resulting schedule S̃s by computing the penalty scores, fa
x(t) and fa

d (t)

as defined in Equation (4.5) and Equation (4.6), respectively, to determine if the schedule

satisfies the SLAs. Then, amongst the set of valid schedules (i.e., when fa
x(t)=fa

d (t)=0),

Zipper chooses the one that requires the least slice bandwidth, i.e., the smallest B̃s.

Zipper navigates the search space of candidate bandwidths using binary search. It starts

with the entire range 0≤B̃s≤B, and prunes the search space by half in each iteration. In

the first iteration, Zipper computes a MAC schedule S̃ for the allocation B/2. For instance,

if at least one app’s throughput in S̃ is less than the throughput agreed to in the SLA,

then Zipper determines that the slice needs more bandwidth to satisfy the constraint; so it

continues the search in the range (B/2,B]. By contrast, if all performance metrics comply

with the SLA constraints, then Zipper determines that the slice could possibly meet the

SLAs with less bandwidth; so it continues the search in the range [0,B/2). We can apply

this binary search optimization because app throughput and latency vary monontonically

with slice bandwidth.

Zipper computes schedules in a cascading manner, where, in each timestep t, Zipper

solves the MPC problem for a finite future horizon of Th. It recomputes its allocation every

Te≤Th in order to incorporate recent snapshots of user channel and app queue statuses.

We use Th= 150 ms and Te= 50 ms5 to ensure that Zipper is reactive but not myopic. If

Bs(t) violates Equation (4.2) for any slice s, Zipper resolves the conflict to ensure that the

allocated bandwidth does not exceed the capacity.
5We found that Zipper was not very sensitive to Th and Te; we selected Te=50 ms because our SNR

predictors are most accurate over this horizon (§4.2.1). A shorter horizon allows us to replan with fresh
estimates of SNR.

91

Admitted
apps

...

BW regressor

Slice 1

Slice 2

Slice n

BW dist.

PolicyApp SLAs
SNR buckets ⊛

❌ ✅
AdmitReject

e.g., admit if p95 < B+ε

Incoming
app

Total
BW dist.

Includes incoming
app + admitted apps

Figure 4-8: Zipper builds a family of DNNs that forecasts bandwidth distributions for
slices consisting of different MAC schedulers and apps with different demand patterns.

Resolving conflicts

Since Zipper tunes slice bandwidths independently, the allocations could conflict, i.e.,∑
s∈SBs(t)>B, which violates Equation (4.2). To resolve conflicts, Zipper deducts—from

each slice—the excess bandwidth in proportion to the share of bandwidth that each slice

was originally allocated. In practice, Zipper will not trigger this step often because it gates

incoming requests with an admission controller (§4.2.3).

App. B.1.3 provides pseudocode for how Zipper computes slice bandwidth allocations.

Note that Zipper only considers the number of resource blocks in aggregate when allocating

resource blocks to a slice. In future work, we can extend Zipper to determine the most

suitable set of resource blocks given the channel conditions, using the techniques proposed

by RadioSaber [30]. We can also model methods to increase user capacity, such as beam

steering [26, 52].

4.2.3 Forecasting RAN Resource Availability

To estimate if the RAN has resources to support an incoming app, Zipper answers the follow-

ing question: for the contract duration, does the RAN have enough PRBs to accommodate

the incoming app and to fulfill SLAs for all other admitted apps?

92

Predicting bandwidth statistics

Zipper estimates the distribution of bandwidths, i.e., number of PRBs, that each slice will

require over a predetermined contract duration—including the incoming app. Translating

the SLAs of each app in a slice to radio resource requirements [56, 75] can yield overestimates

of the required bandwidth. Instead, Zipper simulates its slice manager over thousands of

channel traces. Direct simulations capture how the slice MAC exploits statistical multiplexing

to fulfill the SLAs without adding bandwidth to a slice (§4.1.3). However, running thousands

of simulations for a reasonable contract duration (e.g., 5 mins) is expensive, since the slice

manager computes and evaluates many MAC schedules.

All we need from the simulations is the bandwidth statistics—not the PRB schedules.

To approximate the bandwidth statistics, Zipper develops a family of deep neural networks

(DNNs), instead of running thousands of micro-simulations at runtime. Fig. 4-8 illustrates

the design of this module. Since each slice caters to apps with similar network requirements

(i.e., SLAs), we tailor a DNN for the traffic characteristics of each slice, similar to lookup

tables in prior work [56, 75] that translate SLAs to PRB requirements. Each DNN treats

a slice’s MAC scheduler as a blackbox process and learns the nonlinear relationship between

inputs—app demand patterns, SLAs, and channel quality—and the required bandwidth.

To create a simple and tractable input embedding for the DNN, we make a few as-

sumptions. First, we assume that all apps in a slice have the same SLAs; this is reasonable

because, in practice, network slices often isolate similar kinds of traffic [48]. Moreover, slight

variations in SLAs (e.g., 4 Mbps vs. 5 Mbps video conference flows) should have negligible

impact on bandwidth requirements. Second, in order to discretize the space of possible

SNR values, we assign each app to an SNR bucket from the set {poor, bad, good, great},

where each bucket corresponds to a range of SNR values (e.g., -5 dB ≤ bad < 2 dB).6

Zipper drops each incoming app into the best effort slice for a brief period (e.g., 5 seconds),
6Note that we only discretize SNR into bins to estimate resource availability with the DNNs; at runtime,

the slice controller forecasts SNR (§4.2.1).

93

computes its median SNR, and assigns it an SNR bucket. For existing apps, Zipper uses

SNR measured over the lifetime of each app to determine the most suitable bucket. Note

that the best effort slice is only for measuring SNR, not for assessing resource availability.

For each slice, Zipper generates a feature embedding consisting of the number of apps in

the slice (including the incoming app, if applicable), and the number of apps in each SNR

bucket. App. B.2.1 describes the DNN architecture.

Training DNNs

We generate training data by using Zipper’s slice manager as a simulator. We start by

enumerating all possible feature embeddings, and run a micro-simulation of Zipper for

each embedding using simulated channel traces (assuming a Rayleigh channel model) with

SNR values corresponding to the SNR bucket for that embedding. We prune the space of

embeddings using some simple heuristics. For instance, if we find that a simulation of 55 apps—

all with poor SNRs—requires a maximum bandwidth of 100 MHz, we discard all embeddings

with 56 or more poor apps, since those configurations will also require at least 100 MHz.

Estimating resource availability

Each DNN returns slice bandwidths as a probability distribution Ps for slice s. To compute

a distribution of the required spectrum, we convolve7 the slices’ independent probability

distributions: P=P1⊛P2⊛···⊛Pn. P is the forecasted distribution of required bandwidth.

Operators can choose a suitable percentile of P (e.g., p95, p99, etc.) based on their tolerance

preferences. For instance, a conservative policy might deem resources available for the

incoming app if the p99 bandwidth is less than the total available bandwidth B.

94

Management
switch
PTP
grandmaster
Datapath
switch

Telco-grade
servers

Azure Stack
Edge Pro

Radio Unit (RU)

(a) Hardware configuration

Core
Azure Private

5G Core

gNBZipper
Admission
Controller

Slice
Manager

Centralized
Unit (Altran)

Distributed Unit
L2 (Altran)

L1 (FlexRAN)

UE ID, S-NSSAI (slice), SNR,
Buffer occupancy, DL/UL throughput

Monitor

Control

Slice
bandwidth

(b) Software stack

Figure 4-9: We implement Zipper atop a production-class 5G network.

4.3 Implementation

We implemented Zipper atop an end-to-end production-class 5G network built on virtual

RAN (vRAN) and Core components. Our testbed uses commercial off-the-shelf user devices.

Testbed hardware

As illustrated in Fig. 4-9a, our production testbed consists of two 32-core HPE ProLiant

DL110 Gen10 Plus Telco-Grade servers with Intel Xeon-Gold 6338N CPUs and an Azure

Stack Edge Pro device. The servers perform all baseband processing in software, except for

LDPC decoding which is performed by a lookaside accelerator—Intel eASIC ACC100—to

meet the stringent real-time requirements posed by baseband processing workloads. We use

Foxconn RPQN-7800 5G Open Radio Units (RUs) operating on 100 MHz channels in the

n78 band. We obtained FCC STA licenses to operate the radios for experimental purposes.

The radio units support the popular O-RAN split Option 7.2x [95], designed to reduce the

optical bandwidth required for fronthaul traffic while keeping the RU simple and inexpensive.

The radio has four antennas and supports up to four spatial streams. The RU and the Telco

servers are synchronized using a Qulsar Qg2 carrier-grade PTP Grandmaster [100]. The

testbed additionally includes a high-speed datapath switch Arista 7050 to carry the fronthaul

traffic, as well as a management switch from Netgear to facilitate remote management of
7The probability distribution of a sum of independent random variables is the convolution of their

individual distributions [61].

95

the hardware devices.

Testbed software

Fig. 4-9b illustrates the software stack. For the L1, our testbed runs production-ready Intel

FlexRAN v20.11 [35]. For the L2/L3, we use Altran 5G vRAN software from Capgemini [5].

A single Telco server hosts both the Altran and FlexRAN software, while Zipper runs on

another server. We installed Azure Private 5G Core (AP5GC) [87] on the Azure Stack

Edge Pro device to provide 5G core services. Both Altran vRAN and AP5GC core support

standard-compliant slicing and can provide differentiated service to commercial devices. We

integrated all of these systems end-to-end to realize a production-class 5G network using

virtualized RAN and Core components.

Zipper can programmatically control the RAN using this virtualized setup . We

implemented a vRAN data collection system to retrieve SNR of each user and buffer

occupancy from the 5G vRAN software. We monitor the user throughput using diagnostic

information from AP5GC. We utilize the buffer occupancy and user throughput information

to estimate the latency experienced by each dataflow. We use a custom slice bandwidth

controller from Altran 5G vRAN that changes the slice bandwidth according to the output

from Algorithm 2. The controller is lightweight, and this API allows us to adjust slice

bandwidth allocations at the granularity of a few milliseconds.

Zipper is compatible with O-RAN specifications [64]. Zipper would be hosted in the

Near-Real-Time RAN Intelligent Controller (RIC). In an O-RAN deployment, Zipper would

retrieve SNR, buffer occupancy and throughput from the E2 Monitor interface, and would

send slice bandwidth control signals over the E2 Control interface. Since app admission is

not a real-time decision, we would implement the admission controller within the Non-Real

Time RIC.

96

Zipper slice manager

Our implementation of the slice manager (Fig. 4-4), which includes the MPC framework,

bandwidth allocation algorithm, and resource availability module, is about 4,000 lines of Go.

The slice manager is multi-threaded. It computes the bandwidth allocations for each slice in

parallel. When Zipper receives a new app request, the slice manager spawns a new thread

to run the admission controller. Zipper obtains RAN telemetry (i.e., SNR measurements,

app buffer occupancy [78], etc.) from the vRAN via a UDP socket. Zipper populates

its state—maintained over a moving horizon Tw (§4.1.1)—with these measurements. We

implemented data buffers to support quick, thread-safe read/write access that meets the

stringent slot deadlines for 5G workloads [2].

4.4 Evaluation

We evaluate Zipper with typical RAN workloads (§4.4.1) on our production-grade testbed

(§4.4.2) and in emulated environments (§4.4.3-§4.4.5). Our evaluation highlights include:

• On our end-to-end testbed, Zipper dynamically tunes slice bandwidths every millisecond

to fulfill app SLAs (§4.4.2).

• Compared to a slice-level service assurance scheduler, Zipper reduces tail throughput and

latency penalties as a percentage of app SLAs by 9× (§4.4.3).

• Zipper can support 150 apps drawn from a typical workload, and incur nearly no penalty

in throughput and latency (§4.4.3).

• In order to fulfill app SLAs, Zipper utilizes about 30% more bandwidth than RAN sched-

ulers without SLA constraints, but 50% less bandwidth than prior slicing systems (§4.4.3) .

• Zipper’s admission control framework can intelligently allocate unutilized bandwidth,

admitting 15% more apps for a first-come-first-served policy (§4.4.4).

• Zipper supports 200 apps and 70 slices in real time (§4.4.5).

97

App Type Min Tput Max Latency QCI [67] Freq.
Video conferencing 2 Mbps 150 ms 40 30%
Voice 200 kbps 100 ms 20 30%
Vehicle-to-X 200 kbps 50 ms 40 10%
Video streaming 2 Mbps 300 ms 60 20%
VR offload 10 Mbps 30 ms 68 5%
File sync 20 Mbps — 80 5%

Table 4-9: Apps, SLAs, and frequencies selected for experiments.

4.4.1 Evaluation Setup

Emulation

We develop a real-time emulation framework to compare Zipper against baselines under

controlled network environments. We develop a data generator to emulate realistic demand

patterns for different apps, and develop a channel emulator that exposes apps to real network

traces. We describe both below.

Apps

For our experiments, we choose several representative applications that cover the gamut of

throughput and latency requirements. Table 4-9 summarizes the SLAs we select for these

applications, based on the definitions in the 3GPP specifications [67], and also reports the

frequency of each app type (as a percentage) in our experiments. Since we do not have

access to real-world cellular traces, we mimic a typical workload according to breakdowns

of mobile Internet traffic published in industry technical reports [45, 110].

For file sync apps, we instrument iPerf [43] to send UDP traffic at different rates. For

video conferencing, video streaming, IoT, and v2x apps, we implement a data generator in

Go to send UDP packets at different sending rates and inter-packet delays. For VR remote

rendering, we gather traces from a real Hololens app, and replay the packet captures over UDP.

98

SNR traces

To evaluate Zipper against the baselines under a controlled setting, we use a publicly available

dataset of SNR traces, collected by running mobile traffic (e.g., Netflix videos, Amazon

browsing, etc.) over a production 5G network in Ireland [101]. Our testbed experiment with

real client devices (§4.4.2) evaluates Zipper on a live wireless channel.

Base station configuration

For all of our experiments, we configure our base station to have a total bandwidth of 100 MHz

and 4×4 MIMO (i.e., 4 layers). For simplicity, we configure all slices to numerology µ=1 (i.e.,

30 kHz subcarrier spacing). In our experiments, each slice caters to apps of the same type.8

4.4.2 End-to-end Evaluation

We begin by evaluating Zipper end-to-end on our production-grade 5G vRAN testbed (§4.3),

in order to demonstrate that Zipper can deliver reliable connectivity by dynamically adjusting

slice bandwidths in real-time, while adapting to variations in channel. For this experiment,

we consider a scenario where the base station has one slice that serves a single file sync app.

We would like to see that Zipper (i) allocates minimal slice bandwidth such that it does not

always use all 100 MHz available, and (ii) adapts the bandwidth allocation for this slice as the

measured channel quality varies. We run a 17 Mbps iPerf flow on a OnePlus mobile phone

that is connected to the 5G base station running Zipper. During the download, we both walk

around the room and stand in a fixed location to capture a variety of channel conditions.

Fig. 4-10 shows a stacked time series chart of the bandwidth that Zipper allocates to

the slice (bottom), the application throughput (middle), and the SNR of the OnePlus

phone (top). The segment highlighted in yellow corresponds to the segment of time during

which the UE was stationary. Notice that Zipper reliably meets the target throughput of
8If the operator does not know the app type ahead of time, she could match apps with similar connectivity

requirements, by clustering based on SLAs (e.g., high bandwidth only, or high bandwidth and low latency).

99

0

20

40

60

100 200 300
Time (s)

Sl
ic

e
BW

 (M
H

z)

0
5

10
15
20

100 200 300Tp
ut

 (M
bp

s)

0

20

40

60

100 200 300
Time (s)

Sl
ic

e
BW

 (M
H

z)
−5

0

100 200 300

SN
R

 (d
B)

0
5

10
15
20

100 200 300Tp
ut

 (M
bp

s)

stationary

Figure 4-10: Zipper tunes the bandwidth allocated to a slice serving a mobile OnePlus
phone running 17 Mbps iPerf flow.

17 Mbps—without significantly over-delivering. To do this, it adjusts its slice bandwidth

allocation at a millisecond granularity; notice, in particular during the stationary period,

where the measured SNR is relatively high and stable, the allocated bandwidth is accordingly

lower (i.e., 30 MHz).

At the time of writing, the slice bandwidth controller from Altran [5] only supports one

slice. The focus of this paper is to build a standards-compliant slicing system for app-level

service assurance, without re-implementing the physical (L1) and MAC (L2) layers.

4.4.3 SLA Compliance

Setup

In order to evaluate Zipper’s ability to comply with SLAs, we use our emulation framework

(§3.6.1) to compare Zipper against other schemes in settings where the wireless conditions

100

are controlled. Like the testbed, our emulator runs in real time. We compare Zipper against

the following four baseline algorithms:

• The Single Slice policy schedules all apps together in one slice, using a proportional fair

scheduler [115], which is widely used by base stations today [9].

• The QoS policy [27, 129], like Single Slice, schedules all apps in one slice with a proportional

fair scheduler, but additionally prioritizes each app according to its QoS Class Identifier

(QCI). The 3GPP standards specify a unique QCI priority for each traffic type [67].

Table 4-9 shows the QCIs we use for the apps in our experiments. This policy is also

common in production RAN deployments today.

• The NVS policy [76] is a dynamic network slicing algorithm for WiMAX, which provides

slice-level QoS guarantees by multiplexing slices over time. Each slice requests an aggregate

throughput (for all users). The NVS controller tracks each slice’s throughput. In each

time interval (e.g., 10 ms), it computes—for each slice—a priority, which is defined as the

ratio of requested throughput to average throughput, and then selects the slice with the

highest priority. While the NVS paper assumes constant MCS, we implement a modified

version of the algorithm that uses channel forecasts to dynamically adjust MCS. NVS

is a popular benchmark among recent RAN slicing proposals [30, 36, 48].

• The Oracle policy simply runs Zipper’s bandwidth allocation algorithm (§4.2.2), but

instead of forecasting wireless channel, it reads the true channel quality that each user

will experience from the trace of SNR values. This algorithm allows us to validate our

hypothesis that Zipper should be robust to modest SNR prediction error (§4.2.1).

Zipper and all baselines have access to the same overall bandwidth (e.g., 100 MHz channel).

These algorithms differ in how they divide up the bandwidth amongst slices.

We vary the number of apps, ensuring, for all baselines, that apps connect in the same

order and that each has the same SNR trace. We create 6 slices—one for each traffic

type—and run each experiment for 3 minutes. We measure the throughput and latency

penalties (Equation (4.5) - Equation (4.6)) for each app, after all apps have connected to the

101

95th percentile 99th percentile

50 100 150 200 50 100 150 200
0

25

50

75

100

Number of Apps

T
pu

t P
en

al
ty

 (
%

)

Zipper Oracle NVS QoS Single Slice

Figure 4-11: Tail throughput penalties for varying load. Apps scheduled by Zipper
experience 95th percentile penalties close to 0%.

RAN (i.e., we exclude the time when apps join/leave the RAN). To create some background

load at the base station, we assign twenty 20 Mbps iPerf flows to a “best effort” slice.9 We

do not use the resource availability estimator to admit/reject apps for these experiments.

Metrics of merit

We compare how well the different schemes satisfy each app’s throughput and latency

requirements, since these two quantities impact the quality-of-experience for most typical

mobile apps [45, 67, 110]. In particular, for each experiment, we compute the throughput

and latency penalties, defined in Equation (4.5) - Equation (4.6), and report the p95 and

p99 penalties to quantify the tail performance. A lower penalty is better.

Note that we evaluate penalties (as a fraction of the requested SLAs) instead of evalu-

ating absolute throughputs and latencies. The penalty metric allows us to directly compare

app-level service assurance across slices serving apps with significantly different network

requirements. Consider a slice serving a 20 Mbps file sync app A and a different slice serving

a 2 Mbps video conferencing session B. A scheme that delivers 19 Mbps to A and 1 Mbps

to B would yield 1 Mbps less than the requested amount for each app. But 1 Mbps is more

consequential to B (50%) than it is to A (5%). The penalty metric captures this.
9We assign these flows the lowest QCI priority amongst those in Table 4-9.

102

95th percentile 99th percentile

50 100 150 200 50 100 150 200
1

10

100

Number of AppsLa
te

nc
y

P
en

al
ty

 (
%

) Zipper Oracle NVS QoS Single Slice

Figure 4-12: Tail latency penalties for varying base station loads. Apps scheduled by
Zipper have low 95th and 99th percentile penalties.

Throughput penalties

Fig. 4-11 shows the results. The Single Slice scheduler consistently incurs the highest

penalty. It cannot differentiate between traffic types, and its proportional fair scheduler will

attempt to maximize throughput subject to some fairness constraints. Therefore, it tends

to favor bandwidth intensive apps (e.g., file sync). Notice that, because Single Slice runs a

proportional fair scheduler, it does not starve any app (throughput penalty is never 100%).

The QoS policy does marginally better than Single Slice. The QCI priorities only control the

relative frequencies at which the scheduler allocates resource blocks to apps, but if there is a

contention, an app with higher priority may not get its desired rate. Moreover, the standards

pre-define the QCIs [67], and the scheduling algorithm has no ability to dynamically tune

these priorities to have the desired effect on app throughput.

NVS sees a marked improvement in penalty, compared to both Single Slice and QoS.

However, the throughput penalties are still high, even at low loads (e.g., p95 penalty for 50

apps is 25%). This is because it optimizes for slice-level throughput instead of for app-level.

Zipper, by contrast, exhibits comparatively lower penalties at both p95 and p99.

Latency penalties

Fig. 4-12 shows the latency penalties (on a log-scale) for the same experiment. The Single

103

All apps (inlcuding best effort)

Apps with SLAs

0 50 100 150

0
50

100
150
200

0

200

400

600

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

Zipper Oracle NVS QoS Single Slice

Figure 4-13: Throughput for 75 apps + 20 best effort apps. Zipper meets the SLAs reliably,
and allocates excess capacity to best effort.

Slice policy delivers the worst latency penalties: it tends to favor bandwidth-intensive apps,

and thus, low bandwidth, latency-critical apps (e.g., v2x and voice) will suffer. These apps,

in particular, experiences latencies as high as 200 ms. QoS achieves around 40% lower

penalties than Single Slice at p95, since the QCI priorities allow the scheduler to explicitly

prioritize the latency-critical apps with higher QCI by scheduling them more frequently. This

is because NVS multiplexes slices over time, and, in each timestep, it gives all bandwidth to

the slice it chooses. Even if the switching interval is low, apps can go unscheduled for long

periods of times in configurations with many slices. Zipper, by contrast, maintains very low

latencies up to 150 apps, after which the base station starts to become oversubscribed.

Notice that Zipper’s performance is comparable to that of the Oracle. The difference in

the p95 penalty is <5% for fewer than 150 apps, which is consistent with our observations

when modeling the system (§4.2.1). The gap widens slightly at 200 apps, since the system

is more congested, and thus, assigning a suboptimal MCS would be more consequential. We

could incorporate more sophisticated channel predictors with Zipper in the future.

104

RAN utilization

Fig. 4-11 and Fig. 4-12 show that Zipper reliably delivers the connectivity requested by

each app. However, fulfilling SLAs for each app rather than for a slice in aggregate requires

more bandwidth. We conduct an experiment to measure how much spectrum or capacity

Zipper wastes at the expense of allocating resources to meet SLAs. Fig. 4-13 shows a

150-second time series snapshot of the aggregate RAN throughput achieved by Zipper and

the different baselines for 75 apps (+ 20 best effort apps). On top chart, we show the

throughput amongst the 75 apps that requested SLAs, and on the bottom chart, we plot

the total RAN throughput (including best effort). The dotted blue line shows the total

throughput requested by the 75 apps.

Zipper, Oracle, and NVS closely track the requested throughput at the level of slice—

providing reliable and consistent performance despite the wireless channels that each app

experiences. Single Slice and QoS fall about 18% below the target throughput. However, as

Fig. 4-11 shows, this drop translates to far worse in terms of throughput penalty.

When we include the best effort apps, we find that QoS and Single Slice indeed achieve the

highest total RAN throughput. NVS does not schedule the best effort apps because there is no

excess bandwidth when all bandwidth is allocated to a single slice in a given scheduling interval.

Zipper strikes a nice balance between these extremes: in addition to meeting requested SLAs,

Zipper utilizes spectrum about 50% better than NVS and 30% worse than Single Slice or QoS.

Scaling up slices

The experiments so far considered 6 slices—one for each app type. However, an operator

may choose to have multiple slices for the same app type, for e.g., if Zoom and Teams want

to isolate their traffic. Therefore, we would like Zipper to be invariant to the number of slices.

We run an experiment similar to the setup described above; we fix the number of apps at 100

and vary the number of slices. We still dedicate each slice to serving a unique app type, and

we randomly assign apps to slices when there are multiple slices of the same type. Fig. 4-14a

105

95th percentile 99th percentile

6 18 48 72 6 18 48 72
0

25

50

75

100

Number of Slices

T
pu

t P
en

al
ty

 (
%

)
Zipper NVS

(a) Throughput penalty

95th percentile 99th percentile

6 18 48 72 6 18 48 72
0

25

50

75

100

Number of SlicesLa
te

nc
y

P
en

al
ty

 (
%

) Zipper NVS

(b) Latency penalty

Figure 4-14: Zipper’s performance is invariant to the number of slices.

and Fig. 4-14b show the throughput and latency penalties, respectively, for Zipper and NVS.

NVS scales poorly with the number of slices. Since NVS does not multiplex slices across

frequency, slices get scheduled less frequently. Both penalties suffer with more slices, even

when the switching interval is short (i.e., 10 ms). By contrast, Zipper’s performance is

invariant to the number of slices, since it multiplexes slices across frequency and time.

4.4.4 Forecasting RAN Resource Availability

Setup

To evaluate this module, we consider a simple first-come-first-served (FCFS) policy that

admits incoming apps in the order that they arrive, as long as there is enough capacity to

accommodate them without violating SLAs for other apps. Specifically, from the distribution

P (§4.2.3), we admit an incoming app to its designated slice if the p95 bandwidth is within an

ϵ=5 MHz tolerance of the total bandwidth B, and assigns it to the best effort slice otherwise

(i.e., P <B+ϵ). Note that the specific policy does not matter for this evaluation; we only want

the policy to be consistent across different resource availability modules that we compare.

We compare against a “conditional” resource availability primitive: it (i) admits the

incoming app into a best effort slice, (ii) measures its throughput and latency penalties

for 10 seconds, and (iii) then admits in FCFS order if it incurs zero penalty or leaves it in

106

95th percentile 99th percentile

100 125 150 175 200 225 100 125 150 175 200 225
0

25

50

75

100

Number of Apps

T
pu

t P
en

al
ty

 (
%

)

Zipper (Conditional) Zipper (DNN) Zipper

Figure 4-15: Both the conditional and DNN-based resource estimation methods achieve
bounded (and low) penalties.

the best effort slice otherwise. This form of probing resource availability conditionally is

common in many admission control proposals [56, 68, 96]. Our goal is to evaluate if the

resource availability forecasts provided by Zipper’s DNN family yield better RAN utilization

than this “conditional” primitive. Both use Zipper to compute slice bandwidth schedules

in real-time. As in §4.4.3, we draw apps from the distribution in Table 4-9, and select app

arrival times and contract durations at random.

Bounded penalty

A good forecaster of resource availability should ensure that it can satisfy the SLAs of apps

that it has already admitted before committing to a new app. This amounts to ensuring

that the RAN maintains a bounded and low penalty, as more apps connect to the system.

Fig. 4-15 shows the 95th and 99th percentile throughput penalties for different numbers

of apps that try to connect to the RAN; the algorithm named “Zipper” uses no admission

controller. Notice that, by letting each incoming app experience the network, both methods

that use an admission control policy keep the penalties bounded, and, more importantly,

close to 0% at the 95th percentile.

107

0

25

50

75

100

100 125 150 175 200 225

Number of Apps

A
dm

it
R

at
e

(%
)

Conditional DNN

(a) Admit rate

0

100

200

300

50 100 150 200

Number of Apps

R
A

N
 T

pu
t (

M
bp

s)

Conditional DNN

(b) RAN utilization

Figure 4-16: Zipper’s DNN resource estimator achieves a higher admit rate and utilization
by squeezing in apps with lighter demand.

Admit rate

While the penalties are bounded, does the RAN have some unutilized capacity that it

could have allocated by admitting more apps? Fig. 4-16a compares the admit rates for

different resource availability modules. As we would expect, when the base station is not

congested (e.g., 100 apps), the admit rate is high (around 95%) for both the conditional

and DNN-based policies. However, as more apps join the system, the DNN policy has a

higher admit rate—about 15% higher for 225 apps. We observe similar trends for latency.

The policy that uses the “conditional admit” forecaster rejects apps too aggressively

because it conditions its decision on an app’s measured penalty in the best effort slice. At

higher loads, Zipper ends up allocating most—if not all—spectrum to slices serving apps

with SLAs. So Zipper allocates little bandwidth to the best effort slice, and the incoming

app receives infrequent air time in its initial 10 second sampling period. Its penalties are thus

high, and the controller has little confidence that the app can meet its requirements in the

target slice. Moreover, since we keep all rejected apps in the best effort slice, there is further

contention for air time, complicating our ability to project the incoming app’s performance.

The DNN’s admit rate is higher at greater load because it is able to differentiate between

different traffic types. For instance, the DNN infers that a voice app could still achieve its

light target throughput and latency because the slice’s MAC scheduler could accommodate

108

Zipper NVS

0 20 40 60 0 20 40 60
0.00

0.25

0.50

0.75

1.00

Runtime (ms)

C
um

. P
ro

ba
bi

lit
y

Apps 25 100 175

(a) Number of apps

Zipper NVS

0 20 40 60 0 20 40 60
0.00

0.25

0.50

0.75

1.00

Runtime (ms)

C
um

. P
ro

ba
bi

lit
y

Slices 6 18 72

(b) Number of slices

Figure 4-17: Runtime of Zipper and NVS. Even though Zipper involves more computation
than NVS, it is still practical for large workloads.

a new app without degrading the SLAs of the apps already admitted to that slice. By

contrast, the “conditional admit” mechanism has little data make this inference, since the

voice app gets little air time in a best effort slice.

RAN utilization

Aggressive resource availability forecasts can underutilize the RAN. Fig. 4-16b compares the

total RAN throughput for both estimators. Notice that the two methods diverge around

150 apps, after which the DNN can better pack more “lightweight” apps.

4.4.5 Microbenchmarks

We profile Zipper’s slice allocation and management overhead as we stress the system with

more apps and with more slices. For the traffic distribution listed in Table 4-9, we profile the

time it takes to compute the bandwidth allocations and MAC schedules. We compare Zipper

with NVS. Fig. 4-17 shows the results as a CDF of runtimes over all scheduling intervals

in each 3 minute experiment. The vertical black lines indicate the deadlines required to

operate in real time. Zipper, though more complex, reliably meets processing deadlines, as

the load increases with more apps or fewer slices (i.e., more apps per slice).

109

4.5 Discussion

Network APIs

Provisioning connectivity based on app SLAs creates new opportunities. For instance, a

developer can split their app into multiple data streams (e.g., audio, video, and sensory

for VR), and define SLAs independently for each one. Because Zipper internally estimates

network capacity to forecast resource availability, an operator using Zipper could create a

network API that exposes metrics like true network capacity to developers. This helps make

the network more transparent.

ML components

The ideal deployment for Zipper should have a V100 GPU. However, note that Zipper

is compatible with any channel predictor, and Fig. 4-6 shows that a simple EWMA pre-

dictor works reasonably well. Moreover, the DNNs in the resource availability estimator

are lightweight and do not have real-time deadlines, unlike channel prediction; if resource

constrained, operators could serve the DNN on a CPU.

Application adaptivity

An important benefit of the paradigm proposed by Zipper is that application developers

no longer need to stress about making their apps reactive to the network. By design, Zipper

seeks to provision the right amount of bandwidth so that each app experiences a relatively

static network. As a result, interactive and adaptive apps will no longer have to adapt to

changing network conditions.

110

4.6 Conclusion

We developed Zipper, the first 5G RAN slicing system for application-level service assurance.

Zipper formulates the scheduling problem with MPC and develops an efficient optimization

algorithm to compute SLA-compliant schedules in real-time. Zipper also introduces a prim-

itive to forecast RAN resource availability, with which operators can interface an admission

control policy. We implemented Zipper on a production-grade 5G vRAN testbed, adding

critical hooks to control slice bandwidths in real time. We evaluated Zipper extensively on

realistic workloads, our results showed that Zipper more reliably fulfills app-level SLAs than

do QoS schedulers and slice-level service assurance systems.

There several opportunities to extend Zipper. First, a promising future direction is to

co-optimize slicing across base stations to provide predictable performance to highly mobile

users. Second, we believe we can extend the formulation and optimization techniques we

developed to other SLA types, such as energy consumption and bit error rate. Finally,

we hope to explore robust economic models for admission control that build on Zipper’s

resource availability estimator.

111

112

Chapter 5

Conclusion

5.1 Summary

This thesis introduces a hierarchical design paradigm to build app-aware resource allocation

policies. Our key insight is that a two-level scheduler, where a higher-layer algorithm guides

the lower-layer platform scheduler without modifying the latter is the right structure to

balance app requirements and the efficiency targets for the system operators. We apply this

idea to build systems and algorithms in two domains:

• Mobius allocates tasks from different customers to vehicles in mobility platforms,

which are used for food and package delivery, ridesharing, and mobile sensing. Over

rounds, Mobius adjusts the inputs to a vehicle routing solver that maximizes task

completion throughput to guide the solver to compute schedules that are fair to

different customers using the platform. On a trace of Lyft rides in New York City,

Mobius computes max-min fair online schedules involving 200 vehicles and over 16,000

tasks, while achieving only 10% less throughput than a classical vehicle routing solver.

• Zipper is a radio resource scheduler that satisfies throughput and latency service-level

agreements for apps subscribing to a cellular base station. Zipper bundles apps into

network slices, and leverages classical schedulers that maximize base station throughput

113

to compute SLA-compliant resource schedules for each slice. We show that Zipper

reduces tail throughput and latency violations, measured as a ratio of the app’s request

by 9×, compared to traditional base station schedulers.

5.2 Future Work

Emerging app-level requirements

Both systems in this thesis focused on general metrics like throughput, fairness, and latency.

An interesting direction for future work is to extend both systems to consider emerging

metrics, such as jitter or power consumption for cellular networks, or rider wait times for

mobility platforms. The key challenge is to determine the right mapping from these metrics

to inputs into platform schedulers, keeping the rest of the proposed scheduling architecture

with throughput-maximizing platform schedulers intact.

Admission control as an architectural component

Zipper (Chapter 4) required an admission control module to reliable fulfill app-level ser-

vice requirements. However, forecasting resource availability for an incoming app is more

generally applicable to other mobile systems. For instance, food delivery operator using

Mobius could use a resource availability primitive to determine whether its vehicle fleet has

the capacity to accommodate the delivery requirements for a new restaurant that wants

to use the service. Future work includes abstracting the resource availability component

in Zipper as an architectural component in the two-level scheduler proposed in this thesis.

Monetization preferences

Both systems in this thesis consider performance metrics that affect the reliability and

usability of end applications. However, in real-world deployments, applications pay operators

for time on the system resources. Future work includes consider app-level objectives in

114

light of monetization preferences. For instance, an mobile sensing platform may price sensor

measurements, or a mobile network operator can charge apps based on bandwidth used in

a slice. How do we continue support app-level objectives, considering that different apps

may be willing to pay less or more for differentiated connectivity.

115

116

Appendix A

Mobius Appendix

117

A.1 Searching for α-Fair Allocation

§3.5 explains how Mobius generalizes its formulation to support a class of α-fair objectives.

Recall that, in each round, the target allocation is the allocation on the convex boundary with

the greatest utility Uα; Mobius finds the support allocations that are closest in utility to the

target allocation. In each stage of the search, Mobius uses Lagrange Multipliers to identify

the face containing the allocation that maximizes Uα. Specifically, for a face described by

the equation
∑

k∈Kwkxk = c, Mobius computes the allocation
(
x∗1,...,x

∗
|K|

)
with greatest

utility, subject to the constraint that it lies on the face. The Lagrangian can be written as:

L(x,λ)=Uα(x)−λ

(∑
k∈K

wkxk−c

)

where x∈R|K|. To find the utility-maximizing allocation x∗, we set ∇L=0, and solve for x∗:

∇L=

∂Uα

∂x∗1
−λw1

...

∂Uα

∂x∗k
−λwk

...

∂Uα

∂x∗|K|
−λw|K|∑

k∈Kwkx
∗
k−c

=0

Substituting ∂Uα/∂x
∗
k=(1/x∗k)

α, we get:

x∗k=(λwk)
−1/α (A.1)

To solve for λ, we substitute Equation (A.1) into the last element of ∇L:

λ=

[
c∑

k∈Kw
(1−1/α)
k

]−α
(A.2)

118

Algorithm 1 Mobius Scheduler
1: procedure RunMobius(α)
2: Initialize history x∈R|K|, with x=0
3: for each round do
4: i← InitFace() ▷ Use basis weights ek.
5: face← SearchBoundary(α, i)
6: x∗←argmax

x∈face
Uα(x+x)

7: Execute schedule with throughput x∗.
8: x←x+x∗

9: function SearchBoundary(α, face)
10: pext ← ExtendFace(face) ▷ Compute w for face; call VRP.
11: if pext exists then
12: for pface ∈ face do
13: candidate← {pext} + {p∈ face | p≠pface}
14: if OptInFace(α, candidate) then
15: return SearchBoundary(α, candidate)
16: else
17: return face
18: function OptInFace(α, face)
19: opt← ComputeOpt(α, face) ▷ Equation (A.1)
20: if opt lies within face then
21: return true
22: else
23: return false

Mobius computes x∗k for the |K| faces that arise from the most recent extension, and

identifies the one face that contains x∗k within the boundaries of its vertices. Mobius then

extends this face in the next stage. For example, in stage 2 in Fig. 3-6b, we compute x∗k for

faces AC and CB, and continue the search in stage 3 above AC because it contains the x∗k

(i.e., it intersects the y=x line).

A.2 Mobius Algorithm

Algorithm 1 provides pseudocode for Mobius’s scheduling algorithm. When a mobility

platform is initialized, Mobius starts executing the RunMobius() function, first initializing

the long-term average throughput x. In each round, it computes an initial face using the

|K| basis weights ek∀k∈K, where ek is a vector of zeros, with the k-th element set to 1.

119

This gives an initial allocation on every axis in the |K|-dimensional customer throughput.

Then Mobius runs the SearchBoundary() function to compute the face containing the

|K| support allocations around the target throughput. It chooses the allocation x∗ that

maximizes the total average throughput.

A.3 Optimality of Mobius

§3.4.3 provides intuition about the optimality of Mobius. We show the following results:

1. Mobius gives the optimal solution on the convex boundary in a round.

2. Assuming customer tasks stream in according to a static task arrival model (§3.4.3),

Mobius (i) is the optimal allocation on the convex boundary at the end of every around,

and (ii) converges to the target allocation with an error that decreases as O(1/T).

We provide formal mathematical proofs for both results below.

A.3.1 Mobius is Optimal in a Round

We denote H as the set of all possible allocations in a round. We show that for every

round, SearchBoundary() (Alg. 1, line 5) returns a face on the convex boundary of H

that maximizes the utility function Uα. The structure of the proof is as follows:

1. Lemma 1 and Corollary 1 identify that the maximizer of Uα on H is unique.

2. Lemma 2 shows that any point in the extensible region of a face will not lie above

other faces.

3. In Lemma 3, we note that extending faces that do not contain the utility maximizing

allocation for the stage results in a lower utility.

4. Finally, we piece together these ideas in Theorem 1 in order to prove the optimality

of SearchBoundary() over one round.

Lemma 1. For any convex polyhedron H∈Rn+, there is a unique point that maximizes Uα

for α∈(0,∞], and the maximum lies on the boundary of H.

120

Proof. Uα is strictly concave for any finite α. When maximizing a concave function over

a convex set, the optimum point is unique, the local maximum is the global maximum, and

the optimal point is on the boundary of H [15, Theorem 8.3].

Corollary 1. There exists exactly one candidate face at any stage of the convex boundary

(among all possible faces in Alg. 1, line 14) for which OptInFace() is true.

Proof. It follows from Lemma 1 that the optimal Uα over the current convex boundary is

unique. This means that exactly one face must have the optimal within its face.

Definition 1. A point p is said to be above (or below) a face described as
∑

k∈Kwkxk=c

if
∑

k∈Kwkpk>c (or
∑

k∈Kwkpk<c).

Lemma 2. Let f ∈F be a face among all candidate faces F during a given stage. Any

allocation resulting from an initial call to SearchBoundary(f) will never lie above any face

in F \{f}.

Proof. We prove this by contradiction. Suppose p was above two faces f and f̃ . Then there

will exist at least one support allocation x of face f̃ which could not have been found from

a previous call to ExtendFace(), and p would have been found instead of x. For example,

in Fig. 3-6a, any point above the extensible regions of AB and BC would contradict the

existence of B.

Thus, p cannot lie above more than one face. This argument is true for any subsequent

calls to SearchBoundary(), and any subsequent allocation obtained from extending a face

has to be below all other faces.

Lemma 3. Let p, contained in face fp, be the maximizer of Uα. The utility of any allocation

in the extensible region of a face f ≠fp will be lower than the utility at allocation p.

Proof. Since Uα is concave, and is maximized at point p on fp, the value of Uα will only

increase if evaluated at a point above fp. From Lemma 2, we know that every extension

of a face other than fp will be below fp, and thus have a lower utility than the current value

evaluated at p.

121

Theorem 1. In each round, SearchBoundary() returns the face on the convex boundary

that contains the allocation that maximize Uα.

Proof. In every round, SearchBoundary() iteratively extends the face that contains the

optimal Uα over all faces. Lemma 3 guarantees that any subsequent exploration of a face

required by SearchBoundary() will only increase Uα, while pruning out the search spaces

which cannot improve the solution. When maximizing a concave objective function over

a convex set, the local optimal is the global optimal. Therefore, the solution returned when

SearchBoundary() terminates is the maximum of Uα over H.

A.3.2 Mobius Converges to the Target Throughput

In our problem setting, customer tasks are only presented to Mobius for the current round,

and no knowledge of future task locations is assumed.1 In this section, we show an interesting

result: under the static task arrival model (§3.4.3), Mobius, although myopic, results in

allocations that are globally optimal. In other words, asymptotically, Mobius achieves the

same average throughput allocation that a utility-maximizing oracle, which jointly planned

over multiple rounds, would achieve.

Definition 2. A task distribution is said to be static if the set of throughput allocations

(denoted as H) is the same for all rounds.

Definition 3. The maximum of Uα over the convex boundary of H is defined as the optimal

long term throughput, and is denoted as x∗.

The set of all feasible average throughput allocations after t rounds is denoted as Ft. We

prove the following: (i) in every round, Mobius chooses the solution which maximizes Uα(x(t))

on the convex boundary of Ft, and (ii) x(t) converges to x∗ with an error that decreases as

1/t. For brevity, we consider the case with two customers (|K|=2). However, the intuition

and results generalize for any number of customers. The proof outline is as follows
1A greedy approach (discussed in App. A.4) would be a regret-free online algorithm for this planning

problem.

122

1. Lemma 4 and 5 characterize the evolution of the convex boundary

2. Lemma 6 proves that x∗ lies on this boundary.

3. Lemma 7 shows that Mobius is optimal at the end of any finite round t.

4. Finally, we prove asymptotic optimality and describe the rate of convergence in

Theorem 2.

Lemma 4. For any round t, the convex boundary of Ft remains constant.

Proof. The allocations in Ft are obtained by averaging the throughput obtained over t

rounds of H (see Fig. 3-4c). Since H is convex, any average of allocations in H will remain

the same boundary. Thus, the convex boundary of H and Ft are the same.

Lemma 5. At round t, each face of the convex boundary contains t−1 equidistant allocations.

Proof. Consider one face f in the convex boundary of H. From Lemma 4, we know that the

convex boundary of the average throughput at any subsequent round will remain the same

(see Fig. 3-4c). However, with subsequent rounds, linear combinations of two corner points

that constitute a face will create new allocations that lie along the same face. For example,

in Fig. 3-7b, the face BE gets “denser” with more allocations, as the number of rounds

increases. Remember that in every round, Mobius can only choose between throughput

allocations B or E to modify the average. In particular, by round t, n allocations of B and

m allocations of E result in an allocation BnEm= n
t
B+m

t
E, where n and m are integers.

Now, since there are t−1 possible combinations of n and m that sum up to t, we get t−1

equidistant allocations on the face.

Lemma 6. x∗ lies on the face in the convex boundary of H.

Proof. The maximizer of Uα in the long term searches over the convex boundary of H. Since

Uα is a concave function, and the search space is a convex set, x∗ must lie on the face of

the convex boundary (Lemma 1).

123

Support allocations

Face with steady-stateB

E

Bn+1Em-1

Bn+2Em-1

BnEm

BnEm = tput after
n B’s and m E’s

Round t
Round t+1

Optimal allocation at round t

BnEm+1

Bn+1Em

𝒙∗ Lower bound on utility
Utility function 𝑈𝛼

Possible transitions

Figure A-1: Proof setup for Lemma 7. The face BE is the same as in Fig. 3-7

Lemma 7. For any round t, Mobius finds the utility-maximal allocation on the convex

boundary of Ft.

Proof. We prove this by induction on the number of rounds. Theorem 1 proves the base

case, where t=1. Suppose Mobius finds the highest utility solution on the convex boundary

of Ft. We want to show that the schedule that Mobius computes (Algorithm 1) has the

highest utility on the convex boundary of Ft+1. We use the example in Fig. 3-7b to build

this argument. Suppose BnEm has the highest utility after t=n+m rounds. Without loss

of generality, we assume that the optimal allocation x∗ lies between BnEm and Bn+1Em−1

(rather than BnEm and Bn−1Em+1).

We now argue that Mobius chooses B or E appropriately at round t+1 to ensure that

the average throughput is the optimal at the end of round t+1. Figure A-1 illustrates the

setup for this proof.

Recall that Uα is a concave function. Thus, the utility function evaluated over the face

BE is also concave. This implies that (i) the utility at BnEm is higher than any allocation in

(BnEm,E], and (ii) the utility at Bn+1Em−1 is higher than any allocation in [B,Bn+1Em−1).

Also, since BnEm was the optimal solution at round t (by the inductive hypothesis), the

utility at BnEm is higher than the utility at Bn+1Em−1. Thus the utility for any allocation

124

in [Bn+1Em−1,BnEm] is lower bounded by the utility at Bn+1Em−1.

The above relations prove that in round t+1, Bn+2Em−1 can never have the highest

utility. Thus the optimal throughput on the convex boundary of Ft+1 is either Bn+1Em or

BnEm+1. This results in two cases:

• Bn+1Em is the optimal, in which case Mobius would choose allocation B for round

t+1 to reach the optimal.

• BnEm+1 is the optimal, in which case Mobius would choose allocation E for round

t+1 to reach the optimal.

Note that by eliminating Bn+2Em−1 as an optimal allocation, the two remaining candidates

can be reached by appropriately choosing B or E in round t+1. This concludes the induction

argument and proves the lemma.

Note that Lemma 7 proves that at the end of round t, Mobius not only reaches the best

allocation at the end of round t, but it also achieves the best allocation for each preceding

round before t.

Theorem 2. Mobius (i.e. Alg. 1) converges to x∗ such that the distance between x and x∗

decreases as O(1/t), where t is the number of rounds.

Proof. From Lemma 5, we know that at any round t there are t−1 feasible cumulative

allocations (excluding the extreme points) on a face, and that these allocations split the

face into equally-spaced segments of length ∝ 1
t
. Thus, the best allocation in Ft converges

to the optimal x∗ with an error that is bounded by O(1/t). Since Lemma 7 establishes that

Mobius chooses the optimal allocation in Ft, the result follows.

A.4 Greedy Heuristic to Maximize Uα

§3.4.4 describes how Mobius builds a suite of warm start schedules to assist the VRP solver

in maximizing a weighted sum of customer throughputs. Since Mobius is guided by a utility

125

function Uα (§3.5), we implement a heuristic that computes an α-fair schedule by performing

a greedy maximization of Uα. Note that this algorithm is not guaranteed to result in a

schedule on the convex boundary; we instead use it as an initial schedule to warm start the

VRP solver (§3.4.4).

The greedy heuristic uses the same formulation as the VRP (§3.1). It computes routes

for each vehicle v ∈ V subject to the budget constraints. Mobius constructs a schedule

iteratively; in each iteration, it executes two steps:

1. It constructs an α-fair path for each vehicle that meets the budget constraints by

trying to maximize Uα.

2. Then, it invokes a VRP solver with the tasks selected by the paths in (1), to build

a high throughput schedule to complete the fair allocation of tasks.

At the end of each iteration, it takes the VRP schedule generated by (2) and tries to squeeze

more tasks into the path, preserving fairness. It terminates when no new task can be added

according to the greedy optimization in step (1). It then runs the VRP one final time, with a

very high weight on the final set of α-fair tasks and lower weight on all other customer tasks, so

that it can pack the schedule with more tasks to achieve a schedule with high total throughput.

Intuitively, the iterations over steps (1) and (2) create the α-fair schedule with the

highest possible throughput, according to the greedy approximation. Then, with the final

packing step, we try to boost the throughput of the schedule by fulfilling any additional

tasks, without compromising the α-fair allocation we have already committed to.

Before starting to construct a path iteratively, we internally maintain the total number

of tasks hk currently fulfilled by the path, for each customer. To do a greedy maximization

of Uα in each iteration of constructing the path, we sort all customer tasks according to

the return-on-investment R for completing each task. Recall that Tk is the set of tasks

requested by customer k and B is the time budget for a round (§3.1). The new throughput

126

for customer k by fulfilling a task l∈Tk is xk=(hk+1)/B. We compute a task l∈Tk as:

R(l)=
Uα(x)−Uα(h)

c(m,l)
(A.3)

wherem is the last task in the path and c(·) is the cost to travel fromm to l. Then, to select the

next task l to add to the path we simply find the task with the greatest return-on-investment:

argmax
l∈Tk∀k∈K

R(l) (A.4)

A.5 Runtime of Mobius

In each round, Mobius uses an efficient algorithm to find support allocations near the target

allocation, without having to compute all corner points of the convex hull in each round.

This allows Mobius to invoke the VRP solver sparingly in order to find an allocation of

rates that steers the long-term rates toward the target. We report some highlights from

profiling Mobius in Table A-1. These results suggest that the computational overhead for

deploying Mobius would be negligible for many mobility applications.

Cust. # of Tasks # of Vehicles Round Duration (min) Runtime (s)
2 100 2 10 15
3 150 3 15 20
4 200 4 15 35
6 567 6 90 51
6 999 6 90 59
6 567 24 90 88
6 999 24 90 105

Table A-1: Performance of Mobius on different input sizes.

127

●

●

●

●

Map D

Map C

Map B

Map A

(a) Map of
tasks.

40

6

36 27.8

43

8

41 38.8

55

10
32

44.6

41 31.4 31
40.8

M
ap A

M
ap B

M
ap C

M
ap D

Max
Throughput

Round
Robin

Dedicated
Vehicles

Mobius
(Max−Min)

0
20
40
60

0
20
40
60

0
20
40
60

0
20
40
60

Scheduling Policy

A
vg

. T
hr

ou
gh

pu
t (

ta
sk

s/
ro

un
d)

Customer 1 Customer 2 Total

(b) Mobius vs. other schemes.

alpha = 1 alpha = 10 alpha = 100

M
ap A

M
ap B

M
ap C

M
ap D

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0
10
20
30
40

0
10
20
30
40

0

20

40

0
10
20
30
40

Round

A
vg

. T
hr

ou
gh

pu
t (

ta
sk

s/
ro

un
d)

(c) α-fair throughputs achieved by Mo-
bius.

Figure A-2: Comparing customer throughputs and platform throughput achieved by Mobius
and other schemes. Customer tasks stream in according to a static task arrival model.
Mobius consistently outperforms other schemes by striking a balance between throughput
and fairness.

A.6 Microbenchmarks

We evaluate Mobius on several microbenchmarks involving synthetic customer traces. We

vary (1) the spatial distribution of customer tasks, (2) the timescale at which tasks are

requested, and (3) the degree α to which a schedule is fair. Customers submit at most

40 tasks, each taking 10 seconds to fulfill, in any round. Between rounds, they renew any

fulfilled tasks at the same location. The travel time between any two nodes is based on

their Euclidean distance, assuming a constant travel speed of 10 m/s.

A.6.1 Robustness to Spatial Demand

We evaluate Mobius’s ability to deliver a fair allocation of customer throughputs, in the

presence of highly diverse spatial demand. We construct 4 very different maps (Fig. A-2a),

with 2 vehicles starting at ⊕. For this experiment, we assume that the customer tasks arrive

from a static task arrival model (§3.4.3): the vehicles make a round-trip in each round, and

customers renew any fulfilled tasks at the start of every round. Fig. A-2b shows the average

128

●

●

●

Mobius, Round 1 Mobius, Round 2 Mobius, Round 3

Max Throughput Round Robin Dedicated Vehicles

Vehicle 1 Vehicle 2 ● Start Cust. 1 Cust. 2

Figure A-3: Snapshot of per-round schedules computed by Mobius (for 3 rounds) and other
policies. Mobius compensates for short-term unfairness by switching between schedules on
the convex hull over rounds. Other schemes suffer from persistent bias or low throughput.

per-customer and total throughputs achieved by different schemes after 50 rounds.

For all maps, Mobius (with max-min fairness) indeed provides a fair allocation of average

customer throughputs. The other baseline schedules exhibit variable performance depending

on the task distribution. For example, in Map A, both max throughput and dedicating

vehicles achieve dismal fairness. The max throughput schedule only serves customer 1’s

cluster, and dedicating a vehicle to customer 2 cannot deliver a fair share of throughput,

given the round-trip budget constraints. When customers’ tasks overlap and have similar

spatial density (Map D), the max throughput schedule provides a roughly fair allocation

of rates, and the round-robin schedule achieves reasonably high throughput. Dedicating

vehicles suffers from poor throughput when there is an incentive to pool tasks from multiple

customers into a single vehicle (Map B and Map C).

Focusing on Map A. To illustrate how Mobius converges to fair per-customer alloca-

tions without significantly degrading platform throughput, we show in Fig. A-3 schedules

129

computed for Map A (Fig. A-2a). On the top row, we show max throughput, round-robin,

and dedicated schedules; on the bottom row, we show schedules computed by Mobius over

3 consecutive rounds. In round 1, Mobius exploits a sharing incentive to pool some of

customer 1’s tasks into the journey to customer 2’s tasks, achieving a similar throughput to

the max throughput schedule. By contrast, the max throughput schedule starves customer

2, and the round-robin schedule wastes time moving between clusters.

Mobius is able to compensate for short-term unfairness across multiple rounds of

scheduling. Fig. A-3 shows the first 3 schedules that Mobius computed for max-min fairness,

assuming fulfilled tasks reappear, as before. Although Mobius does not starve customer 2 in

round 1, it still delivers 4× higher throughput to customer 1. However, as we see in round

2, Mobius compensates for this unfairness by prioritizing customer 2, while still exploiting

sharing incentive and collecting a few tasks for customer 1 during the round trip. The

schedule in round 3 is identical to that in round 1; since tasks arrive according to a static

model in this example, the convex hull remains the same across rounds, and so Mobius

oscillates between the same two support allocations (schedules). The max throughput and

dedicated schedules suffer from a persistent bias in throughput (Fig. A-2b) due to the skew

in spatial demand.

A.6.2 Expressive Schedules with α

Mobius’s α parameter allows the platform operator to control fairness; with higher α, the

platform trades off some total throughput for a fairer allocation of per-customer rates.

Fig. A-2c shows, for three different values of α, the long-term throughput for each customer

and the platform throughput over time. For all maps (Fig. A-2a), as we increase the degree of

fairness α, Mobius compromises some platform throughput. Mobius’s scheduler is expressive;

for instance, if an operator would like high throughput, with the only constraint that no

customer gets starved, she can run Mobius with α= 1, which ensures a proportionally

fair allocation of throughputs. Map A shows an example of this. Furthermore, Mobius

130

round = 5 min round = 7.5 min round = 15 min

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
1.75
2.00
2.25
2.50
2.75

Time (min)

A
vg

. T
pu

t
(t

as
ks

/m
in

)

Customer 1 Customer 2

Figure A-4: Mobius converges to the fair allocation of throughputs regardless of the
timescale of fairness. Scheduling in shorter rounds converges faster to the fair allocation of
rates, but longer round durations lead to schedules with greater platform throughput.

indeed converges to the target throughput (§3.4.3); this is best illustrated with the max-min

schedules, where the customer throughputs converge to the same rate. Mobius can also

converge to any allocation of rates in the spectrum between maximum throughput and

max-min fairness (e.g., α=10).

A.6.3 Timescale of Fairness

The duration of a round in Mobius is a parameter; for instance, an operator could set the

round length to be the vehicles’ fuel time, or the desired timescale of fairness. We expect

that, with shorter durations, Mobius can converge faster to a fair allocation. To study this

behavior, we consider, in Fig. A-4, max-min fair schedules generated by Mobius on Map A.

We consider three round durations (5 mins, 7.5 mins, and 15 mins), requiring the vehicles

to return home every 15 minutes, as before. There are three interesting takeways. First, for

all round durations, Mobius provides an equal allocation of rates to both customers. Second,

we see that Mobius achieves lower platform throughput for shorter round durations; this

is because schedules computed at shorter timescales are more myopic. Third, shorter round

durations allow Mobius to converge to faster to an equal allocation rates. In particular, we

see that Mobius at a 5-min timescale achieves the fair allocation within 150 minutes, but at

a 15-min timescale, it takes nearly 400 minutes to converge. Thus, the timescale of fairness

131

●

●●

●●

●

●●●

●

●
●●●

●●

●

●

●●●●●

●

Map C Map D

Map A Map B

0 10 20 30 40 0 10 20 30 40

0

10

20

30

40

0

10

20

30

40

Cust. 1 Tput (tasks/round)

C
us

t.
2

T
pu

t (
ta

sk
s/

ro
un

d)

Figure A-5: Convex boundaries computed by Mobius for the different maps shown in
Fig. A-2a. The shape of the convex boundary describes the inherent tradeoff between
fairness and high throughput.

of fairness allows an operator to trade some total platform throughput for faster convergence.

Additionally, the schedules generated with 5-min and 7.5 min timescales do not observe

the static task arrival assumption (§3.4.3). Since the vehicles begin some rounds away from

their start locations, the convex hull changes across rounds. Still, Mobius is robust in this

setting and provides very similar rates to both customers. The case studies (§3.6.2-§3.6.3)

provide more realistic examples where the static task arrival assumption is relaxed.

A.6.4 Geometry of the Convex Boundary

Mobius finds an approximately fair schedule in each round by constructing corner points of

the convex boundary. The convex boundary of achievable throughputs succinctly captures

the tradeoffs between servicing different customers, based on their spatial demand. Fig. A-5

shows the convex boundaries for four different maps of tasks (shown in Fig. A-2a). We

132

14.6

38.8

59.7
75.6

0

20

40

60

80

1 2 3 4

Number of Vehicles

A
vg

. T
pu

t
(t

as
ks

/r
ou

nd
)

Customer 1 Customer 2 Total

Figure A-6: Long-term per-customer rates computed by Mobius on Map D in Fig. A-2a,
for different provisioning of vehicles.

construct the convex boundary using an extended version of Mobius’s search boundary.

Specifically instead of searching the face containing the utility optimum on the current

convex boundary, we search all faces, i.e., extend the convex boundary in all directions.

The terminating conditions remain the same: we know we have reached face on the convex

boundary when we cannot extend it further.

The geometry of the convex boundary indicates which customers the platform can service

more easily. For instance, notice that the boundaries for Map A and Map C are both skewed

toward customer 1, since the platform incurs less overhead to service both customers. In

contrast, the convex boundary for Map D is symmetric, since each customer is equally easy

to service.

A.6.5 Varying the Number of Vehicles

The results in §3.6 show that dedicating vehicles can (i) miss out on sharing incentive,

leading to lower platform throughput, and (ii) lead to unfairness in situations where it is

inherently harder to service some customers. However, dedicating vehicles is only a viable

policy when the number of vehicles is a multiple of the number of customers. Mobius makes

no assumptions about the number of vehicles in the mobility platform; in this section, we

study the performance of Mobius in a mobility platform with different numbers of vehicles.

133

●

Dedicated
Vehicles

Mobius
(alpha = 10)

Mobius
(alpha = 100)

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
5

10
15
20

Round

Av
g.

 T
pu

t
(ta

sk
s/

ro
un

d)

Customer 1 Customer 2 Customer 3

Figure A-7: Mobius vs. dedicating vehicles for example with 3 customers. Mobius converges
to a fair allocation of rates for customers, when the assumption on static task arrival is
relaxed.

Fig. A-6 shows the per-customer average throughputs xk(t) achieved by Mobius (for

max-min fairness) on Map B (Fig. A-2a) for different numbers of vehicles. In all cases,

Mobius converges to a max-min fair allocation of rates. As expected, the throughput of the

platform increases with more vehicles, since the platform can complete more in parallel.

A.6.6 A Case with Three Customers

§A.6 showed a controlled study of the properties of Mobius, in environments with two

customers. Fig. A-7 shows an example with three customers and three vehicles, all starting

at ⊕. We let customers renew fulfilled tasks after every round. We consider a fairness

timescale of 5 minutes, and require that the vehicles return home every 15 minutes (i.e.,

3 rounds); so we relax the assumption on static task arrival, i.e., the convex boundary

is identical every 3 rounds. Fig. A-7 shows time series chart of per-customer long-term

throughputs achieved by Mobius (for α=10 and α=100) and by dedicating vehicles. The

schedule that dedicates vehicles to customers misses out on the opportunity to fulfill tasks

for customer 1 on the way to customer 3’s cluster. Additionally, notice that Mobius can

134

provide a fair allocation of rates for 3 customers, and α allows Mobius to control the degree

to which the rates converge to the same value.

135

136

Appendix B

Zipper Appendix

B.1 Allocating Slice Bandwidth in Zipper

B.1.1 Forecasting the Wireless Channel with an RNN

G
R

U

-1000 ms 150 ms

Output
SNR

Input SNR

G
R

U

G
R

U G
R

U

G
R

U

…
…

Decoder Cell
Encoder Cell

State

current time

Predict next 150 ms
using measurements
from past 1 second.

Figure B-1: Architecture of RNN model to forecast wireless channel.

To forecast each user’s channel, we train a sequence-to-sequence Recurrent Neural Network

(RNN) [105], which uses an input sequence of SNR measurements over the last 1 second to

predict a sequence of SNR measurements over the next 150 milliseconds. Each RNN cell is a

Gated Recurrent Unit (GRU) [31], a lightweight mechanism that learns both short-term and

long-term trends in a signal. GRUs are popular in temporal prediction tasks, like time-series

prediction [63] and natural language models [126]. Zipper’s RNN model includes two types

of GRU cells—encoder and decoder—allowing the model to develop two distinct skills: (i)

to build a model of the current state by looking at past values and (ii) to understand the

current state to predict future values. Our implementation uses 50 hidden neurons in each

layer of the encoder and decoder. Fig. B-1 illustrates the architecture of this RNN.

137

RNNs are emerging a popular method to forecast timeseries, including wireless chan-

nel [69, 79, 83, 91]. We develop and train a model, but note that Zipper can support any

predictor of wireless channel. §4.2.1 characterizes the requirements for suitable predictor.

B.1.2 Monotonicity of Throughput and Latency

An app’s instantaneous RAN throughput depends on (i) the number of resource blocks it

is allocated in each slot and (ii) the MCS scheme used to modulate data onto those resource

blocks [9, 77]. If a scheduler assigns an app more resource blocks (i.e., bandwidth) in a

slot, then the app will experience a higher throughput. Therefore, app throughput is a

monotonically-increasing function of slice bandwidth.

§4.2.2 explains how latency is a monotonically-decreasing function of slice bandwidth.

The intuition is that adding more bandwidth to a slice gives the scheduler more space to

fit packets for an app and therefore reduce its latency.

B.1.3 Algorithm

Algorithm 2 specifies (in pseudocode) how Zipper computes slice bandwidth allocations.

SearchBandwidth() is a recursive function that evaluates candidate bandwidths, pruning

the search space with binary search, using the property that app throughput and latency

vary monotonically with slice bandwidth.

B.2 Estimating Resource Availability in Zipper

B.2.1 DNN Architecture

Zipper builds a family of DNNs to estimate resource availability. Each DNN caters to

different slice types. The input embedding consists of (i) the number of apps in the slice

(including the incoming app, if applicable) and (ii) the number of apps in each SNR bucket.

138

Algorithm 2 Allocating slice bandwidth in Zipper
1: procedure Zipper
2: for each scheduling round t do
3: for slice s∈S do
4: Bs← FindBandwidth(s, B)
5: Resolve conflict if

∑
s∈SBs>B

6: Update app xa(t) and da(t) and run MAC/PHY
7: function FindBandwidthSlice(s, B)
8: Grab snapshot of app queues, throughput, and latency from s
9: Forecast SNR for apps in s

10: return SearchBandwidth(s, 0, B, NULL)
11: function SearchBandwidth(s, Bmin, Bmax, best)
12: B̃s←(Bmin+Bmax)/2 ▷ Find midpoint bandwidth.
13: schedule← RunMac(s, B̃s)
14: throughput ← IsThroughputValid(schedule)
15: latency← IsLatencyValid(schedule)
16: if throughput ∧ latency then
17: best = B̃s ▷ Save best bandwidth.
18: decrease = true
19: if B̃s≤Bmin or B̃s≥Bmax then
20: return best
21: if decrease then
22: return SearchBandwidth(s, Bmin, B̃s, best)
23: else
24: return SearchBandwidth(s, B̃s, Bmax, best)

There are four possible SNR buckets.

Each DNN is a fully-connected network with 5 hidden layers, ranging from 512 to 10

neurons. The final layer has 7 output values for different percentiles of the probability

distribution, i.e., p10, p25, p50, p75, p90, p95, p99.

139

140

Bibliography

[1] Adafruit. Pm2.5 air quality sensor. https://learn.adafruit.com/pm25-air-quality-sensor.

[2] Anwer Al-Dulaimi, Xianbin Wang, and Chih-Lin I. Network Slicing for 5G Networks,
pages 327–370. John Wiley & Sons, New Jersey, USA, 2018.

[3] Robert S. Allison, Joshua M. Johnston, Gregory Craig, and Sion Jennings. Airborne
optical and thermal remote sensing for wildfire detection and monitoring. Sensors,
16(8):1310, 2016.

[4] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and
Daniela Rus. On-demand high-capacity ride-sharing via dynamic trip-vehicle
assignment. Proc. Natl. Acad. Sci. USA, 114(3):462–467, 2017.

[5] Altran. Capgemini altran. Technical report, Capgemini, 2023.

[6] Akarshani Amarasinghe, Chathura Suduwella, Charith Elvitigala, Lasith Niroshan,
Rangana Jayashanka Amaraweera, Kasun Gunawardana, Prabash Kumarasinghe,
Kasun De Zoysa, and Chamath Keppetiyagama. A machine learning approach for
identifying mosquito breeding sites via drone images. In M. Rasit Eskicioglu, editor,
Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems,
SenSys 2017, Delft, Netherlands, November 06-08, 2017, pages 68:1–68:2. ACM, 2017.

[7] Sihem Bakri, Pantelis A. Frangoudis, Adlen Ksentini, and Maha Bouaziz. Data-driven
RAN slicing mechanisms for 5G and beyond. IEEE Transactions on Network and
Service Management, 18(4):4654–4668, 2021.

[8] Egon Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636,
1989.

[9] Arjun Balasingam, Manu Bansal, Rakesh Misra, Kanthi Nagaraj, Rahul Tandra, Sachin
Katti, and Aaron Schulman. Detecting if LTE is the bottleneck with bursttracker.
In The 25th Annual International Conference on Mobile Computing and Networking,
MobiCom ’19, New York, NY, USA, 2019. Association for Computing Machinery.

[10] Arjun Balasingam, Karthik Gopalakrishnan, Radhika Mittal, Venkat Arun,
Ahmed Saeed, Mohammad Alizadeh, Hamsa Balakrishnan, and Hari Balakrishnan.

141

https://learn.adafruit.com/pm25-air-quality-sensor

Throughput-fairness tradeoffs in mobility platforms. https://arxiv.org/abs/2105.11999,
2021.

[11] Arjun Balasingam, Karthik Gopalakrishnan, Radhika Mittal, Venkat Arun,
Ahmed Saeed, Mohammad Alizadeh, Hamsa Balakrishnan, and Hari Balakrishnan.
Throughput-fairness tradeoffs in mobility platforms. In Proceedings of the 19th Annual
International Conference on Mobile Systems, Applications, and Services, MobiSys
’21, page 363–375, New York, NY, USA, 2021. Association for Computing Machinery.

[12] Arjun Balasingam, Manikanta Kotaru, and Paramvir Bahl. Application-level service
assurance with 5G RAN slicing. In Proceedings of the 21st USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2024, Santa Clara, CA, USA,
April 16-18, 2024. USENIX Association, 2024.

[13] Manu Bansal, Aaron Schulman, and Sachin Katti. Atomix: A framework for
deploying signal processing applications on wireless infrastructure. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15), pages
173–188, Oakland, CA, May 2015. USENIX Association.

[14] Nimantha Baranasuriya, Vishnu Navda, Venkata N. Padmanabhan, and Seth Gilbert.
QProbe: Locating the bottleneck in cellular communication. In Proceedings of the 11th
ACM Conference on Emerging Networking Experiments and Technologies, CoNEXT
’15, New York, NY, USA, 2015. Association for Computing Machinery.

[15] Amir Beck. Introduction to Nonlinear Optimization: Theory, Algorithms, and
Applications with MATLAB, chapter Chapter 8: Convex Optimization, pages 147–168.
SIAM, 2014.

[16] Dimitris Bertsimas, Patrick Jaillet, and Sébastien Martin. Online vehicle routing:
The edge of optimization in large-scale applications. Oper. Res., 67(1):143–162, 2019.

[17] Dimitris J. Bertsimas. A vehicle routing problem with stochastic demand. Oper.
Res., 40(3):574–585, 1992.

[18] Leonardo Bonati, Salvatore D’Oro, Stefano Basagni, and Tommaso Melodia. Scope:
An open and softwarized prototyping platform for nextg systems. In Proceedings
of the 19th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’21, page 415–426, New York, NY, USA, 2021. Association for
Computing Machinery.

[19] Stephen Boyd and Lieven Vandenberghe. Convex Optimization, chapter Convex Sets,
page 21–66. Cambridge University Press, 2004.

[20] Stephen Boyd and Lieven Vandenberghe. Convex Optimization, chapter Convex
Optimization Problems, pages 146–148. Cambridge University Press, 2004.

142

https://arxiv.org/abs/2105.11999

[21] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[22] Anton Braverman, J. G. Dai, Xin Liu, and Lei Ying. Empty-car routing in ridesharing
systems. Oper. Res., 67(5):1437–1452, 2019.

[23] Nishant Budhdev, Raj Joshi, Pravein Govindan Kannan, Mun Choon Chan, and
Tulika Mitra. Fsa: Fronthaul slicing architecture for 5G using dataplane programmable
switches. In Proceedings of the 27th Annual International Conference on Mobile
Computing and Networking, MobiCom ’21, page 723–735, New York, NY, USA, 2021.
Association for Computing Machinery.

[24] Pablo Caballero, Albert Banchs, Gustavo de Veciana, and Xavier Costa-Pérez.
Multi-tenant radio access network slicing: Statistical multiplexing of spatial loads.
IEEE/ACM Transactions on Networking, 25(5):3044–3058, 2017.

[25] Pablo Caballero, Albert Banchs, Gustavo de Veciana, Xavier Costa-Pérez, and Arturo
Azcorra. Network slicing for guaranteed rate services: Admission control and resource
allocation games. IEEE Transactions on Wireless Communications, 17(10):6419–6432,
2018.

[26] Zizheng Cao, Qian Ma, Adrianus Bernardus Smolders, Yuqing Jiao, Michael J.
Wale, Chin Wan Oh, Hequan Wu, and Antonius Marcellus Jozef Koonen. Advanced
integration techniques on broadband millimeter-wave beam steering for 5G wireless
networks and beyond. IEEE Journal of Quantum Electronics, 52(1):1–20, 2016.

[27] Francesco Capozzi, Giuseppe Piro, Luigi Alfredo Grieco, Gennaro Boggia, and Pietro
Camarda. Downlink packet scheduling in LTE cellular networks: Key design issues
and a survey. IEEE communications surveys & tutorials, 15(2):678–700, 2012.

[28] Mohammed Chahbar, Gladys Diaz, Abdulhalim Dandoush, Christophe Cérin, and
Kamal Ghoumid. A comprehensive survey on the E2E 5G network slicing model.
IEEE Transactions on Network and Service Management, 18(1):49–62, 2020.

[29] Chia-Yu Chang and Navid Nikaein. RAN runtime slicing system for flexible and
dynamic service execution environment. IEEE Access, 6:34018–34042, 2018.

[30] Yongzhou Chen, Ruihao Yao, Haitham Hassanieh, and Radhika Mittal. Channel-aware
5G RAN slicing with customizable schedulers. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23), 2023.

[31] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
RNN encoder–decoder for statistical machine translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1724–1734, Doha, Qatar, October 2014. Association for Computational Linguistics.

143

[32] NYC Taxi & Limousine Commission. Taxi & limousine commission - homepage.
https://www1.nyc.gov/site/tlc/index.page.

[33] NYC Taxi & Limousine Commission. TLC trip record data. https :
//www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

[34] Estefania Coronado and Roberto Riggio. Flow-based network slicing: Mapping
the future mobile radio access networks. In 2019 28th International Conference on
Computer Communication and Networks (ICCCN), pages 1–9, 2019.

[35] Intel Corporation. FlexRAN reference architecture for wireless. https://www.intel.com/
content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html, 2022.

[36] Xavier Costa-Pérez, Joerg Swetina, Tao Guo, Rajesh Mahindra, and Sampath
Rangarajan. Radio access network virtualization for future mobile carrier networks.
IEEE Communications Magazine, 51(7):27–35, 2013.

[37] X. de Foy. Network slicing – 3GPP use case. Technical report, Internet Engineering
Task Force, 2017.

[38] Alan J. Demers, Srinivasan Keshav, and Scott Shenker. Analysis and simulation
of a fair queueing algorithm. In Lawrence H. Landweber, editor, SIGCOMM ’89,
Proceedings of the ACM Symposium on Communications Architectures & Protocols,
Austin, TX, USA, September 19-22, 1989, pages 1–12. ACM, 1989.

[39] Ashutosh Dhekne, Ayon Chakraborty, Karthikeyan Sundaresan, and Sampath
Rangarajan. TrackIO: Tracking first responders inside-out. In Jay R. Lorch and
Minlan Yu, editors, 16th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2019, Boston, MA, February 26-28, 2019, pages 751–764.
USENIX Association, 2019.

[40] Jian Ding, Rahman Doost-Mohammady, Anuj Kalia, and Lin Zhong. Agora: Real-
Time Massive MIMO Baseband Processing in Software, page 232–244. Association
for Computing Machinery, New York, NY, USA, 2020.

[41] DJI. DJI - official website. https://www.dji.com/.

[42] DJI. Flame wheel ARF kit: Multirotor flying platform for entertaining and amateur
ap. https://www.dji.com/flame-wheel-arf.

[43] Jon Dugan, Seth Elliott, Bruce A. Mah, Jeff Poskanzer, and Kaustubh Prabhu. Iperf.
https://iperf.fr/, 2022.

[44] Yvan Dumas, Jacques Desrosiers, and François Soumis. The pickup and delivery prob-
lem with time windows. European Journal of Operational Research, 54(1):7–22, 1991.

144

https://www1.nyc.gov/site/tlc/index.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.dji.com/
https://www.dji.com/flame-wheel-arf
https://iperf.fr/

[45] Ericsson. Ericsson mobility report. Technical report, Ericsson, 2021.

[46] Jonathan C. Las Fargeas, Pierre T. Kabamba, and Anouck R. Girard. Cooperative
surveillance and pursuit using unmanned aerial vehicles and unattended ground
sensors. Sensors, 15(1):1365–1388, 2015.

[47] FlytBase. Flytos: Operating system for drones. https://flytbase.com/flytos/.

[48] Xenofon Foukas, Mahesh K. Marina, and Kimon Kontovasilis. Orion: RAN slicing for
a flexible and cost-effective multi-service mobile network architecture. In Proceedings
of the 23rd Annual International Conference on Mobile Computing and Networking,
MobiCom ’17, page 127–140, New York, NY, USA, 2017. Association for Computing
Machinery.

[49] Xenofon Foukas, Bozidar Radunovic, Matthew Balkwill, and Zhihua Lai. Taking 5G
RAN analytics and control to a new level. In Technical Report, December 2022.

[50] Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control:
Theory and practice—a survey. Automatica, 25(3):335–348, 1989.

[51] Krishna C. Garikipati, Kassem Fawaz, and Kang G. Shin. RT-OPEX: Flexible
scheduling for cloud-RAN processing. In Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and Technologies, CoNEXT ’16,
page 267–280, New York, NY, USA, 2016. Association for Computing Machinery.

[52] Yasaman Ghasempour, Muhammad Kumail Haider, and Edward W. Knightly.
Decoupling beam steering and user selection for mu-mimo 60-ghz wlans. IEEE/ACM
Transactions on Networking, 26(5):2390–2403, 2018.

[53] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and
Ion Stoica. Dominant resource fairness: Fair allocation of multiple resource types.
In David G. Andersen and Sylvia Ratnasamy, editors, Proceedings of the 8th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2011, Boston,
MA, USA, March 30 - April 1, 2011. USENIX Association, 2011.

[54] B.L. Golden, S. Raghavan, and E.A. Wasil. The Vehicle Routing Problem: Latest
Advances and New Challenges. Operations Research/Computer Science Interfaces
Series. Springer US, 2008.

[55] Google, Inc. Google maps platform | distance matrix api. https :
//developers.google.com/maps/documentation/distance-matrix/overview, 2020.

[56] Tao Guo and Alberto Suárez. Enabling 5G RAN slicing with edf slice scheduling.
IEEE Transactions on Vehicular Technology, 68(3):2865–2877, 2019.

145

https://flytbase.com/flytos/
https://developers.google.com/maps/documentation/distance-matrix/overview
https://developers.google.com/maps/documentation/distance-matrix/overview

[57] Tao Guo and Alberto Suárez. Enabling 5G RAN slicing with edf slice scheduling.
IEEE Transactions on Vehicular Technology, 68(3):2865–2877, 2019.

[58] Gurobi Optimization, LLC. Gurobi optimizer reference manual. http :
//www.gurobi.com", 2020.

[59] Songtao He, Favyen Bastani, Arjun Balasingam, Karthik Gopalakrishnan, Ziwen
Jiang, Mohammad Alizadeh, Hari Balakrishnan, Michael J. Cafarella, Tim Kraska,
and Sam Madden. Beecluster: drone orchestration via predictive optimization. In Eyal
de Lara, Iqbal Mohomed, Jason Nieh, and Elizabeth M. Belding, editors, MobiSys
’20: The 18th Annual International Conference on Mobile Systems, Applications, and
Services, Toronto, Ontario, Canada, June 15-19, 2020, pages 299–311. ACM, 2020.

[60] Alexander Van’t Hof and Jason Nieh. Androne: Virtual drone computing in the cloud.
In George Candea, Robbert van Renesse, and Christof Fetzer, editors, Proceedings
of the Fourteenth EuroSys Conference 2019, Dresden, Germany, March 25-28, 2019,
pages 6:1–6:16. ACM, 2019.

[61] Robert V Hogg and Allen T Craig. Introduction to mathematical statistics.(5""
edition). Englewood Hills, New Jersey, 1995.

[62] Yan Huang, Shaoran Li, Y. Thomas Hou, and Wenjing Lou. Gpf: A gpu-based
design to achieve 100 µs scheduling for 5G nr. In Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking, MobiCom ’18, page
207–222, New York, NY, USA, 2018. Association for Computing Machinery.

[63] Michael Hüsken and Peter Stagge. Recurrent neural networks for time series
classification. Neurocomputing, 50:223–235, 2003.

[64] Chih-Lin I and Sachin Katti. O-RAN: Towards an open and smart RAN. Technical
report, Open RAN Alliance, 2018.

[65] IBM. Ibm cplex optimizer. https://www.ibm.com/analytics/cplex-optimizer, 2021.

[66] European Telecommunications Standards Institute. Physical layer procedures for
data. ETSI 3rd Generation Partnership Project (3GPP), 06 2018.

[67] European Telecommunications Standards Institute. System Architecture for the 5G
System. ETSI 3rd Generation Partnership Project (3GPP), 06 2018.

[68] Menglan Jiang, Massimo Condoluci, and Toktam Mahmoodi. Network slicing
management & prioritization in 5G mobile systems. In European Wireless 2016; 22th
European Wireless Conference, pages 1–6, 2016.

146

http://www.gurobi.com"
http://www.gurobi.com"
https://www.ibm.com/analytics/cplex-optimizer

[69] Wei Jiang and Hans Dieter Schotten. Deep learning for fading channel prediction.
IEEE Open Journal of the Communications Society, 1:320–332, 2020.

[70] Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi. Multi-objective vehicle
routing problems. Eur. J. Oper. Res., 189(2):293–309, 2008.

[71] Vijay Karamcheti and Andrew A Chien. A hierarchical load-balancing framework for
dynamic multithreaded computations. In SC’98: Proceedings of the 1998 ACM/IEEE
Conference on Supercomputing, pages 6–6. IEEE, 1998.

[72] Mohammad T Kawser, Nafiz Imtiaz Bin Hamid, Md Nayeemul Hasan, M Shah Alam,
and M Musfiqur Rahman. Downlink snr to cqi mapping for different multipleantenna
techniques in lte. International journal of information and electronics engineering,
2(5):757, 2012.

[73] Frank Kelly. Fairness and stability of end-to-end congestion control. Eur. J. Control,
9(2-3):159–176, 2003.

[74] Frank P. Kelly, A. K. Maulloo, and David Kim Hong Tan. Rate control for
communication networks: shadow prices, proportional fairness and stability. J. Oper.
Res. Soc., 49(3):237–252, 1998.

[75] Behnam Khodapanah, Ahmad Awada, Ingo Viering, David Oehmann, Meryem
Simsek, and Gerhard P. Fettweis. Fulfillment of service level agreements via slice-aware
radio resource management in 5G networks. In 2018 IEEE 87th Vehicular Technology
Conference (VTC Spring), pages 1–6, 2018.

[76] Ravi Kokku, Rajesh Mahindra, Honghai Zhang, and Sampath Rangarajan. Nvs:
A substrate for virtualizing wireless resources in cellular networks. IEEE/ACM
Transactions on Networking, 20(5):1333–1346, 2012.

[77] Swarun Kumar, Ezzeldin Hamed, Dina Katabi, and Li Erran Li. LTE radio analytics
made easy and accessible. SIGCOMM Comput. Commun. Rev., 44(4):211–222, aug
2014.

[78] HyunJong Lee, Shadi Noghabi, Brian Noble, Matthew Furlong, and Landon Cox.
Bumblebee: Application-aware adaptation for edge-cloud orchestration. In Symposium
on Edge Computing. ACM/IEEE, December 2022.

[79] Jinsung Lee, Sungyong Lee, Jongyun Lee, Sandesh Dhawaskar Sathyanarayana,
Hyoyoung Lim, Jihoon Lee, Xiaoqing Zhu, Sangeeta Ramakrishnan, Dirk Grunwald,
Kyunghan Lee, and Sangtae Ha. Perceive: Deep learning-based cellular uplink
prediction using real-time scheduling patterns. In Proceedings of the 18th International
Conference on Mobile Systems, Applications, and Services, MobiSys ’20, page 377–390,
New York, NY, USA, 2020. Association for Computing Machinery.

147

[80] Junling Li, Weisen Shi, Peng Yang, Qiang Ye, Xuemin Sherman Shen, Xu Li, and
Jaya Rao. A hierarchical soft RAN slicing framework for differentiated service
provisioning. IEEE Wireless Communications, 27(6):90–97, 2020.

[81] Xin Li, Chengcheng Guo, Lav Gupta, and Raj Jain. Efficient and secure 5G core net-
work slice provisioning based on vikor approach. IEEE Access, 7:150517–150529, 2019.

[82] Giuseppe Lipari and Enrico Bini. A methodology for designing hierarchical scheduling
systems. Journal of Embedded Computing, 1(2):257–269, 2005.

[83] Changqing Luo, Jinlong Ji, Qianlong Wang, Xuhui Chen, and Pan Li. Channel state
information prediction for 5G wireless communications: A deep learning approach.
IEEE Transactions on Network Science and Engineering, 7(1):227–236, 2018.

[84] Sara Mahmoud, Nader Mohamed, and Jameela Al-Jaroodi. Integrating UAVs into the
cloud using the concept of the web of things. J. Robotics, 2015:631420:1–631420:10,
2015.

[85] Wenguang Mao, Zaiwei Zhang, Lili Qiu, Jian He, Yuchen Cui, and Sangki Yun. Indoor
follow me drone. In Tanzeem Choudhury, Steven Y. Ko, Andrew Campbell, and
Deepak Ganesan, editors, Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys’17, Niagara Falls, NY, USA,
June 19-23, 2017, pages 345–358. ACM, 2017.

[86] Vera Mersheeva and Gerhard Friedrich. Multi-uav monitoring with priorities and
limited energy resources. In Ronen I. Brafman, Carmel Domshlak, Patrik Haslum, and
Shlomo Zilberstein, editors, Proceedings of the Twenty-Fifth International Conference
on Automated Planning and Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11,
2015, pages 347–356. AAAI Press, 2015.

[87] Microsoft. Azure private 5G core. Technical report, Microsoft, 2023.

[88] Scott Middleton. Discrimination, Regulation, and Design in Ridehailing. Master’s
thesis, Massachusetts Institute of Technology, 5 2018.

[89] Jose Carlos Molina, Ignacio Eguia, Jesus Racero, and Fernando Guerrero. Multi-
objective vehicle routing problem with cost and emission functions. Procedia - Social
and Behavioral Sciences, 160:254–263, 2014. XI Congreso de Ingenieria del Transporte
(CIT 2014).

[90] Luca Mottola, Mattia Moretta, Kamin Whitehouse, and Carlo Ghezzi. Team-level
programming of drone sensor networks. In Ákos Lédeczi, Prabal Dutta, and Chenyang
Lu, editors, Proceedings of the 12th ACM Conference on Embedded Network Sensor
Systems, SenSys ’14, Memphis, Tennessee, USA, November 3-6, 2014, pages 177–190.
ACM, 2014.

148

[91] L Srikar Muppirisetty, Tommy Svensson, and Henk Wymeersch. Spatial wireless
channel prediction under location uncertainty. IEEE Transactions on Wireless
Communications, 15(2):1031–1044, 2015.

[92] Kanthi Nagaraj, Dinesh Bharadia, Hongzi Mao, Sandeep Chinchali, Mohammad
Alizadeh, and Sachin Katti. Numfabric: Fast and flexible bandwidth allocation in
datacenters. In Marinho P. Barcellos, Jon Crowcroft, Amin Vahdat, and Sachin Katti,
editors, Proceedings of the ACM SIGCOMM 2016 Conference, Florianopolis, Brazil,
August 22-26, 2016, pages 188–201. ACM, 2016.

[93] Nidal Nasser, Lutful Karim, and Tarik Taleb. Dynamic multilevel priority packet
scheduling scheme for wireless sensor network. IEEE transactions on wireless
communications, 12(4):1448–1459, 2013.

[94] Nvidia. Nvidia aerial SDK. https://developer.nvidia.com/aerial-sdk, 2022.

[95] O-RAN. O-RAN specifications. Technical report, O-RAN Alliance, 2023.

[96] Mourice O. Ojijo and Olabisi E. Falowo. A survey on slice admission control strategies
and optimization schemes in 5G network. IEEE Access, 8:14977–14990, 2020.

[97] Arled Papa, Alba Jano, Serkut Ayvaşık, Onur Ayan, H. Murat Gürsu, and Wolfgang
Kellerer. User-based quality of service aware multi-cell radio access network slicing.
IEEE Transactions on Network and Service Management, 19(1):756–768, 2022.

[98] Laurent Perron and Vincent Furnon. Or-tools. https://developers.google.com/
optimization/routing/vrp.

[99] Riccardo Petrolo, Yingyan Lin, and Edward W. Knightly. ASTRO: autonomous,
sensing, and tetherless networked drones. In Proceedings of the 4th ACM Workshop
on Micro Aerial Vehicle Networks, Systems, and Applications, DroNet@MobiSys 2018,
Munich, Germany, June 10-15, 2018, pages 1–6. ACM, 2018.

[100] Qulsar. Qulsar Qg2. https://qulsar.com/Products/Systems/Qg_2.html, 2022.

[101] Darijo Raca, Dylan Leahy, Cormac J. Sreenan, and Jason J. Quinlan. Beyond
throughput, the next generation: A 5G dataset with channel and context metrics.
In Proceedings of the 11th ACM Multimedia Systems Conference, MMSys ’20, page
303–308, New York, NY, USA, 2020. Association for Computing Machinery.

[102] Carl Edward Rasmussen. Gaussian processes in machine learning. In Olivier Bousquet,
Ulrike von Luxburg, and Gunnar Rätsch, editors, Advanced Lectures on Machine
Learning, ML Summer Schools 2003, Canberra, Australia, February 2-14, 2003,
Tübingen, Germany, August 4-16, 2003, Revised Lectures, volume 3176 of Lecture
Notes in Computer Science, pages 63–71. Springer, 2003.

149

https://developer.nvidia.com/aerial-sdk
https://developers.google.com/optimization/routing/vrp
https://developers.google.com/optimization/routing/vrp
https://qulsar.com/Products/Systems/Qg_2.html

[103] Darshan A. Ravi, Vijay K. Shah, Chengzhang Li, Y. Thomas Hou, and Jeffrey H.
Reed. RAN slicing in multi-MVNO environment under dynamic channel conditions.
IEEE Internet of Things Journal, 9(6):4748–4757, 2022.

[104] Joseph Redmon. Darknet: Open source neural networks in c. http :
//pjreddie.com/darknet/, 2013–2016.

[105] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533–536, 1986.

[106] Oriol Sallent, Jordi Perez-Romero, Ramon Ferrus, and Ramon Agusti. On radio
access network slicing from a radio resource management perspective. IEEE Wireless
Communications, 24(5):166–174, 2017.

[107] Vincenzo Sciancalepore, Konstantinos Samdanis, Xavier Pérez Costa, Dario Bega,
Marco Gramaglia, and Albert Banchs. Mobile traffic forecasting for maximizing
5G network slicing resource utilization. In 2017 IEEE Conference on Computer
Communications, INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017, pages 1–9,
Atlanta, GA, 2017. IEEE.

[108] Nashid Shahriar, Sepehr Taeb, Shihabur Rahman Chowdhury, Mubeen Zulfiqar,
Massimo Tornatore, Raouf Boutaba, Jeebak Mitra, and Mahdi Hemmati. Reliable
slicing of 5G transport networks with bandwidth squeezing and multi-path provisioning.
IEEE Transactions on Network and Service Management, 17(3):1418–1431, 2020.

[109] Anand Srinivasan and Sanjoy Baruah. Deadline-based scheduling of periodic task
systems on multiprocessors. Information processing letters, 84(2):93–98, 2002.

[110] Cisco Systems. Cisco annual internet report (2018 - 2023). Technical report, Cisco
Systems, 2020.

[111] Éric D. Taillard. Parallel iterative search methods for vehicle routing problems.
Networks, 23(8):661–673, 1993.

[112] Kun Tan, He Liu, Jiansong Zhang, Yongguang Zhang, Ji Fang, and Geoffrey M.
Voelker. Sora: High-performance software radio using general-purpose multi-core
processors. Commun. ACM, 54(1):99–107, jan 2011.

[113] Paolo Toth and Daniele Vigo, editors. The Vehicle Routing Problem, volume 9 of
SIAM monographs on discrete mathematics and applications. SIAM, 2002.

[114] Sebastian Troia, Andres Felipe Rodriguez Vanegas, Ligia Maria Moreira Zorello, and
Guido Maier. Admission control and virtual network embedding in 5G networks: A
deep reinforcement-learning approach. IEEE Access, 10:15860–15875, 2022.

150

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

[115] David Tse and Pramod Viswanath. Fundamentals of Wireless Communication.
Cambridge University Press, Cambridge, UK, 2005.

[116] Uber Technologies. What is destination discrimination? https://help.uber.
com/driving-and-delivering/article/what-is-destination-discrimination?nodeId=
9bde02cc-3d43-4837-9384-d28c57755fd9, 2021.

[117] Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Xinxin Jin, Ranveer Chandra,
Sudipta N. Sinha, Ashish Kapoor, Madhusudhan Sudarshan, and Sean Stratman.
Farmbeats: An IoT platform for data-driven agriculture. In Aditya Akella and
Jon Howell, editors, 14th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017, pages 515–529.
USENIX Association, 2017.

[118] Mohammad M. Vazifeh, Paolo Santi, Giovanni Resta, Steven H. Strogatz, and Carlo
Ratti. Addressing the minimum fleet problem in on-demand urban mobility. Nat.,
557(7706):534–538, 2018.

[119] Melissa Vetromille, Luciano Ost, César AM Marcon, Carlos Reif, and Fabiano Hessel.
Rtos scheduler implementation in hardware and software for real time applications.
In Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP’06),
pages 163–168. IEEE, 2006.

[120] Pierre-Brice Wieber. Trajectory free linear model predictive control for stable walking
in the presence of strong perturbations. In 2006 6th IEEE-RAS International
Conference on Humanoid Robots, Genova, Italy, December 4-6, 2006, pages 137–142,
Genova, Italy, 2006. IEEE.

[121] Jun Wu, Zhifeng Zhang, Yu Hong, and Yonggang Wen. Cloud radio access network
(c-RAN): a primer. IEEE network, 29(1):35–41, 2015.

[122] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang,
Philip Levis, and Keith Winstein. Learning in situ: a randomized experiment in video
streaming. In 17th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20), pages 495–511, Santa Clara, CA, feb 2020. USENIX Association.

[123] Qing Yang, Xiaoxiao Li, Hongyi Yao, Ji Fang, Kun Tan, Wenjun Hu, Jiansong Zhang,
and Yongguang Zhang. Bigstation: Enabling scalable real-time signal processingin large
mu-mimo systems. SIGCOMM Comput. Commun. Rev., 43(4):399–410, aug 2013.

[124] Justin Yapp, Remzi Seker, and Radu F. Babiceanu. UAV as a service: A network
simulation environment to identify performance and security issues for commercial
UAVs in a coordinated, cooperative environment. In Jan Hodický, editor, Modelling
and Simulation for Autonomous Systems - Third International Workshop, MESAS

151

https://help.uber.com/driving-and-delivering/article/what-is-destination-discrimination?nodeId=9bde02cc-3d43-4837-9384-d28c57755fd9
https://help.uber.com/driving-and-delivering/article/what-is-destination-discrimination?nodeId=9bde02cc-3d43-4837-9384-d28c57755fd9
https://help.uber.com/driving-and-delivering/article/what-is-destination-discrimination?nodeId=9bde02cc-3d43-4837-9384-d28c57755fd9

2016, Rome, Italy, June 15-16, 2016, Revised Selected Papers, volume 9991 of Lecture
Notes in Computer Science, pages 347–355, 2016.

[125] Qiang Ye, Junling Li, Kaige Qu, Weihua Zhuang, Xuemin Sherman Shen, and
Xu Li. End-to-end quality of service in 5G networks: Examining the effectiveness of a
network slicing framework. IEEE Vehicular Technology Magazine, 13(2):65–74, 2018.

[126] Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Comparative study
of CNN and RNN for natural language processing. CoRR, abs/1702.01923, 2017.

[127] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A control-theoretic
approach for dynamic adaptive video streaming over http. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, SIGCOMM
’15, page 325–338, New York, NY, USA, 2015. Association for Computing Machinery.

[128] Wanke Yu, Chunhui Zhao, and Biao Huang. Stationary subspace analysis-based
hierarchical model for batch processes monitoring. IEEE Transactions on Control
Systems Technology, 29(1):444–453, 2020.

[129] Yasir Zaki, Thushara Weerawardane, Carmelita Görg, and Andreas Timm-Giel.
Multi-qos-aware fair scheduling for LTE. In Proceedings of the 73rd IEEE Vehicular
Technology Conference, VTC Spring 2011, 15-18 May 2011, Budapest, Hungary, pages
1–5, Budapest, Hungary, 2011. IEEE.

[130] Lanfranco Zanzi, Vincenzo Sciancalepore, Andres Garcia-Saavedra, Hans Dieter
Schotten, and Xavier Costa-Pérez. Laco: A latency-driven network slicing orches-
tration in beyond-5G networks. IEEE Transactions on Wireless Communications,
20(1):667–682, 2021.

[131] David Zipper. Did uber just enable discrimination by destina-
tion? https : / / www . bloomberg . com / news / articles / 2019-12-11 /
the-discrimination-risk-in-uber-s-new-driver-rule, 2019.

152

https://www.bloomberg.com/news/articles/2019-12-11/the-discrimination-risk-in-uber-s-new-driver-rule
https://www.bloomberg.com/news/articles/2019-12-11/the-discrimination-risk-in-uber-s-new-driver-rule

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Strawman: End-to-End Optimization
	1.2 Application-Aware Scheduling Architectures
	1.2.1 Customer-Level Fairness in Mobility Platforms
	1.2.2 Application-Level Service Assurance in Cellular Networks

	1.3 Organization of this Thesis

	2 Background and Related Work
	2.1 Hierarchical Scheduling
	2.2 Scheduling in Mobility Platforms
	2.3 Service Assurance in Cellular Networks

	3 Customer-Level Fairness in Mobility Platforms
	3.1 Problem Setup
	3.2 Overview
	3.3 Balancing Throughput and Fairness
	3.3.1 Scheduling on the Convex Boundary
	3.3.2 Scheduling in Dynamic Environments
	3.3.3 Visualizing Routes Scheduled by Mobius

	3.4 Mobius Scheduling Algorithm
	3.4.1 Finding Support Allocations
	3.4.2 Scheduling Over Rounds
	3.4.3 Optimality of Mobius
	3.4.4 Implementation

	3.5 Generalizing to a-Fairness
	3.6 Real-World Evaluation
	3.6.1 Online Trace-Driven Emulation
	3.6.2 Case Study: Lyft Ridesharing in Manhattan
	3.6.3 Case Study: Shared Aerial Sensing Platform

	3.7 Conclusion

	4 Application-Level Service Assurance with 5G RAN Slicing
	4.1 Problem Setup and Challenges
	4.1.1 Problem Formulation
	4.1.2 Challenge: State Space Complexity
	4.1.3 Challenge: Determining RAN Resource Availability

	4.2 Design
	4.2.1 Model Predictive Control
	4.2.2 Tuning Slice Bandwidths Efficiently
	4.2.3 Forecasting RAN Resource Availability

	4.3 Implementation
	4.4 Evaluation
	4.4.1 Evaluation Setup
	4.4.2 End-to-end Evaluation
	4.4.3 SLA Compliance
	4.4.4 Forecasting RAN Resource Availability
	4.4.5 Microbenchmarks

	4.5 Discussion
	4.6 Conclusion

	5 Conclusion
	5.1 Summary
	5.2 Future Work

	A Mobius Appendix
	A.1 Searching for a-Fair Allocation
	A.2 Mobius Algorithm
	A.3 Optimality of Mobius
	A.3.1 Mobius is Optimal in a Round
	A.3.2 Mobius Converges to the Target Throughput

	A.4 Greedy Heuristic to Maximize U_a
	A.5 Runtime of Mobius
	A.6 Microbenchmarks
	A.6.1 Robustness to Spatial Demand
	A.6.2 Expressive Schedules with a
	A.6.3 Timescale of Fairness
	A.6.4 Geometry of the Convex Boundary
	A.6.5 Varying the Number of Vehicles
	A.6.6 A Case with Three Customers

	B Zipper Appendix
	B.1 Allocating Slice Bandwidth in Zipper
	B.1.1 Forecasting the Wireless Channel with an RNN
	B.1.2 Monotonicity of Throughput and Latency
	B.1.3 Algorithm

	B.2 Estimating Resource Availability in Zipper
	B.2.1 DNN Architecture

	References

